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The Maxwell effect (birefringence in a flow) in inert gases is calculated. The effect which arises is 
due entirely to an anisotropic polarizability of a pair of particles which interact in collisions. The 
calculation is based on a chain of kinetic equations. 

1. INTRODUCTION 

The Maxwell effect can be summarized by saying that 
birefringence arises in the motion of viscous liquids with an- 
isotropic molecules because of an orientating effect of veloc- 
ity gradients on the anisotropic particles. For liquids this 
effect was recognized and studied experimentally a long time 
ago.' It has recently become possible to study the effect ex- 
perimentally in molecular gases whose particles have an an- 
isotropic p~larizability.~" The effect in gases is three or four 
orders of magnitude weaker than that in liquids. 

In this paper we calculate the collision-induced Max- 
well effect in inert gases. Since an individual molecule in an 
inert gas does not intrinsically have a polarizability anisotro- 
py, the effect which arises is due entirely to the anisotropic 
polarizability of a pair of particles interacting in collisions. 
The calculation is based on the use of a chain of kinetic equa- 
tions which include one- and two-particle distribution func- 
tions. The results show that the collision-induced Maxwell 
effect in the inert gases Ar and Kr, at pressures on the order 
of a few tens of atmospheres, is comparable in magnitude to 
the Maxwell effect in the molecular gases CO, and N,, which 
has been measured e~perimentally.~ We study the depen- 
dence of this effect on the nature of the potential and on the 
characteristic particle scattering angle in the collisions. 

We compare the Maxwell effect with depolarized Ray- 
leigh scattering of light in inert gases, which can now be 
reliably detected Both of these effects are 
based on a collision-induced anisotropy of the polarizability 
of a pair of particles. The same kinetic method is used to 
study the spectral structure of depolarized Rayleigh scatter- 
ing of light in inert gases. 

2. DIELECTRIC CONSTANT OF A GAS IN WHICH THERE IS A 
VELOCITY GRADIENT 

The dielectric constant of a gas, E ~ ,  can be expressed in 
terms of the polarizability per unit volume of the medium, 
av, averaged with the help of the distribution function f,. 
Restricting the discussion to the two-particle interaction ap- 
proximation, we can write this averaging as 

Here we have in mind a spatial average over a volume V 
which physically is very small but which contains a large 
number N$1 of particles. The distribution function f, is 
normalized by 

where r represents a set of parameters characterizing the 
internal degrees of freedom of the gas molecules. For a mon- 
atomic (or inert) gas the parameter r includes the three 
components of the particle's velocity v; for a diatomic mole- 
cule, it includes, in addition to the velocity components, the 
three components of the angular momentum of the molecule 
M. Here r, and r, are the spatial coordinates of molecule k 
and 1, respectively; a,, (r, ) is the polarizability of the k th 
particle considered separately; and ha, (T, , I?, , r, - r, ) is 
the collision-induced polarizability of the pair of molecules k 
and 1, respectively. 

In general, the tensor E ,  consists of a scalar part 0; 6,, 
and a traceless symmetric part; the latter part is the cause of 
the Maxwell effect. In ( 1 ) and all the equations below, we 
are thus thinking of the symmetric component of the tensors 
E,] and a,, , respectively. 

In ( 1 ), we can carry out a partial integration over the 
variables T and r of N - 2 particles. Making use of the sym- 
metry of the function f, with respect to the interchange of 
any pair of particles, we then find 

The one-particle distribution functionf, is assumed here to 
be spatially uniform, while the two-particle distribution 
function f, depends on only the difference between the co- 
ordinates of the interacting particles r = r, - r ,. As we will 
see below, this assumption is valid if the system is not too far 
from equilibrium. 

Up to this point, the normalization of distribution func- 
tions f, and f, has involved a volume V, which we now as- 
sume is a unit volume for convenience in the calculations 
below. Under this assumption, everything in (2)  remains the 
same, except that N must now be understood as the number 
of particles in a unit volume ( [N] = cmP3). 

The first term in (2)  describes the ordinary Maxwell 
effect for anisotropic molecules whose polarizability tensor 
has a symmetric component a,[. This term vanishes in the 
case of an inert gas. 

The second term in (2)  describes the correction to the 
dielectric constant for the circumstances that the polarizabi- 
lities of two interacting particles are not additive. It is this 
term which describes the Maxwell effect in inert gases. We 
might add that this term is also responsible for the occur- 
rence of depolarized scattering of light in inert gases, which 
has recently been the subject of very active research. 
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3. KINETIC EQUATIONS FOR THE DISTRIBUTION 
FUNCTIONSOFA NONEQUlLlBRlUM GAS 

A kinetic equation for a one-particle distribution func- 
tion f, for a steady nonequilibrium state of a gas with a con- 
stant velocity gradients-'' can be written in the form 

where 

where fo is an equilibrium Boltzmann distribution function, 
m is the mass of a molecule, T is the gas temperature, a 
repeated index means a summation, and V is the macroscop- 
ic velocity of the gas. I t  is assumed here that the deviatiop of 
f, from fo is small, so the Boltzmann collision integral I on 
the right side of Eq. ( 3 ) is written in linearized form. 

A solution of integral equation (3)  can be written for- 
mally as 

The inverse operator j - ' is defined in such a way that when 
acting on the eigenfunctions of the Boltzmann operator 2 
which have nonvanishing eigenvalues; it is the ordinary in- 
verse operator, while when acting on the five hydrodynamic 
modes which have vanishing eigenvalues" it gives zero. 

If ternary collisions are ignored, the equation for the 
two-particle distribution function f, is known8 to reduce to 
df,/dt = 0, i.e., to the conservation of the function f, along 
the path traced out in phase space by the colliding particles. 

Using the statistical independence of the two colliding 
particles before the collision, we find a general solution for 
the functionf, (Ref. 8): 

f2(r17 r27 r ) = f 1 ( ~ 1 0 ) f 1 ( ~ 2 0 ) ~  ( 5  
Here rlo and r,,, are the values of the velocity and angular 
momentum of the particles before the collision. The quanti- 
ties rl0 and r2, are functions of r , ,  r , ,  and r. To first order 
in the deviation from equilibrium (i.e., i n x ) ,  the function f2 

is given by 

where U,, (T, , r , , r )  is the potential energy of the interaction 
of the colliding particles. 

4. MAXWELL EFFECT FOR ANISOTROPIC AND ISOTROPIC 
MOLECULES 

For anisotropic molecules, the Maxwell effect is de- 
scribed by the first term in (2) .  We substitute into that 
expression the function f from ( 3 ) ,  (4)  and the polarizabili- 
ty of a molecule, a,, , in the form 

where all and a, are the polarizabilities along and perpen- 
dicular to the axis of the molecule. As a result, we find an 
expression for the dielectric constant: 

. +{ utvj - T ' vv,) ar 
is Maxwell's constant, which is expressed in seconds. 

In the determination of the constant p ,  the sign was 
chosen in such a way that the coefficient p is always positive 
(the negative definiteness of the operator I - '  is taken into 
account). The expression found for Maxwell's constant p is 
the same as that given in the literature (the coefficient 0 
from Ref. 2). We will use it below to make a comparison with 
the new birefringence effect in inert gases. An order-of-mag- 
nitude estimate of the constant p yields the following expres- 
sion, as can be seen from ( 8 ) : 

where ij = ( T / m  ) I", is the shear viscosity coefficient, and 
a,, , a ~ ,  and a,, are the cross sections for collisions involv- 
ing a change in velocity, for collisions involving a change in 
angular momentum, and for inelastic collisions which cou- 
ple rotational and translational degrees of freedom. 

In the case of an inert gas, the Maxwell effect is deter- 
mined by the second term in (2) ,  since the quantity a ,  : a, 
is zero. The induced anisotropic polarizability of a pair of 
interacting praticles can be expressed in terms of the dis- 
tance between these particles, r: 

Actij (r )  =Au (r) {rirj/r2-'/36,j}. (10) 

We recall that ha ( r )  is the nonadditive part of the polariza- 
bility of a pair of particles separated by a small distance. 
Using the explicit expressions for f,, f,, and haq [expres- 
sions (41, (6), and ( lo),  respectively J ,  along with (2) ,  we 
can write an expression for E~ in terms of V,  : 

gij=2nN2 1 Au(r) {rirj/rZ-'/~6ij)fo(~i)fo(v~~ 

.exp[ -Uiz(r)lT] { ~ ( v , , )  + x(v2,) }dv,dv2dr, 

where 

The operator j - ' in ( 1 1 ) acts on the variable v,. Since 
this is a scalar operator, the result of its application to the 
tensor viovko - +6ik v i  is the same tensor, with a constant 
factor - v- (vO) which depends on the modulus of v i .  This 
factor reflects the dependence of the rate of (gas-kinetic) 
collisions von the energy of the colliding particles. Below we 
assume that this dependence is weak in comparison with a 
Maxwell distribution. 

We transform to the center-of-mass coordinate system 
of the colliding particles, and we separate the radial and an- 
gular parts in expressions ( 1 1 ) : 

Pi - 
m NZ 

e i j= -V i j - -2nI  v2duJ r'dr f,(u)Aa(r) 
T v  0 0 

where ~ ~ o ( v . . . . ) ~ V . .  = 1 . (12) 
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As usual, we have integrated over the center-of-mass vari- 
ables, and we have noted that the reduced mass is m/2.  Here 
v = v, - v, is the relative velocity of the colliding particles, 
f,(v) is a Boltzmann distribution in relative velocities, and 
V,.,, is the velocity of the center of mass of the colliding 
particles. In  the integration of expression ( 12) over do, it is 
convenient to use a spherical coordinate system whose z axis 
is directed along the vector v, while the direction of the vec- 
tor r is specified by two angles: the polar angle $ and the 
azimuthal angle p. The direction of the vector v is specified 
with respect to a fixed coordinate system. In this coordinate 
system, we can carry out the integration over do, and dp 
completely, without resorting to any model regarding the 
potential U,,. The final expression is 

5 sin 9 d${ ' /4 sin2 l sin2 @+'I, sin (l-!) sin ($+B)). 
0 

(13) 
Here 6 is the angle between the vectors v and v,, and P i s  that 
between v and r, ($is the angle between rand  v). The angles 
6 and fl are functions of $, r and v ;  they characterize the 
position of the vector v, with respect to the vectors v and r, 
respectively. I t  is not difficult to verify that the relation 
0 = $ + 6 holds for a repulsion of the particles, and the rela- 
t i on0  = $ - 6 holds for an attraction. Expression ( 13) is a 
microscopic expression for Maxwell's constant for isotropic 
molecules, pis. An obvious consequence of expression ( 13) 
is that there is no Maxwell effect for collisions which do not 
involve a change in velocity ( 6  = 0, $ = P ) ,  i.e., for rectilin- 
ear paths. I t  follows that the effect under discussion here is 
dominated by collisions with a large change in velocity, 
which occur at small distances r. 

We estimate pis from ( 13) : 

where d is the effective interaction radius of the particles, 
andz -  U/Tis the characteristic scattering angle of the par- 
ticles in the collision. The ratio of Maxwell's constants for 
isotropic and anisotropic molecules is given by the simple 
expression 

We will be discussing expressions ( 14) and ( 15) below. 

5. COLLISION-INDUCED SPECTRUM OF DEPOLARIZED 
RAYLEIGH SCATTERING OF LIGHT 

The Maxwell effect in a gas of isotropic molecules is 
based on the appearance of the anisotropic polarizability of a 
pair of interacting molecules in the course of a collision. The 
same collision-induced polarizability underlies the appear- 
ance of a depolarized Rayleigh scattering in a gas of spheri- 
cally symmetric molecules; the latter effect can now be reli- 
ably detected experimentally."'" '-I3 

We can write an expression for the correlation function 
of the dielectric constant of an inert gas with a collision- 

induced anisotropic polarizability haG ( r )  [see expression 
(1011: 

(6cij(R, t )  tie., (0,O) )= (2nN2)' J Aaij(r) Aa,, ( r f )  
.(Sf,(t, R, v,, v,, r)6fz(0, 0, v,', v,', r') )dLvdr dr'. 

(16) 

We recall that f2 is a two-particle distribution function 
which, like f,,  has been normalized to unit volume; 
R = ( r ,  + r,)/2 is the coordinateof thecenter of mass of the 
system; and r is the distance between the colliding particles. 
The equation of motion of the correlation function 
(Gf2(0)Sf,(t)) like that for the function f,, reduces to the 
conservation of this function along the path traced out by the 
system of two particles. The initial condition is 

Using the equation of motion of the correlation func- 
tion, using initial condition (17),  and transforming to the 
center-of-mass system of the colliding particles, we find 

Here r,, is the distance between the colliding particles at time 
t = 0, under the condition that this distance is r at time t .  The 
distance rO is thus a function of the quantities r and t :  

rO = r(,(r,t). 
The Fourier component is space ( R )  and time ( I )  of 

expression ( 18) for i = k, j = I determines the spectrum of 
the depolarized scattering of light, @(o ,q ) :  

Aa , , ( ro) fo(~)expl -U(r ) /Tldv  d r d t .  (19) 
Here we have taken account of the circumstance that the 
spatial size of the correlation function ( 18) is on the order of 
the interaction radius of the particles and much smaller than 
the wavelength of the scattered light, A = h / q ;  i.e., we can 
set q = 0. It can be seen from ( 19) that the spectrum of the 
scattered light is determined by the temporal correlation 
function of the polarizability induced during the collision, 
ha,, . Since this correlation time is on the order of the parti- 
cle collision time 7,,,, , the width of the depolarized spec- 
trum, A o ,  is given by Aw - l/r,,,,, in order of magnitude. 

The intensity of the depolarized scattering integrated 
over the spectrum can be found from ( 19), where we must 
set t = 0 and r,, = r. The expression found in this way for the 
integrated intensity of the depolarized scattering, I,,, , is the 
same as the expression given in the literature. ' ' We will use it 
below for some numerical estimates of ha for inert gases. 

6. DISCUSSION 

To make a comparison with experiments in inert gases, 
it is convenient to use the ratio of the intensity of the depolar- 
ized scattering, I,,, , to that of the polarized scattering, I,,,, : 
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The quantity here is the polarizability averaged over the 
spatial interaction volume ofthe particles, and d is the effec- 
tive interaction volume. Using experimental results on de- 
polarized Rayleigh scattering of light in inert gases,' ' - I 3  we 
can calculate the following quantity from (20):  

2.5.10-23 cm3 for Kr 
1.25.10-23 cm' for Ar . 

The Maxwell effect in inert gases [see ( 13) and ( 14) ] is 
proportional to the quantity h a d  3B. The light-scattering 
effect which we are discussing here does not depend explicit- 
ly on the angle ( 8) through which the particles are scattered 
in the collision; it occurs at angles 8 ~ 0 ,  i.e., for rectilinear 
particle paths. For a rectilinear path, the collision-induced 
Maxwell effect is zero. Furthermore, the component 
a ( z)' of the light scattering is thus insensitive to the sign 
of Aa( r ) ;  this sign changes as we go from a region of molecu- 
lar repulsion into a region of attraction. In contrast, the 
Maxwell effect, a % is sensitive to the sign of Aa( r ) .  

Consequently, although the Maxwell effect and the ap- 
pearance of a depolarized scattering isotropic gases are 
based on the same phenomenon-the appearance of a colli- 
sion-induced anisotropic polarizability of the medium-the 
Maxwell effect is more sensitive to the nature of the interac- 
tion potential. It can be seen from (14) that the Maxwell 
effect increases in strength as the characteristic scattering 
angle 8- U / T  increases. An effort to observe the effect 
which we have been discussing here should thus be made in 
gases for which the depth of the van der Waals potential is 
comparable to T. In particular, for Ar, Kr, and Xe at room 
temperature we would have 

To calculate Maxwell's constant p,, in inert gases from 
(14),  we need to know more than simply the quantity 
( ha/a, ,) 'd ', obtained from an experiment on depolarized 
scattering. We also need to know the effective particle inter- 
action volume d '. Assuming that the interaction radius is 
limited on one side to a value equal to twice the hard-sphere 
radius (2r,, = 4 lopX cm; Refs. 2-4) and on the other side 
by the radius at the minimum of van der Waals molecules, 
r,,, (rVdW = 12. 10WX cm for Ar; Ref. 14), we find the range 
of d ': 

This ranL mposes a corresponding range onp,, . The results 
of the calculations ofp, ,  are summarized in Table I, which 

TABLE I .  Values of p for various gases (E,,  = - 2p V,, ) 

also shows experimental values24 o f p  for anisotropic mole- 
cules. 

It can be seen from Table I that at pressures of the inert 
gases Ar and K r  on the order of 70-80 atm the collision- 
induced Maxwell effect in these gases is, even at the lower 
limit of the estimate, comparable to the Maxwell effect in the 
molecular gases CO, and N,, which was found experimen- 
tally in Refs. 2-4. We recall that in an inert gas the Maxwell 
effect is proportional to the pressure, while in an ordinary 
molecular gas it is independent of the pressure.24 

The gases listed in Table I have been selected in such a 
way that the polarizabilities of the pairs Ar, N, and Kr, CO, 
are approximately the same, to facilitate a comparison of p 
and PIS.  

We conclude with some numerical estimates of the ba- 
sic parameters of an experiment to observe birefringence in 
inert gases. As a starting point we adopt the experimental 
apparatus of van Houten and Beenakker,' which uses a cy- 
lindrical Couette cell with cylinders of radii R ,  = 19.98 mm 
and R, = 25.55 mm. The inner cylinder rotates at an angular 
velocity R = 20 s-I. An upper limit is imposed on the gas 
pressure by the condition that the flow must remain stable. 
For Couette flow, this condition reduces to the following 
restriction on the Reynolds number15 Re = hRR,/v: 

where h = R, - R ,, Y = r]/p is the kinematic viscosity of the 
gas, a n d p  is the density of the gas. 

Under flow-stability condition (22),  we have a limita- 
tion on the magnitude of the birefringence effect in an inert 
gas: 

Substituting in the values ofp, ,  from Table I and the values 
of the parameters R,, h, and R from Ref. 2, we find the 
estimate lev 1<2.10-". The equality here corresponds to 
the following maximum gas pressures: PA, ~ 0 . 5  atm and 
P,, ~ 0 . 2 5  atm. The value found for the magnitude of the 
birefringence, ev, for inert gases is about two orders of mag- 
nitude smaller than the values of E~ which have been mea- 
sured for anisotropic gases (Table I ) .  In this particular ap- 
paratus, the pressure of the inert gas cannot be raised to the 
values (on the order of 70-80 atm) at which the magnitude 
of the effect would become comparable to that in anisotropic 
gases, because the stability condition (22) would be violat- 
ed. As can be seen from (23), however, reducing the gap size 
h from 5 mm to 1 mm reduces by a factor of about 60, i.e., 
brings it close to values which have been measured experi- 
men tall^.^ In order to observe the birefringence effect in in- 
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0.03 
0.15 
0.06 
0.5 
4.65 
2.2 

0.3 
1.5 
0.6 
5 
4.65 
2.2 

0.22 
4.2.10-2 
0.22 
3.5 

- 
- 

Ar 

Kr 

cot 

- 
- 
- 
- 

0.06 
0.06 

2.5 
70 
2.5 

210 
- 
- Nz 

1.64 I - { 1.64 
1.8 
1.8 
1.6 
1.6 
2.1 
1.1 



ert gases, it will thus be necessary either to raise the accuracy 
of the measurements of E~~ by about two orders of magnitude 
under the conditions of van Houten and Beenakker's experi- 
ments4 or to reduce the gap between the cylinders, h, by a 
factor of several units. 
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