
Negative-energy waves in a plasma with structured magnetic fields 
M. P. Ryutova 

Institute of Nuclear Physics, Siberian Branch, Academy of Sciences of the USSR 
(Submitted 10 February 1988) 
Zh. Eksp. Teor. Fiz. 94,138-151 (August 1988) 

The properties of a plasma which contains structured magnetic fields (magnetic tubes) are 
analyzed in the case with shear flows of matter along the magnetic tubes. If the flows are 
sufficiently fast, they give rise to several new effects: the appearance of negative-energy waves and 
reversal of the sign of the radiative damping. In the nonlinear stage, they drive an explosive 
instability. If the velocity exceeds an upper threshold, they drive a gross (linear) hydrodynamic 
instability. The corresponding processes are analyzed. Calculations of the growth rates for 
dissipative instabilities associated with the excitation of sound waves and anomalous absorption 
in a resonant layer are illustrated by examples. Conditions for the occurrence of the explosive 
instability are identified. The results derived here may be of interest in connection with the 
problem of the buildup and release of energy in the solar atmosphere and also for reaching an 
understanding of the dynamics of various processes which occur in plasmas with structured 
magnetic fields in space and in the laboratory. 

1. INTRODUCTION 
Situations in which the magnetic flux in a plasma is 

concentrated in distinct and relatively thin "tubes," while 
the magnetic field is weak over the greater part of the plasma 
volume, are fairly common in various astrophysical objects 
and also in laboratory plasmas. In particular, observational 
data indicate that the entire magnetic field of the sun is con- 
centrated in narrow tubes, mostly far apart from each other, 
in which the magnetic induction is -2000 G. Magnetic 
spots constitute an ensemble of closely packed magnetic 
tubes (see, for example, the monograph' by Priest). The 
properties of both individual tubes and ensembles of tubes 
must be studied in order to reach an understanding of var- 
ious magnetic-field-dominated processes which occur in the 
solar atmosphere, in particular, the transport of energy from 
the lower layers of the atmosphere to the upper layers and 
the buildup and release of energy. Research on the properties 
of plasmas with structured magnetic fields is important for 
explaining various processes which occur in objects in space. 
Furthermore, it is of general physical interest because of the 
wealth and diversity of the wave processes which occur in 
such structures. I t  is therefore not surprising that problems 
of this sort have received considerable attention in recent 
years. 

One of the first theoretical publications in this field was 
a report2 of a study of the bending oscillations of individual 
tubes (as part of this research, the "radiative damping" of 
these oscillations, associated with the emission of sound 
waves into the space around the tube, was found). That pa- 
per also analyzed the propagation of long acoustic oscilla- 
tions through a plasma containing an ensemble of randomly 
positioned magnetic tubes. A specific "dissipationless" 
mechanism for the damping of these oscillations was re- 
vealed. That mechanism involves a transfer of the energy of 
these oscillations to the bending oscillations of tubes (and is 
somewhat analogous to the Landau damping mechanism). 

Defouw3 has called attention to the existence of some 
specific quasilongitudinal oscillations of a tube in which a 
longitudinal compression (or expansion) of the plasma 
within a tube is accompanied by an increase (or decrease) in 

the cross-sectional area of the tube, with the result that the 
sum of the plasma pressure (the gas-kinetics pressure) and 
the magnetic pressure is not perturbed. These oscillations, 
which constitute an analog of slow magnetosonic waves in a 
homogeneous plasma and which are sometimes called 
"slow" or "varicose," are interesting since their radiative 
damping is very m light.^ Various mechanisms acting to damp 
the oscillations of magnetic tubes, in particular, the mecha- 
nism which results from an "Alfvtn resonance,"' which oc- 
curs in a region in which the phase velocity of the oscillations 
becomes equal to the local value of the Alfvkn velocity, were 
studied in Refs. 4 and 5. The dispersion properties of a plas- 
ma containing an ensemble of closely packed magnetic tubes 
were studied in Ref. 7. I t  was found that random variations 
(which are not assumed to be small: the magnetic field, the 
density, and the pressure of the plasma vary by amounts on 
the order of unity from tube to tube) lead to a dissipation of 
the energy of long-wave oscillations which is substantially 
more rapid than in the homogeneous case. 

All of the studies cited above were carried out for sys- 
tems in which the plasma is at rest in its unperturbed state. 
There are, on the other hand, situations in which the plasma 
outside a tube is moving along the magnetic field with re- 
spect to the plasma inside the tube. In particular, according 
to observational data flows of matter are observed in essen- 
tially all parts of the solar atmosphere where there are struc- 
tured magnetic fields. As a rule, the velocities of these flows 
are different inside and outside the magnetic structures 
(Ref. 1, for example). In other words, there are always shear 
flows along the magnetic tubes in the solar atmosphere. In 
the present paper we study the oscillations of an individual 
tube in the presence of such flows. 

I t  turns out that the presence of shear flows along struc- 
tured magnetic fields gives rise to some qualitatively new 
effects. First, when the velocity of the relative motion ex- 
ceeds a certain threshold, negative-energy waves" appear in 
the system. These waves may become unstable as a result of 
various dissipative processes (in particular, as a result of the 
emission of sound waves into the surrounding medium). In 
addition, since the system simultaneously contains positive- 
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energy waves, a nonlinear "explosive" instability can occur 
in it. Finally, if the velocity of the relative motion exceeds a 
second threshold (if the first velocity threshold is exceeded, 
there is an instability with respect to the excitation of nega- 
tive-energy waves) a coarser (linear) instability occurs. 
This coarse instability is related to the tangential-discontin- 
uity instability. 

Let us examine long-wave oscillations of a tube, by 
which we mean oscillations whose wavelength h = l /k is 
large in comparison with the tube radius R, kR 4 1. These are 
the oscillations which are most easily excited by large-scale 
motions of a plasma and which have a relatively small damp- 
ing rate. 

In Sec. 2 we examine the linear equations describing 
bending and slow oscillations, and we find the conditions for 
the existence of bending oscillations with a negative energy 
and the condition for the gross instability of the tube. In Sec. 
3 we formulate the conditions for the dissipative instability 
of bending oscillations, and we estimate its growth rate. In 
Sec. 4 we discuss that instability of bending and slow oscilla- 
tions which is associated with the emission of sound waves. 
In Sec. 5 we examine the nonlinear explosive instability of 
negative-energy waves. In Sec. 6 we demonstrate some prop- 
erties of the gross instability of the bending oscillations 
which arise when the flow velocity exceeds the second 
threshold. In Sec. 7 we briefly discuss the results. Computa- 
tional questions are set apart in appendices. 

2. LINEAR THEORY OF BENDING AND SLOW OSCILLATIONS 

Let us consider the model of a homogeneous tube of 
circular cross section in the presence of a flow which is di- 
rected along the tube axis. We adopt for the analysis a coor- 
dinate system in which the matter inside the tube is at rest, 
while the flow velocity outside the tube has a value u and is 
directed toward increasing z.  

We begin with the bending oscillations. We describe the 
displacement of the tube with respect to its unperturbed po- 
sition by the vector 6, (z , t ) ,  which lies in the plane perpen- 
dicular to the axis of the tube. As in Ref. 2, we can assume 
that the vector &, ( z , t )  satisfies the equation 

wherep, andp, are the densities of matter inside and outside 
the tube, and B is the magnetic field inside the tube (by anal- 
ogy with Ref. 2, we assume that there is no magnetic field 
outside the tube; this assumption simplifies the calculations 
without having any fundamental effect on the problem). 

Equation ( 1 ) has an energy integral, which can be writ- 
ten in the form 

where R is the tube radius. The integrand has the meaning of 
the energy of the oscillations per unit length along the tube. 

For sinusoidal traveling waves of the type 
exp( - iwt + ikz) we find the dispersion relation 

from ( 1 ), where 7 = p,/p, , and a = ( B  '/4rp, ) ' I 2  is the 
AlfvCn velocity inside the tube. From ( 3 )  we find 

We see that under the condition 

u>u,b=a(l+q)'" ( 5  

(the superscript b on the u, specifies that we mean the criti- 
cal velocity for the excitation of bending oscillations) the 
system becomes unstable. This instability may be called 
"gross" in the sense that its growth rate is comparable to the 
frequency when the threshold is exceeded by an amount on 
the order of unity (u  - u: -u,h). We will analyze this insta- 
bility in more detail in Sec. 6; at this point we will instead 
examine the effects which occur in the region u < up. 

Using the dispersion relation (4 ) ,  we easily find from 
( 2 )  that for traveling waves the energy density per unit 
length of the tube, W, is 

where we have introduced x = { 7 [ a 2 ( l  + 7) - u'])"'. 
Here it is to be understood that the expression in the radical 
is positive, i.e., that the gross instability does not occur. 
Since we are assuming u > 0, the only wave which can have a 
negative energy is one which corresponds to the minus sign 
in dispersion relation (4), i.e., the wave which would propa- 
gate in the negative z direction in the absence of a flow. For 
this wave we find from ( 6 )  

W=nR2kZpeEL2 (qa2-uZ)x/ (x+u)  . 

We see from this expression that the energy of the wave goes 
negative at 

~ > u ~ ~ ~ = a q ' ~  ( 7 )  

(the superscript n specifies that we mean the threshold for 
the appearance of negative-energy waves). Comparing ( 5  ) 
and (7), we see that the relation u: < u: holds, i.e., that nega- 
tive-energy waves do in fact appear in a plasma which is still 
stable with respect to the gross hydrodynamic instability. At 
the lower boundary of the interval in which negative-energy 
waves exist (at  u = u: ) the phase velocity of the wave corre- 
sponding to the minus sign in dispersion relation (4 )  is zero. 
A t  u > u:, the negative-energy waves propagate along the 
direction of the flow. 

We turn now to slow  oscillation^.^^^ A characteristic 
feature of the slow oscillations is that there is almost no per- 
turbation of the sum of the magnetic pressure p ,  and the 
plasma pressure (gas-kinetics pressure) p inside the tube in 
the case of these oscillations, while each of these components 
separately is substantially perturbed: 

Because of this distinctive feature of the slow oscillations, 
the plasma parameter values outside the tubes have only a 
slight effect on the dispersion relation for these oscillations 
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(they introduce corrections of order k *R * )  . In particular, 
external flows have only a slight effect on these oscillations. 
We thus reach the conclusion that the dispersion relation for 
slow oscillations, even in the case of a flow, can be written as 

within small corrections: 

where s, = (yp,/p,)"' is the sound velocity inside a tube, 
and we will use the subscript T, for "tube," to specify slow 
oscillations. 

The complete equations for the bending and slow oscil- 
lations are derived in Appendix 1. 

3. DISSIPATIVE INSTABILITIES OF NEGATIVE-ENERGY 
BENDING OSCILLATIONS 

In the interval 

there may be an instability of negative-energy waves as a 
result of dissipative processes in the plasma. In  other words, 
incorporating dissipative effects results in a transfer of ener- 
gy away from the negative-energy waves and thus an in- 
crease in their amplitude. A remarkable property which 
magnetic tubes exhibit, because of their particular nature, is 
that even in the absence of dissipative processes of any type 
this ("fine") instability may be caused by the mechanism of 
a collisionless dissipation of bending oscillations which was 
studied in Ref. 5. It was shown in that paper that when a 
radial variation of the magnetic tube is taken into account an 
anomolous and strong absorption of oscillations at a reso- 
nant point is manifested. The "resonant point" here is the 
point at which the phase velocity of the oscillations becomes 
equal to the local value of the Alfven velocity. A correspond- 
ing effect occurs in the case of a flow of matter along magnet- 
ic tubes. Here we will follow the approach taken in Ref. 5. 

In the long-wave approximation, the assumption that 
the fluid is incompressible (i.e., the assumption div v = 0 )  is 
quite accurate. We can then replace the velocity by a stream 
function 3: 

In this case, the general system of equations, ( 1.6) (Appen- 
dix 1 ), reduces to a single equation for $: 

We are assuming that w now contains a small imaginary 
increment iv, introduced in order to circumvent the singular 
point at pa = k ' B  correctly. Physically, the appear- 
ance of this correction can be explained in terms of, for ex- 
ample, infrequent collisions between ions and neutral parti- 
cles of the plasma. For clarity in the calculations we assume, 
as in Ref. 5, a model tube which is homogeneous nearly 
throughout space, except in a narrow transition layer (the 
diffuse boundary of the tube), where the plasma density and 
the square of the magnetic field are linear functions of the 
radius: 

R-r+E B2 ( r )  =B2 - 
I ' 

where I<R. 
Solutions of Eq. (10) at  constant values of the density, 

the magnetic field, and the flow velocity are Bessel functions 
in the interior and Hankel functions in the exterior. To  first 
order in kR < 1, these solutions are, respectively, 

To  find solutions in the transition region R < r  < R + 1 we 
introduce the variable z = ( r  - R ) / f  (0&z& 1) .  We can 
make use of the small parameter I / R  to rewrite Eq. ( 10) as 

where 

and the small increment ia has arisen because of iv (the spe- 
cific value of a is unimportant, since it does not appear in the 
final result). 

Equation ( 11 ) has a single-valued solution in the form 
of Bessel functions in the complex z plane with a cut along 
the line Im z = ia, - w < Re z <z,. Expanding in a series in 
the parameter I / R ,  we can write this solution in the form 

Now using the conditions that tC, and dtC,/dz are continuous 
at the points r = R and r  = R + I (i.e., joining the solutions 
in the corresponding way), and choosing the correct branch 
of the logarithm, we find the dispersion relation 

The real part of ( 12) yields 

I-zo=zo. 

It is easy to verify that this expression is precisely the same as 
the dispersion relation (4 ) .  For the imaginary part of the 
frequency we find the following expression from ( 12): 

It can now be seen that for waves with a positive energy (the 
upper sign) the quantity y corresponds to a damping rate, 
while for waves with a negative energy (the lower sign) it 
corresponds to a growth rate. 

The growth rate of the instability for negative-energy 
waves which is caused by the resonant absorption of oscilla- 
tion energy is 

It must be kept in mind that this value for the growth rate is 
valid in a region which is not too close to the threshold, 
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where the denominator in ( 13 ) vanishes. 
The anomalous-absorption effect which is responsible 

here for the instability of negative-energy waves may also 
occur in the case of a homogeneous magnetic tube when 
there are variations in the shear flow. 

4. INSTABILITY OF BENDING AND SLOW OSCILLATIONS 
CAUSED BY THE EMISSION OF SOUND WAVES INTO THE 
EXTERNAL SPACE 

The dispersion relation ( 4 )  for bending oscillations has 
been derived by ignoring the compressibility of the medium. 
Incorporating compressibility corresponds at a formal level 
to the retention of the terms of next higher order in the pa- 
rameter kR 4 l in the exact dispersion relation (cf. Ref. 2) .  
The primary effect of incorporating the compressibility is 
the emission of secondary sound waves by the oscillating 
tube.2 If there is no  plasma flow, this effect leads to a "radia- 
tive" damping of the bending oscillations. If the plasma out- 
side the tube instead has a nonzero velocity u, the emission of 
sound waves may lead to growth of the bending oscillations. 
This situation is possible in two cases: if the bending oscilla- 
tion has a negative energy, and the emitted sound wave has a 
positive energy; or if the bending oscillation has a positive 
energy, and the sound wave has a negative energy. 

The dispersion relation for plane sound waves (far from 
the tube, the waves can be assumed to be plane waves) is 

where k, is the component of the wave vector which is per- 
pendicular to the z axis, and k, as before, is the component of 
the wave vector along the z axis. The subscript s specifies 
sound waves. I t  is easy to verify that the sound wave which 
can have a negative energy is that which, in the absence of a 
flow, would propagate in the negative z direction [the wave 
corresponding to the lower sign in dispersion relation ( 14) 1. 
The sign of the energy of this wave is negative if 

The transverse component of the wave vector of the 
found wave is found from the condition 

(o lk ) ,=(o /k ) . .  

We will first find the conditions under which the bending 
oscillations with a positive energy radiate sound waves with 
a negative energy, i.e., the conditions under which the fol- 
lowing relations hold: 

We recall that we havex = {y[a2(1  + y )  - u'])"~.  
Simple calculations show that these relations can hold 

under the conditions 

a>s,/q"*, u>s.+(a2-s;/q)%. (17) 

I t  follows from the condition for equilibrium of the unper- 
turbed tube, 

that we have 

where y is the adiabatic index. Correspondingly, conditions 
( 17) can hold only if y < 2. 

Can a bending oscillation with a negative energy emit a 
wave with a positive energy? In other words, can the condi- 
tion 

be satisfied? It is obvious that this condition cannot be satis- 
fied, since it reduces to the equation 

whose left side is negative, and whose right side is positive.2' 
We thus reach the conclusion that in our model the 

conditions may be such that a bending wave with a positive 
energy (which is traveling "downstream") will go unstable 
as a result of the emission of secondary sound waves with a 
negative energy. The growth rate for this instability is calcu- 
lated in Appendix 2; the result is 

We must of course recall that this instability occurs if a 
threshold in the flow velocity has been reached [see ( 17) 1. 

A corresponding instability mechanism operates for 
slow oscillations. As we mentioned in Sec. 2, a flow has es- 
sentially no effect on these oscillations; in particular, their 
energy remains positive even when there is a flow. Corre- 
spondingly, an instability may be caused in this case by the 
emission of negative-energy sound waves. The sound waves 
which have negative energy are those which propagate oppo- 
site the flow in the coordinate system of the fluid; their ener- 
gy becomes negative under condition ( 15), i.e., if they are 
traveling downstream in the laboratory system. We thus 
conclude from the phase-matching condition that the condi- 
tion for an instability is [cf. ( 16) 1 

This condition can hold if 

A slow wave propagating downstream may thus be un- 
stable. The growth rate of this instability (Appendix 2)  is 

The threshold flow velocity for this instability is given by 
(18).  

5. EXPLOSIVE INSTABILITY OF NEGATIVE-ENERGY WAVES 

A specific nonlinear instability, an explosive instability, 
occurs in a system which contains waves with energies of 
different signs. This instability was first studied in Ref. 10 in 
the particular case of waves with random phases. It was later 
studied for a "triplet" of coherent waves in Ref. 1 1, which is 
the paper which proposed the term "explosive instability." 
A distinctive feature of an explosive instability is that the 
amplitudes of the interacting waves reach infinitely large 
values in a finite time. This assertion is of course slightly 
formal in nature: Higher-order nonlinear processes will limit 
the growth of the amplitude to a finite level. 
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In analyzing nonlinear processes, in particular, three- 
wave processes, it is convenient to assume that the sign of the 
frequency corresponds to the sign of the energy. When this 
approach is taken, the condition for an explosive instability 
for a three-wave process can be written in the form 

oi+02+os=0, k,+kz+k,=O, I mi 1 f 1 m21 * 1 msl =O, 

(19) 
where the indices 1 ,2 ,3  refer to the three interacting waves. 
Since we are considering oscillations with m = 0, f 1, it 
follows from the last relation in ( 19) that either all three of 
the waves must have m = 0, or two of them must have 
m = f 1, and the third m = 0. 

We can show that conditions ( 19) hold, so an explosive 
instability is possible in the interaction of one slow wave 
(m = 0)  and two bending waves (m = f 1 ). We assign a 
subscript T to quantities referring to a slow wave, and b to 
quantities referring to bending waves. Correspondingly, we 
replace ( 19) by the following conditions: 

The + and - with the subscript b correspond to waves 
which are traveling downstream and upstream. 

It is simple to verify that conditions (20) are compati- 
ble if k ,  > 0 and if the following inequality holds: 

Inequality (21) is the condition for an explosive instability. 
If only a single wave (e.g., a T wave with k, > 0 )  has 

been excited in the system at the origin on the time scale, and 
if the amplitudes of the two other waves are determined by 
thermal noise, then the amplitudes of these two waves will 
grow exponentially in the initial stage of the evolution of the 
explosive instability. It is clear from dimensionality consid- 
erations that the typical growth rate is kTuT- in order of 
magnitude, where v,- is the velocity amplitude of the 
boundary of the tube in the slow oscillations. After a time on 
the order of several times the reciprocal of the growth rate, at  
which the amplitudes of all three waves have become equal 
in order of magnitude, the amplitudes begin a power-law 
growth, as has been established e l~ewhere , '~~"  in accordance 
with 

where to is the time of the "explosion," which also is equal in 
order of magnitude to (k,v,- ) - '  in our case. 

6. HYDRODYNAMIC INSTABILITY OF BENDING 
OSCILLATIONS 

As was shown in Sec. 2, a new instability arises in the 
system if the threshold flow velocity uf = a ( 1  + v)''', de- 
termined by ( S ) ,  is exceeded. This instability is related in 
nature to the instability of a tangential discontinuity in 
MHD. As we have already mentioned, this is a gross instabil- 
ity, in the sense that if the threshold is exceeded by an 
amount of order unity the growth rate becomes on the order 
of the frequency itself, and the growth distance becomes 
comparable to the wavelength. Under conditions such that 
this instability occurs, namely under the condition 

the subtler dissipative and nonlinear instabilities discussed 
in Secs. 3-5 fade to a status of minor importance. 

I t  follows from dispersion relation (4)  that unstable 
perturbations propagate upstream: 

Accordingly, if an upstream flow of surrounding plasma 
"blows over" a certain length of the tube, the bending oscil- 
lations excited here will subsequently propagate upstream. 
This instability is remarkable because it may be regarded as 
an important agent for exciting oscillations in regions far 
from a convection zone. I t  is usually assumed that the excita- 
tion of oscillations of magnetic tubes involves an oscillatory 
motion of the point at which the tube intersects the photo- 
sphere, caused by a time-dependent convection in the photo- 
sphere. Oscillations of magnetic tubes which are excited by 
convective motions undoubtedly do exist, but the frequency 
of these oscillations is on the order of the reciprocal of the 
timescale for a change in the structure of the granulation 
pattern, i.e., on theorder of l / r -  10-2-3. l op3  S-I. Thisisa 
very low frequency, and it makes it a difficult matter to use 
such oscillations to explain energy transport out of the pho- 
tosphere into the upper part of the solar chromosphere. 

The instability described above leads to the existence of 
another oscillation-excitation mechanism, which does not 
require motions at the base of the magnetic tube and which 
may act even far from the convection zone. The frequency of 
the oscillations of the tube is of course totally unrelated to 
the reciprocal of the timescale for a change in the structure of 
the granulation pattern; it may be much greater than l / r .  

7. CONCLUSION 

We have shown that when there is a relative motion of 
the plasmas inside and outside a magnetic tube the system 
will acquire a rich picture of effects, not seen in a plasma at 
rest. We have classified these effects. 

In the first place, bending waves with a negative energy 
may arise in a system of this sort, and the presence of dissipa- 
tive processes may cause an instability of these waves. In 
particular, a dissipative instability may result from a colli- 
sionless absorption of bending oscillations in an AlfvCn-reso- 
nance layer within the tube. The specific type of dissipative 
instability is related to the emission of sound waves into the 
space around the tube (in a system without a flow, this pro- 
cess would result in radiative damping of the bending oscilla- 
tions2). In principle, an instability can occur in two cases: 
when the bending wave has a positive energy and the emitted 
sound wave has a negative energy; or vice versa. 

In a sense, dissipative instabilities are "weak": Their 
growth rate is usually small in comparison with the frequen- 
cy. A gross instability of bending oscillations (with a growth 
rate on the order of the frequency ), analogous to an instabil- 
ity of a tangential discontinuity, arises as the velocity of the 
relative flow is increased further. In the coordinate system in 
which the plasma in the tube is at rest, the unstable waves 
travel in the direction of the external flow. This mechanism 
for the excitation of bending oscillations may play an impor- 
tant role in energy transport in the solar atmosphere. 

We have separately analyzed the three-wave processes 
in which bending and axisymmetric "slow" oscillations of 
the tube interact in a situation in which the former have a 
negative energy. We have identified the conditions for the 
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occurrence of a nonlinear explosive instability. 
The effects described here should play an important 

role in the dynamics of various processes in the solar atmo- 
sphere, in particular, in the transport of energy from the 
lower atmosphere to the upper atmosphere, in the buildup 
and release of energy, in the evolution of the magnetic fields, 
and in phenomena associated with the solar wind. 

APPENDIX 1. EQUATION OF SMALL OSCILLATIONS OF A 
MAGNETIC TUBE 

The linearized system of equations of single-fluid MHD 
for the case in which the matter has an unperturbed velocity 
is 

dv 1 
P- f  (uV)v+ (vV)u=-Vpf-([rotb,B]+[rotB,b]), 

d t 4n 
db 
- = rot [vB] +rot [ub], 
a t  

(1.1) 

8 6 ~  --- + div pvf div 6pu=0, 
at 

Here F = pp Y ,  and v, b, Sp, and Sp are the perturbations of 
the velocity, the magnetic field, the density, and the pres- 
sure. These equations should be supplemented with the con- 
dition for equilibrium of the magnetic tube in its unper- 
turbed state: 

wherep, is the plasma pressure outside the tube. 
We consider a model of the magnetic tube which is axi- 

symmetric in the unperturbed state and which is homoge- 
neous along the axis (which coincides with the z axis in a 
cylindrical coordinate system). In other words, we assume 
that the unperturbed density p ( r ) ,  the unperturbed pressure 
p ( r ) ,  and the unperturbed magnetic field B(  r) depend only 
on the radius. We also assume that the shear flow is directed 
along thezaxis: u = {O,O,u(r)). All of the perturbed quanti- 
ties are assumed to be proportional to exp( - iwt 
+ imp + ikz). For such perturbations, we find the follow- 

ing from the first equation of system (1.1 ) :  

From the second equation of system ( 1.1 ) we find 

kB 
b,=-- vr, 

o-ku 

In writing the last equation we used div b = 0. The 
third and fouth equations in ( 1.1 ) take the following forms, 
respectively: 

where s2 = yp/p is the sound velocity. 
Toputsystemofequations (1.3), (1.4), (1.5) inacom- 

pact and graphic form, we express all the perturbed quanti- 
ties in terms of u, ,  u,, and the perturbation of the total pres- 
sure, S P  = Sp + 6, B /4a. Carrying out the appropriate 
calculations, we find the following system of equations for 
small oscillations of the magnetic tube for the case in which 
there is a flow of matter: 

Here a = ( B ' / ~ T ~ ) " ~  is the Alfven velocity, and 
fl= w - ku. 

System ( 1.6) describes all types of small oscillations of 
a magnetic tube. In the present paper we are considering 
only the rn = f 1 dipole mode, which corresponds to bend- 
ing oscillations, and the rn = 0 axisymmetric mode, with a 
phase velocity c,- = as(a2 + s') ' I '  which corresponds to 
slow ("varicose") oscillations. 

For slow oscillations, system (1.6) reduces to a single 
equation for v, .  Eliminating S P  from (1.6), and noting that 
w have v,. = 0 in the slow (axisymmetric) oscillations, we 
find 

For the bending oscillations in the long-wave limit, the sys- 
tem ( 1.6) reduces to Eq. ( 10) in the case of an inhomogen- 
eous tube; in the case of a homogeneous tube, it reduces to 
Eq. ( 1 ), where the displacement vector v = d( /d t  is intro- 
duced in place of the velocity. As has already been men- 
tioned, the rn = 0 mode also corresponds to torsional oscilla- 
tions of the magnetic tubes and oscillations with changes in 
the plasma pressure and the magnetic pressure which occur 
in phase (an analog of fast magnetosonic waves). However, 
longitudinal flows of matter have only a slight effect on the 
former, while the latter have a very high frequency ( -a/R ), 
even in the case kR < 1, so they are rapidly damped through 
the emission of sound waves into the surrounding medium. 
The high-order azimuthal modes ( m  = f 2 ,  + 3, ... ) are of 
little interest since they have only a slight effect on the "glo- 
bal" characteristics of tubes. 

APPENDIX 2. EMISSION OF SOUND WAVES INTO THE 
EXTERNAL SPACE 

We write the density perturbation in the sound wave 
outside the tube in the form 

Sp = cos(rnp) [ t  f (r)exp( - iwt + ikz) + C.C.]. (2.1) 

The value rn = 0 corresponds to slow oscillations, and 
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m = 1 to plane-polarized bending oscillations. The function 
f satisfies the equation 

A solution of this equation corresponding to sound waves 
which go out from the tube is 

j ( r )  =AH,!? ( k d ,  (2.2) 

where 

The emission of sound waves is of course possible only if the 
expression in the radical in (2.3) is nonnegative. The condi- 
tions under which this is actually the case were formulated in 
Sec. 4. 

At large distances from the tube (k,r% l ) ,  solution 
(2.2) has the asymptotic behavior 

For k, r)  1, solution (2.1 ) with f as in (2.4) is approximate- 
ly a plane-wave solution. Correspondingly, we calculate the 
energy density of a (locally) plane sound wave of the type 

1 
Sp = -6p0 c o d  mq)exp( - iwt + ikz + ik,r) + c.c. 

2 
(2.5) 

We find 

The quantity W, is negative under condition (15). Using 
relation (2.4), we find 

here x = (k  ' + k ) ' I 2 .  The energy flux from a unit length 
of the tube, 

is 
2s: 1 A 1'  xs-ku m-0, 

Q =  
P e  

(2.8) 

The problem is now one of expressing the coefficient A 
in terms of the tube oscillation amplitude. For this purpose, 
we consider the solution (2.2) near the tube boundary in the 
case k ,  r ( 1. In slow oscillations, we have here4 

where C is Euler's constant. It can be seen from Eqs. ( 1.1 ) 
for an external region without a magnetic field that the den- 
sity perturbation is related to the radial component of the 
displacement of the fluid, g,, by 

F s,2 a s p  
S r = ~ i ~ ~ - d r .  

Accordingly, if we write the displacement of the tube bound- 
ary in the slow oscillations in the form 

1 6, = - c0 exp( - iwt + ikz) + c.c., (2.11) 
2 

then by using Eqs. (2.1 ), (2.9), and (2.10) we find 

in Rp,  (a -ku)  A = - -  
2 

Eo- 
s,2 (2.12) 

In other words, for slow oscillations we have 

n2ps 
QT = v ~ ( v ~ - u ) ~ ~ ~ R ~  1 go 1 '. 

We now consider bending oscillations. Using the well- 
known expansion of the Hankel function H," '(k,r)  at 
k, r <  1, we find from (2.2) the following result for the region 
close to the tube: 

Writing the radial component of the displacement of tube in 
the bending oscillations in the form 

1 gr = cos p [i & exp( - iot  + ikz) + C.C. 1 
(go means the amplitude of the excursion of the tube axis 
from its unperturbed position), we find from (2.1 ), (2. lo ) ,  
and (2.13), 

in k,Rzp. (o -ku)  A = - - -  
2 s.a Eo. 

We then find that the energy flux from a unit length of the 
tube is 

Let us find the energy of the slow and bending oscilla- 
tions for a unit length of the tube. For the bending oscilla- 
tions, the corresponding result follows directly from Eq. 

In the case of the slow oscillations, we need to carry out some 
calculations. For these oscillations we find 

where the angle brackets mean an average over a wave- 
length. In writing this expression we allowed for the circum- 
stance that the transverse velocity of the plasma motion in- 
side the tube is very small in comparison with the 
longitudinal velocity. From the equations of motion, the 
continuity equations, and the frozen-in condition we find, 
inside the tube, 

s( e 
Gv,, = - S p ,  6B=B- a" 6p=-- 

P 2R ' 2si2 R  ' 

where 6 is the radial displacement of the boundary of the 
fluid. Specifying { as in (2. lo ) ,  we then find 

Using the expression y = Q /2 W, we can now find the 
instability growth rates. For the bending oscillations we find 
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and for the slow oscillations we find 

rod 
YT 3~k'R' P. c ~ ( c T - u ) ~  

"That negative-energy waves might exist in a nonequilibrium medium 
was originally pointed out by Kadomtsev et al.' With regard to nega- 
tive-energy waves in hydrodynamics, we refer the reader to Ref. 9, for 
example. 

''This conclusion is a consequence of our assumption that there is no 
magnetic field outside the tube. In the general case, an instability mech- 
anism of this sort would be possible. 
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