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Thermal self-defocusing of laser radiation is investigated in conditions of induced 
photoabsorption convection (PC) together with the characteristic thermal self-action length and 
the velocity and temperature of convective flow. The dependence of these quantities on fluid and 
beam parameters is determined by dimensional analysis in well developed photoabsorption 
convection. The expressions obtained in the present study are in good agreement with 
experimental results in moderate P C  conditions. 

1. INTRODUCTION 

One of the principal effects from the propagation of 
powerful radiation in a medium is heating of the medium by 
photoabsorption. The development of temperature gradi- 
ents in fluids and gases results in convective flows that can 
significantly influence heat transport in the medium and 
therefore the propagation of the light beam. ' There are many 
studies devoted to investigating the self-action of light beams 
in the presence of natural or induced convective flows for the 
case of horizontal radiation propagation.'-3 In this case mo- 
tion of the medium is transverse to the optical beam axis so 
that both the temperature distribution and the refractive in- 
dex are determined by the transverse beam shape. In the case 
of vertical radiation propagation in an initially quiescent me- 
dium heat transport runs largely along the light beam axis. 
In other words self-action is nonlocal along the longitudinal 
coordinate of the light beam, which causes changes in the 
parameters characterizing the radiation propagation pro- 
cess compared to the case of a horizontal beam or self-action 
in a static medium. 

A theoretical analysis and experimental investigation of 
thermal self-action of radiation for the case of vertical propa- 
gation in conditions of photoabsorption convection (PC) 
have not been carried out to date. The present study is aimed 
at such an investigation of this proces. 

The analysis of the fundamental laws of thermal self- 
action in PC conditions is based on treating the hydrody- 
namic and geometric optics equations for the case of cylin- 
drical symmetry by means of similarity theory. Two limits 
are considered: Moderate and well developed convection. 
The analysis of nonlinear effects in well developed PC yields 
fundamental scale relations for quantities describing con- 
vective flow and for the characteristic thermal self-action 
length. 

Nonlinear effects in moderate PC are observed directly 
in the experiment and are therefore investigated in greater 
detail in the theoretical analysis. Therefore an approximate 
analysis of hydrodynamic equations is used to derive expres- 
sions that determine the velocity and temperature of the con- 
vective flow. This made it possible to achieve closure of the 
geometrical optics equations and to analyze these equations 
qualitatively. 

Radiation was directed upward for the experimental in- 
vestigations. The PC velocities and the temperature of the 
medium were measured together with the divergence of the 
light beams exiting the fluid. The radiation beam power, lay- 

er thickness and type of fluid were varied in the experiment. 
The experimental data from the entire series of measure- 
ments were in agreement with theoretical results for moder- 
ate PC conditions. The present study has therefore obtained 
experimental confirmation of the existence of moderate PC 
in fluids. 

2. FORMULATION OF THE PROBLEM 

It is difficult to solve the hydrodynamic and geometri- 
cal optics equations self-consistently even by using modern 
computer technology. To date a numerical investigation of 
hydrodynamic equations for the case of vertical propagation 
of heating radiation has been carried out only in the case of a 
prescribed light beam.4 Dimensional analysis has been ap- 
plied repeatedly in PC investigations for a prescribed hori- 
zontal source to obtain fundamental relations; the results 
have been confirmed in numerical e ~ ~ e r i m e n t s . ~ . ' . ~  We will 
apply dimensional analysis to the problem of the nonlinear 
propagation of a vertical optical beam. 

The purpose of the present study is to determine the 
characteristic thermal self-action length L,,  . The subse- 
quent analysis involves determining the influence of nonlin- 
ear beam distortion on the scale factors of convective mo- 
tion. 

We will assume that the fluid layer is heated by a verti- 
cal axisymmetrical light beam. We will consider the case 
most characteristic of practical applications: A transverse 
beam scale r, significantly less than all other longitudinal 
and transverse spatial scales of the problem. In a geometrical 
optics approximation the light beam propagation is de- 
scribed by the following system of equations by virtue of the 
symmetry of the problem: 

where z is the longitudinal coordinate (in the direction of 
beam propagation), r is the radial coordinate, J(z,r)  is the 
light beam intensity, q = dq, /dr, q, is the correction to the 
eikonal of a plane wave, a is the absorption coefficient, 
T(z,r) is the change in the temperature of the medium due to 
photoabsorption heating, and n = n,, - Idn/dT / T is the re- 
fractive index of the fluid. 

The photoabsorption convective steady state of a vis- 
cous thermally-conducting fluid is described by the system 
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of Navier-Stokes equations in the Boussinesq approxima- 
tion4.9. 10. 

where V and U are the vertical and radial velocity compo- 
nents of the fluid, respectively, v is the kinematic viscosity, g 
is the gravitational acceleration, 0 is the coefficient of ther- 
mal expansion, x is the thermal conductivity coefficient, p,, 
is the fluid density, c, is the specific heat at constant pres- 
sure, p is the deviation from hydrostatic pressure, m = 1 for 
the case of top-to-bottom laser illumination and m = - 1 in 
the reverse case, A = A, + 13 2/13z2 is the Laplacian, and 

is the transverse Laplacian. 
The functionp/p,, can easily be eliminated from ( 3 )  and 

this system can then be written as a single equation 

+LJ ( v K + U E ) d r r } .  
dz r dz dr' 

The primary PC regularities can be obtained from the 
relations between the inertial and viscous forces and between 
heat release and thermal and mass transport. The results of 
such an analysis4-' reveal that three regimes of free conduc- 
tion are possible in photoabsorption: Weak, moderate and 
well developed convection. The transition from weak to 
moderate and from moderate to well developed convection is 
characterized by an increase in the amplitude of the vertical 
velocity component of the convective flow. Taking into ac- 
count the natural boundary condition V = 0 in the longitu- 
dinal coordinate for the vertical velocity component we con- 
clude that only a single convective flow regime (aside from 
weak convection) is possible along the entire radiation prop- 
agation path in the case of vertical beam propagation. In the 
subsequent sections we will, however, consider the nonlinear 
behavior of radiation in isolated PC conditions. In this case 
we will assume that the regions having conditions character- 
ized by the lowest vertical flow velocity component are con- 
centrated in layers that are thin compared to L ,, near the 
illuminated fluid boundary, so that it is possible to ignore 
their contribution to beam defocusing. An estimate of this 
contribution will be given in Sec. 5 for the case implemented 
in the experiment. 

In the case of weak convection the heat liberated by 
photoabsorption is transported away from the beam through 
thermal conductivity. The nonlinear action of the radiation 
in this case is therefore identical to the laser beam defocusing 

in a static medium examined in Ref. 11 and will not be ana- 
lyzed. 

3. MODERATE CONVECTION 

Moderate convection conditions occur when the buoy- 
ancy is balanced by the viscosity, and heat is transported 
away from the beam by convection.' We will introduce di- 
mensionless variables that will make it possible to identify 
the primary terms for such conditions in the hydrodynamic 
equations: 

J ( z ,  r )  =Joe-a ' I (~ .  r ) ,  ( 5  

where J,, is the intensity of the beam at the fluid boundary, 

Here L = min { l / a ,  H ) ,  H i s  the thickness of the fluid layer, 
and 

In new variables Eqs. (2 ) ,  (4 )  will take the following 
form: 

a0 ae i a2e 
V - + ~ - - ~ ~ ~ ( - ~ L X ) Z - { A J + - - } / R ~ ' ,  ax ap y- axz  

where Pr  = Y/X is the Prandtl number, y = L /r,,$l, and 

The dimensionless parameter Q characterizing the density of 
the internal heat sources will be called the thermal complex, 
consistent with Ref. 6. 

This regime is achieved when it is possible to ignore the 
influence of thermal conductivity and inertial forces in (9) ,  
( 10) (the corresponding terms are isolated on the right hand 
sides of the equations). In other words, moderate convection 
exists when 

In this section we will assume that relations ( 12) hold 
and that the right hand sides of ( 9 ) ,  ( 10) vanish. In this case 
we can express the vertical velocity component from Eq. 
( 10) through the fluid temperature. For example, in the case 
O<x,p < a. L = l /a ,  taking into account the boundary con- 
dition v(x,p), = O  = 0, we will have v(x,p) = Y, ( x g )  
+ YII ( x g ) ,  where 
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Recalling ( 14) we can set v(x,p) = v(x,O) in ( 16), ( 17). 
.I (2 ,  P )  =m[ - In 1 j dp' plO(x, p ' )  + lo pJ  dp' plO(x, p') 

0 0 

Then we obtain the following expression for the dimension- 
less flow temperature: 

S 

Substituting ( 18) into ( 15) we can express the axial flow 
velocity through the beam and fluid parameters. Such an 
expression is found analogously in other spatial configura- 
tions of the fluid layer. We will provide dimensionless ex- 
pressions for the axial velocity of the flow in two characteris- 
tic cases: 

a )  In thecaseofa broad fluid layer (O<r<A, A>L)r,,) 
{ f ( t - x ,  a )  - j ( r+x ,  a ) )  + J d t  " )  { 2 f ( x ,  a )  - f ( z - t ,  a)  

0 
d t 

b )  in the case of narrow fluid cloumn (L  A $ r,,) To analyze these expressions further, we will assume 
y >  1. It follows directly from Eq. (9)  with the right-hand 
side set to zero that in the heating beam region with the 
exception of the layer near the upper boundary where 
(d /dx)v(x,O) < 0 holds the transverse scale of the tempera- 
ture distribution of the flow coincides with the transverse 
scale of the beam which, by definition, in the variable p is 
characterized by a value - 1. We can therefore set a = 0 in 
Eqs. ( 13) for x$  + / y  a n d p <  y. It is then easy to find that 
I,,, <1,, forp & y, with the exception ofthe regionsO<x- l /y  
and x> 1. It follows from 11, ( x g )  that in the neighborhood 
of the optical beam (p - 1 ) that we have 

(20) 
In the last case we assume the beam is directed along the 
column axis. In expressions ( 19), (20),  r ( t )  coincides with 
the beam radius in the cross sectionz = t to within a factor of 
order unity. The flow temperature is determined from ( 7 ) ,  
( 18) in the following manner: 

i 

. J d t  
e-.'Z[t, r (u (z)/u ( t )  ) "'1 

? 

i, 0 ( t )  (21) 
where we have for the vertical velocity component on the 
flow axis 

= where for case a )  

for case b )  
1 

We will now determine the dimensionless flow ten; 
perature. Taking into account (8 )  we see clearly that it is 
possible to integrate equation ( 9 )  with respect to 8(x ,p)  
along the flow lines given by the equation 

Knowing expression (21) for the flow temperature, we 
can analyze the optical beam propagation process. We will 
taker,, < L  ,, <L. We will also go over to dimensionless form 
in the system (1 ) .  For this we use (5 )  and introduce the 
variables t = z/L ., , p  = r/r,,, s = qL ,, /r,,. Subject to (21 ) 
the system ( 1 ) takes the following form: 

In thegeneral case, assuming that the base on which the fluid 
layer rests is isothermal (8(x,  ,p) = 0, where x ,  is the 
coordinate of the lower boundary of the layer), and remem- 
bering that in this case the turning points of the flow 
lines ( ( d  /dx )p (x ) = cc ) lie beyond the thermal source 
(p (x )  - y>) 1 ), this integral can be written in the following 
manner: 

where we introduce the convention 
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u, is a typical value ofthe function u ( L  ,, t )  ( u ( L  ,, t )  zoo 
for t=: 1). From (24) we find that the thermal self-action 
length is determined from the relation 

(LNL/r0I3@=I. (26) 

It follows from (25) that L ,, is determined by both the 
intensity scale (for example, the axial intensity of Gaussian 
beams), and the beam power. However in the general case 
these two properties are related. Therefore for simplicity we 
will henceforth replace J, with P / d  in (25). 

Let the fluid be irradiated by the laser from above: 
m = l , zL  = H. Then for L ,, <L we will have from (22),  
(23) in case a )  

while in case b )  

Substituting (27) into (26) in case a )  we obtain the follow- 
ing equation for determining L ,, : 

Taking into account L ,, $r,, we can estimate the solution 
of (28) in the following manner: 

For case b )  we have directly from (26), (27) 

If we now represent the functions I ( t ,p)  and s(t,p) as 

then (24) can be written as a system of equations for R, I,, , 
8,. It follows from this system that for 1 ,< t -  co 

Therefore direct beam self-action and distortion to the initial 
beam shape occur in the range O<t - 1 (O<z - L ., ). Non- 
linear effects are virtually absent outside this range and the 
wavefront (accurate to terms - t - ' In t )  is spherical, the 

beam shape is not distorted and the only change is in its 
transverse dimensions r (z)  z const (r,,/L ,, )z where the 
beam divergence $--,const (r,,/L ,, ), with proportionality 
factors - 1. These relations were confirmed in experimental 
studies (see Sec. 5 ) .  

Now assume the light beam is propagating upward: 
m = - 1, z, = 0. Then taking into account aL  ,, < 1 ,  we 
will have from (22), (23) in case a )  

in case b)  

Analogous to expressions (29), (30) we obtain from (32),  
(25) in case a )  

and in case b )  

We will examine the influence of thermal beam expan- 
sion on the scale quantities characterizing convective flow. 
It follows directly from ( 19), (20) that the influence of this 
effect on the axial flow velocity is manifested as a logarith- 
mic dependence on the beam radius and therefore the scale 
dependence of the velocity on the light beam parameters re- 
mains the same as in the case of a prescribed thermal source: 
V- P ' 2 '. From ( 2  1 ) and the representation ( 3 1 ) we can 
obtain the following expression for the axial temperature of 
the flow: 

(-m) Jdt 
e-at , = ( 2navPL ) '" T (z, 0 )  =CT - 

L u ( t )  R2 ( t )  
Z L  

gBpoc~o4 ' 

where C = J(0,O) rt /P and T is the characteristic tempera- 
ture value in the case of zero heating beam expansion. For 
the case of upward propagation and L ,, <L taking into ac- 
count that R (z) -z/L ,, we will have the following expres- 
sion for the temperature scale of the convective flow in the 
range O(z - L ,, 

while for z$ L ,, 
T-  ( L ,  J L )  'T- (Pro4) '/*. (36) 

The dependence on beam parameters is identified explicitly 
on the right hand side in relations (35),  (36). For the case of 
downward beam propagation we find similarly that the tem- 
perature scale for L ,, <L is determined by substituting L 
with L ,, (33 ) in the expression for 7: 
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Expressions ( 35 ) ,  (36)  describe the following effect: Strong 
radiation self-action reduces the absolute temperature val- 
ues of convective flow and causes a vertical temperature gra- 
dient approaching the upper surface compared to the case in 
which the light beam is prescribed. In the case of upward 
propagation both the absolute temperature and the vertical 
gradient drop. 

In concluding this section we wish to make the follow- 
ing comment. An approximate expression was derived in 
this analysis for the flow temperature ( 1 8 ) .  Using this 
expression it is possible to evaluate the influence of the right 
sides of Eqs. ( 9 ) ,  ( 10) on the derived solutions by means of 
perturbation theory. For example for case b )  implemented 
in the experiment this analysis implies that it is possible to 
ignore the influence of thermal conductivity and inertial 
forces on the axial flow velocity for 

where 

The parameter Q ' is the thermal complex ( 1 1 ), where we use 
the value P /21$ obtained from examining the beam intensity 
scale J,. 

4. DEVELOPED CONVECTION 

Well developed convection differs from moderate PC in 
that the buoyancy forces do not balance the viscous forces 
but rather the inertial forces. In order to directly reflect this 
difference in the hydrodynamic equations we will introduce 
new dimensionless variables. We will use relations ( 5 ) ,  ( 6 )  
for this purpose, although in this section we will assume that 

With this substitution of variables the system (2 ) ,  ( 4 )  takes 
the following form: 

where Q is determined by expression ( 1 1 ) . I t  follows from 
( 40 )  that it is possible to ignore the action of thermal con- 
ductivity and viscosity in the vicinity of the heating beam if 

Relation (41)  is the condition for well developed PC to oc- 
cur in the fluid. 

We also go over to dimensionless form in Eqs. ( 1 ) . Us- 
ing ( 5 )  ( 6 ) ,  (39)  and s = qL/r ,  we have 

where 

Expressions ( 39 )  are the characteristic velocity and tem- 
perature dependences of convective flow in well developed 
PC for L  L  ,, . From ( 42 ) ,  ( 43 )  we have for the beam di- 
vergence in this case 

Let relations (41)  be valid and then, taking into ac- 
count that y )  1 ,  the right-hand sides of the last two equa- 
tions in the system (40)  can be assumed to vanish. I t  is evi- 
dent that the simplified system of hydrodynamic equations 
and Eqs. (42)  so obtained can be characterized by a uniform 
random scale independent of the direction of light beam 
propagation.'' Therefore the characteristic thermal self-ac- 
tion length is determined from the relation D ( L  ,, ) = 1 in 
the following manner: 

Estimates for the velocity and temperature scales of convec- 
tive flow in the case L ,, 4 L  are found from relations ( 39 )  in 
this case by replacing L with L  ., ( 44 ) :  

while for the beam divergence we have 

In the discussions above the flow was assumed to be 
laminar and effects like the transaction to turbulence of the 
hydrodynamic flow were ignored. The generation thresh- 
olds of light-induced turbulence and its excitation by a verti- 
cal radiation beam has been examined in detail in Ref. 12. 

5. EXPERIMENTAL RESULTS 

A configuration in which the laser beam propagated 
upward was selected for the experiment. PES-4, PMS-20 and 
PMS-1000 organosilicon fluids were used as the irradiated 
media, which made it possible to vary the viscosity, coeffi- 
cient of absorption and other parameters of the medium over 
a broad range. The fluid properties are given in the table. A 
50 X 60 X 300 mm silica glass cuvette was used whose bottom 
was placed 50 cm from the laser. The fluid layer height was 
30, 90, and 180 mm. Nonlinear thermal effects of a CW 
YAG solid-state laser ( A  = 1.06 p m )  were investigated. 
Beam power was controlled over a range 14-74 W, with the 
measured beam radius at the fluid entrance varied from 2.4 
to 4.4 mm. A more detailed description and a complete set of 
experimental data can be found in Ref. 13. Here we will only 
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TABLE I. Properties of organosilicon fluids. 

PES-4 I PMS-20 I PMS-I000 

discuss the aspects directly related to the preceding discus- 
sion. 

The values of the thermal complex Q ' estimated on the 
basis of beam radius and power measurements for these ex- 
periments lay in the range lop7-lo- '  and in this case the 
condition 5 (Pr2Q ' )  - ' 5 0.1 held. The values of the 
right member of the inequality (38) varied from 0.2 and 0.8 
in the experiment. Relations (38) therefore were satisfied 
and, consequently, it is possible to conclude that moderate 
convection was achieved in the experiment ( a  regime that 
has only been investigated numerically4 to date). The theo- 
retical results from Sec. 3 were therefore used to process the 
experimental data. 

Before discussing experimental results we wish to draw 
attention to the following fact: A weak convection layer ex- 
ists near the illuminated base. Based on the results from Ref. 
11 it is possible to determine that in the range of fluid and 
beam parameters implemented in the experiment the exis- 
tence of even a very thin (compared to the total fluid height) 
layer - r ,  with such a condition can produce significant 
beam divergence. I t  is therefore necessary to estimate the 
possible influence of this layer on experimental results. This 
can be done in the following manner. We decompose the 
layer on the longitudinal coordinate into two halves and as- 
sume in the first half ( z  > z ' )  that the axial flow velocity is 
described by expression (20),  and that it is necessary to take 
into account the condition V 1, = , = 0 in the second half 
near the upper boundary. In dimensionless variables the 
equation for the axial flow velocity in the second region takes 
the form 

Taking into account the natural free-surface boundary con- 
dition $0 /ax = 0, we can set O(x) -,O(xl) -8(0)  in this 
equation. I t  is then easy to obtain an expression for v(x,O) 
for x <x '  proceeding from the velocity mixing condition at 
the boundary of the two regions x = x'. An estimate of the 

$, degrees 
I 

a 

thickness of layer z" with weak convection is then found 
from the relation v(xl',O) - P r - ' Q " '  in the following 
form: 

For the experiment described here we have z" gr,, and the 
possible contribution of the immobile medium layer of this 
thickness to the beam divergence is two orders of magnitude 
less than that observed. I t  is therefore quite valid to ignore 
this layer both in the theoretical analysis and in the examina- 
tion of the experiment data. 

The angular divergences (across the slot in the focal 
plane of the lens) were measured in the experiment by means 
of an IR visualizer together with the laser beam radii ahead 
of (r,,) and beyond ( r )  the fluid layer. Figure 1 gives the 
results from such an investigation of thermal self-action. 
Figure 1 ( a )  provides the experimental dependences of the 
angular divergences 1C, of the laser beams on power P for 
various fluid column heights and types. The power depen- 
dence of the beam radius at the fluid exit has an analogous 
form. The theoretical analysis provided here makes it possi- 
ble to fit the results of the entire series of measurements with 
a single description. An expression was derived in Sec. 3 for a 
parameter L ,, that determines nonlinear laser beam effects. 
The results from this qualitative analysis can be formulated 
in the following manner: For H / L  ,, < 1 the dimensionless 
divergences $H/r,,  and the radii r / r0  of the beams will be 
linear functions of the dimensionless distance H / L  ,, . Fig- 
ures I ( b )  and ( c )  give the test results of these regularities 
where L ,,were calculated for formula (30).  The straight 
lines in the curves, generated by the method of least squares, 
clearly reveal the agreement between experimental results 
and theoretical conclusions. 

The velocities and temperatures of photoabsorption 
convection flows were also measured in the experiment. The 
velocities were measured by a DISA laser Doppler anemo- 
meter. A remote optical method of sensing variations in the 

FIG. 1. Experimental plots of the divergence IJ of the 
laser beams as a function of power ( a ) ,  the "dimen- 
sionless" divergence 4 H  /r,, as a function of the param- 
eter H / L  ., ( b )  and the dimensionless rad~us  r/r,,as a 
function of the parameter If / L , ,  ( c ) :  0-PMS-20, 
H = 90 mm; 0-PES-4, H = 30 mm; A-PMS-20, 
H = 180 mm; A-PES-4, H = 90 mm; 0-PES-4, 
H = 180 mm; WPMS-1000 ,  H = 90 mm. 
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FIG. 2. Comparison of the experimental V ,  and the theoretical V, .  [cal- 
culated by ( 14) ] values of the axial convective flow velocity. The straight 
line corresponds to V ,  = V ,  . 

refractive index of a medium that in this case are unambigu- 
ously related to the spatial temperature distribution was 
used to obtain the induced temperature profiles. A narrow 
helium-neon laser probe beam was used; this beam was re- 
fracted by the temperature irregularities as it propagated 
through the fluid. The refraction angle of the horizontal 
beam was measured in the experiment as a function of the 
impact parameter, which is sufficient for recovery of the per- 
turbation potential in the case of cylindrical symmetry. l 4  

Figures 2 and 3 give the results from a comparison of 
the measured axial flow velocities and the theoretical values 
calculated by Eq. (20),  where the function r ( 5 )  was estimat- 
ed from the beam divergence by a linear law and A was taken 
as 27 mm. Figure 3 reflects the ratio of experimental and 
theoretical values as a function of the dimensionless cross- 
section coordinates in which the measurements were carried 
out. The solid circles represent the average values of the V,/  
V,. ratio, while the vertical lines reflect a 95% confidence 
range. Averaging was carried out over the values of this ratio 
obtained across the entire range of parameters that were var- 
ied in the course of the experiment. Sampling size was > 10 
for each point. The deviation of the V,  / V ,  ratio from unity 
for x = 0.16 can be attributed to the influence of the free 

FIG. 3. V,: /  V ,  ratio plotted as a function of the dimensionless coordinate 
x = z/Hof the cross section. The solid circles represent the sample mean, 
and the vertical lines represent the confidence range at 0.95. 

FIG. 4. Horizontal temperature distribution along the convective flow 
axis for PES-4 fluid for P = 45 W, H = 180 mm. The circles represent the 
experimental values; curve 1 represents calculation by formula (34) for 
C = 0.2, curve 2 represents calculation by (34) for a prescribed beam; 
R(() = 1, i.e., ignoring nonlinear effects. 

surface ( x  = 0 )  on the experimentally measured velocity, 
which was not taken into account in Eq. (20).  The deviation 
of the experimental points from the V,  = VT line in Fig. 2 
with large values of VT that correspond specifically to 
x = 0.16 has an analogous explanation. 

A direct comparison of the measured temperatures to 
expression (34) was impossible, since the axial beam intensi- 
ty at the fluid boundary, which was not measured, enters 
into the calculation formula through the constant C. How- 
ever expression (34) can be considered as a relation for de- 
termining the constant C based on experimental data if the 
measured temperature values are substituted into its left 
side. It follows from the entire set of values obtained in this 
manner that C = 0.2 + 0.03. Figure 4 gives the experimental 
points and theoretically calculated horizontal temperature 
distribution for C = 0.2 (curve 1)  along the flow axis in 
PES-4 fluid for P = 45 W, H = 180 mm as an example de- 
monstrating good agreement beween experiment and theo- 
ry. Figure 4 also provides the temperature distribution in the 
fluid that would exist in the absence of beam nonlinear ef- 
fects (curve 2)  for comparison purposes. 

In conclusion the authors wish to express their grati- 
tude to V. I. Tatarskii, A. S. Gurvich, V. V. Vorobev and B. 
S. Agrovskii for their extensive commentary, advice and as- 
sistance in this study. 

"We note that this is not the case for moderate PC. The characteristic 
longitudinal scale for velocity is the length over which energy is absorbed 
from the beam, while the characteristic scale for temperature is min L, 
{ L  N, I. 
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