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The sensitive dependence of the positions of the discrete spectrum energy levels En on the 
parameter a of the Hamiltonian is studied, using the example of a nonlinear quantum harmonic 
oscillator with two degrees of freedom (the Henon-Heiles model), which in the classical case 
exhibits stochastic dynamics. I t  is shown that large susceptibilities~, ( n )  = d 'En ( a ) / d a 2  may 
occur both in regions of the parameter where the motion of the system is close to regular motion, 
and in regions where it is close to ergodic motion. Analytic estimates are obtained for the values of 
X, in these regions, estimates which agree with the results of computer experiments. 

1. INTRODUCTION 

The problem of quantum chaos consists in revealing 
specific properties of quantum systems for which the classi- 
cal analogues exhibit chaotic (stochastic) unstable motions 
with positive maximal Lyapunov exponent a, (Ref. 1 .). This 
problem was formulated a long time ago (Refs. 2, 3 ) ,  but is 
far from being solved and therefore has attracted increasing 
attention in recent years (Refs. 4, 5) .  A large number of 
papers have been devoted to establishing the criteria for 
quantum chaos, which correlate the differences between 
quantum chaotic systems (QCS) from quantum regular sys- 
tems (QRS) with the degree of stochasticity of the appropri- 
ate classical motion. An example of QRS is completely inte- 
grable systems, possessing a set of N mutually commuting 
operators, among them the Hamiltonian ( N  being the num- 
ber of degrees of freedom). By degree of stochasticity one 
usually understands the invariant measurep of the stochas- 
tic components on the energy surface. 

One of the earliest criteria for quantum chaos was pro- 
posed by Percival (Ref. 2) .  It consists in the assertion that 
the energy levels of the discrete spectrum of a QCS are more 
sensitive to the magnitude of perturbations to which the sys- 
tem is subjected, than are the energy levels of a QRS. Quanti- 
tatively, the degree of instability of the e i g ~ v a l ~ e s  E,, (2) of 
a system with a Hamiltonian of the form H = H,, + a V can 
be characterized by the parameter 

~ , ( n )  =dZE, ( a )  Ida2. ( 1 )  

This parametrization was proposed in the paper of Pomph- 
reyh and used for an analysis of the spectrum of the Henon- 
Heiles model7-a nonlinear oscillator with two degrees of 
freedom 

H=H,+aV 
1 -- mw2 1 

- 2 m (pl2+p;)  + l ( q l ~ + Y l )  +amw2(q,'qZ - q: ) ,  

where q, are the Cartesian coordinates andp,  are their can- 
onically conjugate momenta. Computer experiments have 
shown that in an energy region where the classical system 
exhibits significant stochasticity (p 2 0.2), then, together 
with "small" values of x,, which monotonically continue 
the dependence of the susceptibility on the energy from the 

region of regular motion, one also encounters values of x,, 
which are larger by approximately one order (in magni- 
tude). Their appearance can be interpreted as a confirma- 
tion of the Percival criterion. Subsequently, the existence of 
large susceptibilities in the parameter region corresponding 
to strongly stochastic classical motion has been demonstrat- 
ed in computer simulations in a large number of papers 
(Refs. 8-13). 

The quantity X, can be calculated perturbatively. It is 
expressed in terms of the matrix elements V,,, of the opera- 

h h 

tor V between the exact eigenfunctions of H, and by the 
eigenvalues En : 

A detailed numerical investigation of the dependence of 
E,, (a) on a in Refs. 8, 10 has shown that large values of x,, 
appear on account of and in the neighborhoods of avoided 
crossings as a varies. They are determined by a single anom- 
alously large term in the right-hand side of Eq. ( 3 ) :  such a 
value will be written in the formx,, = 2U2/A, where A is the 
difference between the energy levels in the denominator of 
the term dominating the right-hand side, and U' is the 
square of the magnitude of the corresponding matrix ele- 
ment. 

The purpose of the present paper is to estimate the large 
susceptibilities of a quantum chaotic system and a clarifica- 
tion of the relation between their behavior and the stochastic 
properties of the corresponding classical system. 

2. AVOIDED CROSSINGS 

As an example we consider the Henon-Heiles model, 
Eq. (2 ) .  With minimal modifications the results of this con- 
sideration can be adapted to other nonlinear oscillators. In 
the sequel we shall use the oscillator unit system 
(m,w,fi  = 1) ;  this makes a into a dimensionless parameter. 
The stochastic properties of the classical system (for in- 
s t a n c e , ~ )  depend only on the magnitude of the relative ener- 
gy E = E/D, where E is the energy and D = (6a2)  ' is the 
threshold dissociation energy of the oscillator. 

We shall be interested in the quasiclassical case a < 1. In 
this case the system ( 2 )  has a large number of quasi-station- 
ary states with energies below the dissociation threshold D. 
The widths of almost all these levels are negligible (with the 
exception of a narrow band where E 2 1 - a 2 / l  2 7 ) .  
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FIG. 1 .  The avoided crossing of the levels El and Ez as the parameter a in 
the Hamiltonian varies. 

To an accuracy sufficient for our purposes the spectrum 
of the quantum system ( 2 )  can be obtained by perturbation 
theory for a < 1 (see Ref. 11 ). It is c o n v ~ i e n t  ton use as a 
basis the eigenfunctions of the operators H,, and I,, the z- 
projection of the angular momentum; the corresponding 
quantum numbers will be denoted by n and I. The states of 
the system will henceforth be labeled by the quantum 
numbers n and I of the corresponding unperturbed states. To 
second order in a the energy levels are determined by the 
equation 

The expression (4 )  leads to the following estimate of the 
susceptibility of the system: 

This estimate will be called the regular susceptibility. 
The range of validity of Eqs. (4 )  and (5 )  is discussed in 

the Appendix. 
As a varies the energy levels E,, determined by Eq. ( 4 )  

Can cross each other. Taking into account higher order per- 
turbative corrections converts these crossings into "avoided 
crossing," provided the energy levels exhibit the same sym- 
metry, i.e., their values of I are congruent (mod 3) .  In the 
neighborhood of an avoided crossing the expression (5 )  
loses its validity, and as explained in Sec. 1, larger susceptibi- 
lities appear. Let us determine the conditions for this to hap- 
pen. It follows from Eq. (4)  that the avoided crossing which 
has lowest energy will correspond to the levels of one sym- 
metry labeled by the quantum numbers In + 1, minl ) and n, 
maxl ). Setting min I = 0, max I = n, and n $1, we obtain for 
the principal quantum number n ,  of the lowest avoided 
crossing 

Making use of the dependence n = &/6a2 we find for the 
relative energy E, of the lowest avoided crossing 

For a = 0.11 18 this yields e,  = 0.88 (the numerical 
computations in Ref. 8 yielded e ,  = 0.96) and for 
a = 0.0877 one obtains e ,  = 0.69 (numerically, Ref. 6 
found e ,  = 0.75). In the derivation of Eq. ( 7 )  we have ne- 
glected terms of the order n - ' -a - 0.1, therefore the agree- 
ment should be considered satisfactory. 

For the Hernon-Heiles model stochasticity becomes ap- 
parent only in the region e > e, = 0.68, where the invariant 
measurep of the stochastic component can be approximate- 
ly described by the empirical formula".' 

The quantity e, is usually called the threshold of stochasti- 
city, although, strictly speaking, p does not exactly vanish 
for E < E , .  From the expression (7 )  it can be seen that the 
appearance of large susceptibilities X, only in the region 
E > E,  is a fortuitous consequence of the choice of parameters 
in Refs. 6,8, dictated, in the final analysis, by the capabilities 
of current computers. In the general case the avoided cross- 
ings and the susceptibilities related to them could form at 
arbitrarily small energy, where the motion of the classical 
system is arbitrarily close to regular motion a n d p  and a, are 
arbitrarily small. 

The estimate of large susceptibilities in the limiting 
cases of classical motion close to regular motion and close to 
ergodic motion, respectively, forms the subject of the two 
following sections. 

3. LARGE SUSCEPTIBILITIES IN THE QUASIREGULAR 
REGION 

Consider a large susceptibility at a point of avoided 
crossing of levels coupled by a small matrix element M. As- 
sume that when M is neglected the pair of energy levels 
El ( a ) ,  E 2 ( a )  cross at a parameter value a = a, and have at 
that point the value El (a,) = E2(a,)  = E,. If the coupling 
is taken into account in the neighborhood of the avoided 
crossing the position of the energy levels will be determined 
by the secular equation 

where S = a - a,,, the energy E is measured from the cross- 
ing point E,,, and 

We consider the upper level E,; its position is deter- 
mined by the equation 

where 

It follows from the expression ( 11 ) that the maximal value 
of the susceptibility, attained at a = a,,, equals 

We obtain the following estimate for the matrix element U' 
of the dominant term in ( 12) : 

For the lower missed crossing (See Sec. 2)  we have 
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= - 4 an2, l2 = + an2, whence U2 = (4 )2a2n4. Taking 
account of the relation (6), we obtain the estimate 

For the conditions of Ref. 8 Eq. ( 15) yields U = 80. If one 
uses for the calculation of gi and E, directly the expression 
(41, in place of the equations corresponding to the quasiclas- 
sical limit, which conserve only the leading powers of the 
quantum numbers, for the avoided crossings of the levels 
( 13,1) and (12,lO) one obtains U Z  = 119. Computations ac- 
cording to trace 2 of Ref. 8 yield for these levels U2 = 130. 

For quasiregular classical motion the variables n and I 
remain close to the unperturbed valxes and the wave func- 
tions of the corresponding states of H in the Ho-representa- 
tion are localized near the unperturbed n and I. The matrix 
element M, which is responsible for the splitting of the levels 
In + 1,IzO) and In, I = n ~ )  can be estimated by means of 
the magnitude of the composite matrix element which cou- 
ples these states. The main contribution to M will co%e from 
the shortest chains consisting of matrix elements of V (Ref. 
14). Making use of Brillouin-Wigner perturbation theory, 
we take into account only the intermediate states with 
n' = n, n & 1 and estimate the energy differences in the de- 
nominator of the composite matrix element by means of the 
expression (4).  In this approximation we obtain for M 

Considering the arguments of the factorials large and mak- 
ing use of the Stirling approximation, we represent Eq. ( 16) 
in the form (with the dependence on fi made explicit ): 

The magnitude of the action S which depends only on the 
classical dimensionless variables E and 7 = l /n is deter- 
mined by the expression 

where the constant is K = In ( 180/7) - 1 = 2.247, and 
f ( 7 )  is given by the expression 

Eq. (18) is valid if the argument of the logarithm is large 
compared to one, i.e., for 1~an3'*.  

The existence of exponentially small splittings 
AE- exp ( - S /fi) between the levels of multidimensional 
nonlinear oscillators, related to dynamic tunneling between 
tori localized in different regions of phase space was first 
pointed out by Berry'bnd was discussed in Refs. 16-1 8. The 
tunneling splitting of eigenfrequencies for interacting sym- 
metric classical oscillations with nonintersecting oscillation 
zones (in the two-dimensional billiard model) has been esti- 
mated in Ref. 19. 

One may assume the existence of a relation between the 

exponentially small thickness of the stochastic layers of the 
classical system in the region E < E ,  and the exponentially 
small level splitting of the corresponding quantum system in 
that region. Such a relation was first proposed in Ref. 20. 

From the expressions given above we obtain for the sus- 
ceptibility corresponding to the lower avoided crossing the 
expression 

Although for the conditions of this paper S the assumption 
on localization of the wave function in the space of the quan- 
tum numbers n, I, made in the derivation of Eq. ( 16), can no 
longer be explained by the regularity of the classical motion, 
Eq. (20) still yields a reasonable estimate X, z 1.1 x lo4, 
whereas the result of the numerical simulation (Ref. 8) is 
,yL ~ 5 . 3  X lo3. At approximately the same value of a as the 
lower avoided crossing, avoided crossings of the levels 
In + 1, I, = 17, n )  and In, I, = 172n) will also occur, for which 
the condition ( n / n O ) 2 ~ ~ 2  = (7: - 17: ) - I .  The matrix ele- 
ments for such avoided crossings will be given, to exponen- 
tial accuracy, by the formulas 

where the sign is chosen to agree with that of 171172. Thus, as E 

increases, one encounters avoided crossings which are both 
narrower or wider than the lowest one, with matrix elements 
from the region 

Owing to the fact that n and I take on only discrete values, 
the crossings under consideration will occur in a band of 
width A z a / n .  We also note that at present there are no 
numerical results for the susceptibilities related to avoided 
crossings in the regular region for nonlinear oscillators 

4. LARGE SUSCEPTIBILITIES IN THE QUASIERGODIC 
REGION 

According to current thinking, based on the analysis of 
a large mass of numerical simulations, in the region where 
the classical motion is close to ergodic (p  zz 1 ), the coeffi- 
cients a,,, in ihe expansion of the eigenfunctions Y,, of the 
Hamiltodan H with respect to the basis of eigenfunc- 
tions of Ho: 

are Gaussian random variables (Refs. 21-23). Together 
with them the matrix elements V,, also acquire a stochastic 
character. The structure of the spectrum in the quasiergodic 
region becomes complex for a  - 0 (owing to the confluence 
of avoided crossings), and it becomes impossible to separate 
the values of X, into large susceptibilities, related to the 
avoided level crossings, and into small ones, related to the 
curvature of the dependence of En (a) for isolated energy 
levels. We retain the designation "large" for the susceptibili- 
ties which are determined by one dominant term in the right- 
hand side of Eq. (3 ) :  
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Utilizing the random nature of Y, one can estimate the 
squared matrix element U 2  in Eq. ( 2 4 )  by the typical value 
U 2  = V f / C ,  where C i s  the complexity of the state Y, (the 
number of basis functions which contribute significantly to 
\V,, ) and Y :  is the sum of the squares of the matrix elements 
between the state Y, and all the other states: 

In our model one can use this approach in the neighborhood 
of E = 1; we adopt it in the ,region p > 0.5 ( E  > 0.84). The 
magnitude of Vf can be estimated by making use of the de- 
finition 

where \V,, ( q )  is the wave function of the state with energy E 
in the coordinate representation. An approximate calcula- 
tion of V t  is possible in the quasiclassical case, when all the 
quantum numbers are large and the wave function \V, ( q )  
has a large number of nodes in any direction. Averaging with 
respect to the oscillations of the wave functions one can re- 
write the expression (26 )  in the form 

V.' = j V2 (q) W (q) dq. ( 2 7 )  

where W ( q )  is the classical probability density in coordinate 
space, which does not depend on the initial conditions on 
account of the assumed almost complete ergodicity of the 
motion. For a particle moving in a two-dimensional poten- 
tial the density W ( q )  is constant inside the classically acces- 
sible region (Ref. 24) ,  and we obtain: 

where A is the area of the classically accessible region 0. For 
E-0 the expression (28 )  is elementary to calculate, as an 
integral over a disk of radius R = ( 2 n )  'I2; the result is 

This expression coincides with the value of V t  calculated for 
the unperturbed problem, 

and averaged over the value of the angular momentum. In 
the region E=:  1 Eq. (29 )  is valid only in order of magnitude, 
since the boundaries of the classically accessible region de- 
viate strongly from a circle. Setting Vf ( E )  = V $  ( E )  F ( E ) ,  
the correction factor F(E)  can be determined numerically; 
its order of magnitude is several times unity. In order to 
estimate the complexity of the wave functions \V in terms of 
the basis formed by eigenfunctions of the Hamiltonian H,, we 
make use of the following considerations. The Hamiltonian 
of the Henon-Heiles model has the following form in terms 
of the variables n. I: 

a H=n + -[sy* cos (3q+ 30) +3sr" cos (9+30) 3.8'" 

+ 3s"r cos ((p-38) +r" cos (3q-30) I ,  (31 )  

where s = n  + 1, r = n  - 1, and 8 and q, are the angles can- 
nonically conjugate to the action variables n  and 1. In the 
quasiergodic case one may assume that the trajectories of the 
variables n and I will fill the whole classically accessible re- 
gion. A count of the number of states in this region yields 

where 
+ I  

and the functions z , (E,V)  are defined by 

For E- 0  we have approximately G= 1 . 3 0 ~ ' " ;  in the region 
of interest E Z  1 the function G ( E )  can be determined nu- 
merically: it is on the order of several times unity. 

Thus, the characteristic magnitude of the squared ma- 
trix element U of the perturbation, taken between two states 
with neighboring energies is determined by the formula. 

Since L- 1 the matrix elements which determine the large 
susceptibilities in the quasiergodic region turn out to be of 
the same order as those for the avoided crossings in the regu- 
lar region; cf. Eq. ( 15 ) . 

We now estimate the large X, considering the distribu- 
tion of the interlevel spacings to be random. For the descrip- 
tion of the structure of the energy spectrum it is customary 
(Refs. 3 , 5 )  to make use of the distance between neighboring 
levels 

where p ( E ,  ) is the density of levels of a given symmetry. 
The equations ( 2 4 ) ,  ( 3 5 )  and the expression 

yield the estimate 

The expression of x corresponding to typical values of the 
susceptibility is obtained from Eq. ( 3 8 )  for t- I:  
X =  (30a4)  ' .  This quantity is of thesameorder as the maxi- 
mum values of the regular susceptibility determined accord- 
ing to Eq. ( 5  ) : maxxr  =: (43a4)  ' .  This agreement is plausi- 
ble, but hardly obvious, since the premises used in the 
derivations of the expressions ( 5 )  and ( 3 8 )  are totally differ- 
ent. 

The extremal X, which have a fluctuational character 
are related to anomalously small t .  One can estimate the 
probability of occurrence of the latter, making use of the 
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known results on the statistics of the energy spectrum of 
QCS. The majority of numerical simulations of the structure 
of the energy spectra agree with the assumption that the 
form of the distribution function P ( t )  is Poisson: 
P( t )  = exp( - t ) ,  and in the quasiperiodic case, for p =: 1 a 
Wigner distribution P ( t )  = (a t /2)exp(  - ?rt2/4) applies. 
For an interpolation between these two limiting forms one 
can utilize the Brody distribution" 

p,(p, t )  =Ata exp (-Btl+'), ( 3 9 )  

where 

and r ( x )  is the Euler gamma function. This parametriza- 
tion, proposed in Ref. 21, satisfactorily describes the struc- 
ture of the spectrum of nonlinear oscillators (Refs. 26, 27). 
Within the limits of accuracy attained in numerical calcula- 
tions the function P(p) can be approximated by the expres- 
sion 

We define t (v )  so that with probability v the inequality 
t< t (v )  should besatisfied. For v <  1 weobtain from Eq. (39) 

t (v) = (vlB) "(ltB). (41 

The equations (38) and (41 ) determine the character of the 
decrease of the distribution function W(X) for largex: it is a 
slow power-law decay. The value of v in Eq. (41 ) can practi- 
cally not be made arbitrarily small: the maximal x in the 
quasiergodic region corresponds to a value v-  l/, I " ,  where 
,,Y is the number of levels in the quasiergodic region. This 
yields the estimate 

max x'-( 15aa) -' lnax xr= (650a8) - I .  (42) 

For the conditions of Ref. 6 we obtain maxx" - 3 X lo3, 
which is compatible with the numerical results, according to 
which in the region where& > 0.84 we have max x = 4X 10". 

5. CONCLUSIONS 

The methods of estimating X ,  for the Henon-Heiles 
model given in this paper can easily be adapted to other sys- 
tems. The structure of the expressions remains the same and 
the changes have only a quantitative character. This allows 
one to formulate the following theses. 

1. For strongly quasiclassical systems ( f i - 0 )  of the 
nonlinear oscillator type the avoided level crossings and the 
large susceptibilities related to them can be observed in a 
region where the classical motion is arbitrarily close to regu- 
lar motion. Large values of the X, appear in this case on 
account of tunneling between tori (which is essentially relat- 
ed to the nonintegrability of the system), and are exponen- 
tially large: In x -S/ f i ,  where the action under the barrier, S, 
depends only on the classical variables. Practically, such 
"tunneling" values ofx ,  may exceed the typical (regular) 
values of X, by many orders of magnitude, but manifest 
themselves only in narrow intervals of variation of fi and are 

therefore hard to observe. 
2. In the region where the classical motion is close to 

ergodic large susceptibilities appear on account of the fluc- 
tuational getting closer of neighboring levels and have a 
slowly decreasing (power-law ) distribution function W(X). 
Practically such "fluctuational" susceptibilities may exceed 
the typical (regular) values by only 1-2 orders of magni- 
tude, but do  not require a special choice of the parameters in 
the Hamiltonian in order to be observed. 

~hes~ 'conc1usions  are possibly true also for a wider 
class of systems. In a recent paper (Ref. 28) it was estab- 
lished by means of numerical simulations for a two-dimen- 
sional model with homogeneous potential (for such systems 
p does not depend on the energy) that the mean susceptibil- 
ity of the energy levels with respect to variations of the pa- 
rameters of the Hamiltonian is largest for conditions in 
which the motion of the system is close to regular, which 
agrees with what was said before. 

The author thanks S. V. Babich for help with the nu- 
merical calculations, and 0. A. Aktsipetrov, L. V. Keldysh, 
A. P. Krylov, and A. A. Nikulin for useful discussions. 

APPENDIX 

We discuss the question of applicability conditions for 
Eqs. ( 4 )  and (5 ) .  We consider corrections of the next order. 
Making use of a Brillouin-Wigner perturbation expansion to 
fourth order in a we find for the energy of the state 
li) = ln,l) the equation 

( '41) 
Solving Eq. (A1 ) iteratively, we obtain for the energy cor- 
rection of order a4 the expression 

where Av = EI0' - Ejo' ,  and the sum over k omits the 
termswith Ik ) = In,l + 6) and Ik ) = In,l- 6):foroursys- 
tem these terms only contribute in order ah. Although each 
term of the triple sum is a polynomial of the 6th degree in n 
and I, in the summation in Eq. (A2)  the term of the three 
highest orders cancel, and as a result we obtain 

By comparing Eqs. ( 4 )  and (A3)  it can be seen that the 
correction to ( 4 )  and the corresponding correction to (5 )  
are small if a'n g 1; this condition is satisfied for all levels 
since max n a ' z  1/6. Thus, for a & 1 the equation ( 5 )  is valid 
if for the calculation of the regular susceptibility practically 
without any restrictions. An exception is formed only by a 
narrow band of quantum numbers where 5n'-71' and the 
susceptibility xr determined by Eq. ( 5 )  is small: here the 
correction X 4  = d ' E  '4'/da' may become noticeable. In this 
paper we have not considered this case specially. 
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One establishes similarly that Eq. (4)  allows one to cal- 
culate the positions of the lowest avoided crossings (6)  and 
the magnitude of the matrix elements (15) with an error 
which scales as a'n. 
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