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The preexponential factor for the probability of spontaneous decay of a metastable vacuum near a 
Peierls transition point is calculated in a ( 1 + 1 ) dimensional scalar field theory. 

1. INTRODUCTION 

The problem of decay bi. a metastable vacuum has been 
addressed repeatedly in the literature in connection with ap- 
plications both in statistical physics and in high-energy 
physics. In this article we will investigate the decay of a 
metastable vacuum near a Peierls transition point. This type 
of limiting case was investigated in Refs. 1,2, where the basic 
focus of attention was the calculation of an exponential fac- 
tor. Here we will evaluate the preexponential factor for the 
probability of such a spontaneous decay in a ( 1 + 1 ) dimen- 
sional theory. 

In the second section of this article we will describe the 
model and approximations; in the third section we introduce 
the Langer-Callan-Coleman equation in a form convenient 
for machine computations; in the fourth section we discuss 
the calculations and state the results. Some technical details 
are relegated to the Appendix. 

2. THE MODEL 

We investigate the theory of a ( 1 + 1 ) dimensional sca- 
lar field y, described by the Euclidean action 

where the potential U,,(y,) possesses two degenerate vacua. 
If we apply a stress E, i.e., add to the potential a term 

where a is the difference between the vacuum-averaged de- 
generate vacua, then one of the vacua becomes unstable. As E 

increases, the maximum and minimum of the potential ap- 
proach each other and disappear at a stress E, called the 
Peierls stress (see Fig. 1) .  For small E, - E it is natural to 
assume that the behavior of the potential far from the meta- 
stable vacuum does not affect the tunnelling process, while 
the potential close to the metastable vacuum can be approxi- 
mated by a cubic: 

This theory contains only one dimensional parameter-the 
loop expansion constant g2 = B '/a4-and therefore the con- 
tribution of each loop can be expressed by a certain definite 
combination of dimensional parameters and universal nu- 
merical functions. 

Let us investigate the limits of applicability of this ap- 
proximation for a theory with a potential of the form 

For this potential the Peierls stress equals 

It is not difficult to establish that near one of the minima the 
potential ( 4 )  takes the form 

U ( o )  = [ n b 2 p 2 ( e p - E ) ]   IS^-'/^ nbp203+0(b3p(~p-~)":~i). 

(6 )  
For such a potential we have g2 = q u 2 / 4 ( ~ ,  - E ) .  Correc- 
tions to the exponential in ( 7 )  (see below) caused by the 
correction terms in (6 )  are of order b '/g4 in terms of the 
constant g. Therefore, the validity of the near-critical-stress 
approximation is defined by the inequality b<g2. At the 
same time, as we noted out earlier, the constant g2 is the 
parameter of the loop expansion in the theory with the po- 
tential ( 3 ) ,  and if we want to limit ourselves to a finite num- 
ber of loops, then we should require that it be small. We 
remark that b is the loop expansion parameter in the theory 
associated with the potential ( 4 ) .  

3. THE FUNCTIONAL DETERMINANT 

The takeoff point for our investigation will be the 
Langer-Callan-Coleman equation3-' for the differential de- 
cay probability of the metastable vacuum, which in a theory 
with potential ( 3 )  after redefining the coordinates and fields 
(x  -x'  = x/a,  (T- (TI = ua2/P) takes the form 

is a dimensionless action computed at a " b ~ u n c e , " ~  i.e., for 
an axisymmetric continuous solution of the equation 

with the boundary condition 0-0 for r -  a. The term A S  
which stands in the exponent of Eq. (7)  is the usual pertur- 
bation counterterm calculated at the bounce and used to 

4" 
FIG. 1. Behavior of the potential for - E-0.  
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cancel the ultraviolet divergences which will arise from the 
determinant. 

Let us now turn to the determinant. The symmetry of 
the bounce allows us to rewrite the determinant in the form 
of partial wave expansion: 

ce 

det(-A+l+2o) = n [det (-d.+d,/ i+l+~o) 1'1, ( 10) 

where d l  = 1 is the centrifugal potential and C ,  is the degree 
ofdegeneracy, which equals 1 for 1 = 0 and 2 for 1) 1. For the 
one-dimensional determinants appearing in ( lo),  we will 
use the well-known relation7: 

det (-A,Sdl/rz-k1+2~) W F ~ ( I ) ,  (11) 

where F, (I)  is the Jost function of the operator whose deter- 
minant is calculated. We recall that the Jost function is de- 
fined in terms of the solution to the equation 

(-A,+d,/r2+lf .2o) $, ( r )  =0, (12) 

which is normalized at the point r  = 0 as the coefficient of 
the part of the solution which grows exponentially as r -  CO.  

Relations ( 10) and ( 1 1 ) in principle reduce the problem of 
calculating the determinant to more or less standard prob- 
lems: finding the asymptotic solutions of a linear differential 
equation and calculating an infinite product. We need only 
be careful to exclude the null mode from the determinant 
with 1 = 1 and take care to regularize an ultraviolet diver- 
gence which manifests itself in the divergence of the product 
with 1 as I- co in Eq. (10). 

Let us first investigate the null modes. It  is well-known 
that the wave function for the null mode of the operator 
( - Ar + d 1 / 2  + 1 + 2u) is proportional to du/dr (Ref. 
6), where o is the bounce. Let us determine the Jost function 
Fu ( 1, X )  for the operator ( - Ar + dl /?  + x2 + 20). Us- 
ing ( l l ) ,  we have 

From scattering theory it is well known that the product of 
Jost functions like that appearing in (13) is related to the 
normalization of the wave function, in our case to the nor- 
malization of the null-mode wave function. Following this 
procedure, it is not difficult to obtain the relation (see Ap- 
pendix A)  

S 
(14) 

where 

ai= lim r-'of ( r ) ,  a2= linl r"'ero' ( r )  . 
r-0 I.-- 

Taking into account the fact that for the assumed nor- 
malization the Jost function of the operator ( - Ar + d , /  
? + 1 ) equals (277) - I t 2 ,  from (13) and ( 14) we obtain 

clet' (-Ar+dl/~-'+1+2o) - -- 
S 

(15) 
det(-A,+d11r2+ 1) (2n) '"a1a2 ' 

Now that we have explained our method of including 

the null mode, let us turn to an investigation of the regular- 
ization of the determinant. We will use dimensional regular- 
ization, i.e., perform all calculations not with v = 2 ( v  is the 
space-time dimensionality), but with v = 2 - S. For this 
case, Eq. (10) is easily modified: first of all, the centrifugal 
potential will depend on 6; secondly, the degree of degener- 
acy  C, will depend on S. For the contribution of terms with 
high 1 to the product ( 10) we can use the asymptotic form of 
the Jost function for large I. This contribution can be expli- 
citly evaluated; the result is singular as v-2. This singular- 
ity sould be exactly cancelled by the counterterm A S  in Eq. 
( 7 ) .  Since the remainder of the product (10) is finite for 
finite values of I ,  dimensional regularization is not even nec- 
essary; this remainder can be expressed in terms of a finite 
product of Jost functions and the asymptotics of the bounce 
with the helpof Eqs. ( l l ) ,  (15). 

For the asymptotics of the ratio of determinants we ob- 
tain in Appendix B 

det ( -~ ,+d , / r ' f  1+2o) 1 
= eXp{+ J ro dr+O(,)}. ( 16) 

det (-A,+d,lrZ+ 1)  0 

Using ( lo) ,  ( 16), and the fact that 

we obtain 
', 

det(-A+1+2o) det (-A,+ d l  ( 2 )  /rZ+1+20) 

det (-A+ 1)  ={ 11[ d e t ( - ~ ? + d ,  ( 2 ) / 1+1)  l=O 

where A is a certain whole number which generally speaking 
is much larger than unity. As it should be, the pole terms in 
the exponent (18) are exactly cancelled by the counterterm 
AS, which is determined by the "bulb-shaped" diagrams 
(see Fig. 2) ;  in the minimal subtraction scheme8 this term 
equals 

A s = - -  " d2r  o ( r )  . 
2x6 

Substituting ( 1 I ) ,  (15), (18), and (19) into ( 7 ) ,  we obtain 

FIG. 2. The diagram which determines the counterterm ASin the theory 
with the potential ( 3 ) .  
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4. COMPUTATIONS 

It is not possible to push the calculation of Eq. (20) any 
further analytically; however, (20) is a convenient starting 
point for machine calculations. These calculations first re- 
quire that we solve equation (9 ) ,  which, taking into account 
the symmetry of the bounce, can be written 

In solving this equation it is useful to invoke the standard 
mechanical analogy: Eq. (21 ) describes the motion of a par- 
ticle (u-coordinate, r-time) in a potential t= ( - d/ 
2 - d / 3 )  and with friction which is inversely proportional 
to time. In this case the boundary condition requires that 
after infinite time the particle arrives at the point a = 0, 
while continuity requires that the particle start out with zero 
velocity. The following algorithm naturally suggests itself: 
to begin with we find the point u, by iteration (at each step 
we solve a Cauchy problem), where a, is determined by the 
condition that the particle passes into the vicinity of u = 0 
after a sufficiently long time; then for this known uo the 
bounce is also found by solving a Cauchy problem. For this 
known bounce, it is not difficult to find the constants a ,  and 
a,, which are defined following Eq. ( 14). So as to find the 
ratio of Jost functions entering into (20), it is convenient to 
solve the equation for the ratiox, between Jost solutions for 
the bounce background and for the vacuum background: 

-x,"- (211'/Il+llr)X~'-2a~~=0 (22) 

with the boundary condition X, (0) = 1 (here I, is a modi- 
fied Bessel function). Then X, ( co ) = F, (I)/Fo(I). 

As is clear from Eq. (20), the calculation error falls off 
very rapidly as A grows, and to attain an accuracy of - 1% it 
is sufficient to solve Eq. (22) for three values of I. Calcula- 
tions using the algorithm described above give for the decay 
width the expression 

which completes our investigation. 
We note that the method used here to calculate the 

functional determinant is easily generalized to the case of a 
higher number of dimensions. 

APPENDIX A 

In order to obtain relation ( 14), we will investigate the 
radial Schroedinger equation for I = 1: 

with the boundary condition 

Then the Jost function F, ( 1,x) is defined as 

Differentiating (A1 ) with respect to x and setting 7t = 1, we 
obtain 

Multiplying (A3) by $( 1 ,r) and integrating with respect to r 
gives 

where 

b = lim r$ (I, r )  , 
7'- - 

Introducing the proportionality coefficient a ,  such that 

$(l ,r)  = a; 1r112du/dr 

(where u is the bounce), and taking into account the fact 
that b = a,/al, we obtain Eq. (14). 

APPENDIX B 

In order to obtain ( 16), we investigate the Schroedinger 
equation 

where in a Y-dimensional space time A = 1 + v/2 - 1. We 
cast ( r )  in the form 

Then for X, ( r )  we will have the equation 

This solution for large A admits the asymptotic expansion 

Substituting (B3) into (B2), we obtain the recursion rela- 
tion 

k-1 

Now, in order to derive ( 16) there remains only to use the 
equation 

m m 

det (-d2/dr2+ (A2-'Il) ir2+ U'") 
= exP {J  xll)dr - j x:') 

det(-d2/dr2+ (A2--'I&) /r2+U"') o o 

(B5) 
which is obvious if we take ( 1 1 ) into account. 
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