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Arguments are presented which show that the Green-Schwarz approach with explicit ten- 
dimensional supersymmetry and two-dimensional reparametrization invariance and without 
spin 4 or 4 fields on the world sheet may be useful to calculate loop corrections in superstring 
theory. We show how the Polyakov anomaly is canceled and we reproduce the result for the one- 
loop contribution to the four-particle amplitude. 

1. INTRODUCTION 

Great efforts were recently undertaken to develop a 
technique for multi-loop calculations in superstring theory. 
Most of the attempts are based on a two-dimensional super- 
generalization of the Polyakov integral. Here the multi-loop 
calculation is broken down into the following stages: a super- 
Riemannian surface of genus p is constructed with a given 
spin structure e; a space of super-moduli is constructed with 
a Mumford measure on it; integration over the odd moduli 
and summation over the spin structures e are carried out and 
the contributions of the left and right sectors are combined. 
The space-time supersymmetry (and along with it, finiteness 
of the amplitudes and vanishing of the statistical sums) is re- 
established only after summation over e.  

At this time it is already clear that this program is not as 
simple as it seems. All its "constructive" parts have to a 
larger or smaller degree been realized. Explicit construc- 
tions of super-Riemannian surfaces and of Mumford's su- 

The standard derivation of this exceptionally simple formula 
is quite laborious (we leave aside the operator method in its 
usual form; it demands even greater efforts and in practice 
does not generalize to higher loops). Starting from the su- 
per-generalization of the Polyakov integral and noting that 
only terms of the $4 type in the vertex operators" 

I d2za I $I$ (1.) I ' exp (ip.X (2.) ) 

contribute to the answer (due to the GSO projection), it is 
easy to write down the following starting formula: 

det3, (det,&) ' I (det d,) I I I'e det. &, (@(z, ) . . .$~$(z , ) )  1 ' .  
(2 )  

per-measure exist.' It is easy to perform at  least the "naiveH2' The two factors following the correlator turn ultimately into 
integration over the odd moduli' and obtain the obvious unity, but this can be seen only upon making use of the ex- 
"naive" measures on the space of even moduli, which were plicit expressions for the objects entering ( 2 ) :  
proposed in Ref. 3 and explicitly constructed in Ref. 4. 

Unfortunately the answer depends on the concrete 
choice of the odd m o d ~ l i , ~ ~ % n d  the correct choice, which (det - %)"l= (det & ) I "  detd,=8.'(0), 
gives rise to the superstring while preserving the simple for- (det &) "' det, &= (det do) '" det, &=0, (0) , 
mulas of Ref. 4, is as yet unknown (problems appear already 
forp  = 2) .  

The method of summation over the spin structures is 
also not given a priori. Moreover, it turns out to be not so 
simple to come up with it, if it is desired that space-time 
supersymmetry should appear with modular invariance si- 
multaneously preserved (see Ref. 6 for a more detailed dis- 
cussion of these difficulties and ways for overcoming them). 
In any event the currently available formalism is extraordi- 
narily involved. This fact is particularly unsatisfactory be- 
cause all answers for physical amplitudes in superstring the- 
ory are very simple. First of all, all statistical sums and I-, 2-, 
and 3-point functions are equal to zero in all orders of pertur- 
bation theory (this was shown starting from general consid- 
erations in Ref. 7 and explicitly demonstrated in the two- 
loop case in Ref. 6 ) .  The expressions for the nonzero 
amplitudes also seem uncomplicated. 

The scattering amplitude for four vector particles in the 
one-loop approximation is given accurate to within a kine- 
matic factor by 

(All these well-known expressions are given here in a form 
which readily generalizes to the case of higher genus; see, 
e.g., Ref. 8 with respect to formulas for the determinants and 
Ref. 9 with respect to the Riemann identities.) 

This calculation becomes even more complicated in the 
case of four-point amplitudes involving fermions [the an- 
swer is practically indistinguishable from ( 1 ), however Ref. 
10, devoted to its calculation, contains over 40 pages and 
utilizes a nontrivial generalization of the Riemann identi- 
ties]. 

Unfortunately the answers for the nonzero amplitudes, 
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starting already with two loops, remain as yet unknown. 
There is, however, no doubt that they will look much simpler 
than all the intermediate formulas encountered in the con- 
ventional method for their derivation (the substantial sim- 
plifications that occur in the last stages of the calculation, 
when summation over the spin structures is carried out, were 
shown in Ref. 6). It is likely that everyone who has ever tried 
to calculate a supersymmetric amplitude has experienced 
the feeling, that many unnecessary steps are taken in the 
intermediate stages, giving rise to unwarranted complica- 
tions. 

It is less obvious, but in our opinion very likely, that 
these substantial complications should be blamed on the de- 
sire to introduce half-integer differentials-fields with half- 
integer two-dimensional spin. The impression is created that 
in the answers there is no memory of such fields (and not 
only that the dependence on the spin structure e disap- 
pears)-the final formulas contain, apparently, only Prim 
bidifferentials and other objects, naturally arising in a theory 
of integer-spin fields on Riemann surfaces. It is hard to rid 
oneself of the feeling that a formulation of superstring theory 
ought to exist, in which spinors on the world sheet and su- 
per-ghosts are absent. 

Of course everybody knows that such a formalism ex- 
ists-the Green-Schwarz action," containing only scalars 
on the world sheet and usual (with integer spin) ghosts. 

It was our aim in this Introduction to clarify why those 
who have ever used any standard Neveu-Schwarz-Ramond 
approach might wish to develop an alternative formalism. 

Until now the only optimistic opinion on the functional 
integral in the Green-Schwarz formalism was expressed by 
Carlip." 4' Due to difficulties with the local fermion symme- 
try he made use of some rather special devices in place of the 
normal procedure of gauge fixing. Below we shall depend on 
a method developed in Ref. 14 for fixing the gauge in this 
theory and will attempt to show that it is not as complicated 
as it is conventionally assumed. We shall also demonstrate 
impressive parallels between the Green-Schwarz and Ne- 
veu-Schwarz-Ramond approaches. 

2. FUNCTIONAL INTEGRAL FOR THE GREEN-SCHWARZ 
SUPERSTRING 

The first objection to the use of the Green-Schwarz ac- 
tion consists in the observation that this action is not qua- 
dratic in the fields and all the advantages of the Polyakov 
approach to string theory as a theory of free fields on Rie- 
mann surfaces appear to be lost. However this objection 
seems not very convincing. 

The classical Green-Schwarz action for the heterotic 
string has the form 

where 2' describes the gauge degrees of freedom of the he- 
terotic string ("left sector") 

8 is an anticommuting ten-dimensional 16-component Ma- 
jorana-Weyl spinor, which is a scalar on the world sheet. In 
the Lagrangian quantization of this theory problems arise in 
the general case, connected with an infinite sequence of 
ghosts with ghosts and with algebras that fail to close off 

shell. However, the analysis carried out in Ref. 14 has shown 
that it is possible to fix a special gauge, e.g., 

zp-2 

(m) 
+ = a ga&=pgap 9 

whereg$) is some background metric, depending on a finite 
number of moduli m = (m ,,..., m ,,., ). In conformal coordi- 
nates T, z, in which 

the functional integral in fixed gauge turns out to be equal to 

wherex is the Euler characteristic and O(Q, ) are inessen- 
tial corrections. Here b, c, &, Z are the usual reparametriza- 
tion ghosts. We have also introduced the notation 
uz = dzX +. In (4)  (Det uS ) - 4 enters the local integration 
measure and, at least formally, ensures that the theory does 
not depend on how the local fermion symmetry is fixed." It 
will be seen below that this symmetry, as well as conformal 
symmetry, is in principle anomalous. However the anoma- 
lies are easily removed. 

Even in the action (4 )  it is seen that the cubic interac- 
tion will cause no problem, since only propagators of the 
type ( X  +X -) exist, and the expectation value of any num- 
ber of X + fields without X - vanishes (we recall that the 
Green-Schwarz action makes sense only in the ten-dimen- 
sional Minkowski space). We transform (4)  to a simpler 
and more useful form by making use of the fact that the 
SO(8)-spinor O(ytO = 0 )  can be represented as two 
SU(4)-spinors, Ok =77k and 0, , k = 1 ,..., 4. Then 

The second term Ok Bk ddx + can be removed by redefining 
the field X - (corresponding to going over to a chiral super- 
symmetric field basis). Now our functional integral in the 
conformal gauge looks as follows (we omit for the moment 
the integral over metrics on the world sheet): 

J DXpDqikDO I DbDc / ' exp{- J d2.z ( ( B x ~ > x ~ + T , ~  d , ~ ,  

T z h = ~ n 7 7 k .  

The net result of these considerations may be formulated as 
follows. One may start from an action, invariant with respect 
to two-dimensional general-coordinate transformations, of 
the type 

-112 5 g'h ( g " ~ a a x ~ a R x f i + P - a P o a k a p o k + ~ t )  PZ, 
p-a8=gaP-iEaP/g'h=eraezfi ( 6 )  

and then fix reparametrization invariance in the usual way, 
by choosing the conformal gauge and introducing the ghosts 
b and c. It is of great relevance that the four space-time spin- 

1541 Sov. Phys. JETP 67 (8), August 1988 R. Kallosh and A. Morozov 1541 



ors Ok are scalars (0-differentials) from the point of view of 
the world sheet, and the other four spinors 7, are anti-self- 
dual vectors ( 1-differentials); herein lies the key distinction 
from the light-cone formalism with eight spinors that are 1/ 
2-differentials on the world sheet." 

The ten-dimensional supersymmetry is realized as fol- 
lows: 

68=e-II",,y+e (uz)-', 
6Xp=iey'8-iay"'yLy+e (ui)-', 

6ga~=0,  ( 7 )  

or, in more detail, 

Passage to the transformation rules in terms of the variables 
6, , 7, k ,  - = X - - Bk Bk presents no problems. 

3. CANCELLATION OF THE CONFORMAL ANOMALY AND 
THE ANOMALY IN THE GAUGE FERMION SYMMETRY 

It could turn out that in the action (6)  there is a prob- 
lem with the Polyakov anomaly in the Weyl symmetry of the 
action. Indeed, if the conventional real scalar X contributes 
1/2 to the coefficient in front of the Liouville action 
(487) - ' ~ R h - l R d  '2, then the reparametrization ghosts 
contribute - 13. In the standard formalism one has in addi- 
tion ten spin 1/2 fermions that contribute ( - d /2) ( - 1/ 
2 )  = + 5/2 and reparametrization "superghosts" with spin 
3/2 whose contribution equals + 11/2. (The general for- 
mula for the contribution of a complex spin j Aeld is: 
C, = 6j2 - 6j + 1 .) The complete coefficient equals (for 
d = 10) 

In our case the spinors on the world sheet and the super- 
ghosts are absent and we have instead the four pairs of fields 
8, Ti. 

If these fields were conventional 0- and 1-differentials, 
then their contribution to the anomaly would coincide with 
the contribution of theX-fields (but in place of + 5 = + d / 
2 one would obtain - 4; the minus sign has to do with the 
opposite statistics). Then the coefficient in front of the 
anomalous action would be equal to d /2 
- 13 - 4 = - 12 # 0. Naturally, this discussion is in error. 

It turns out that our change of variables, transforming 
(4)  into (5),  presupposes that the regulator fields r ] ,  do not 
have the conventional norm 

characteristic of a 1 - differential. Instead their norm is in- 
duced from the norm of the 0-differentials 6': 

Therefore the regulator integral has the form 

Integration over the fields v1 yields 

with the Laplace operator equal to 

It  is easily verified that the anomaly for the generalized La- 
place operator 

A,. ,=f(z)dh(zG 

(this is the Laplace operator for 8 that acts from a space with 
norm \ \ c ) ) ~  = sf - ' I c ~ ~  to a space with norm [ [ b  ( I2 = Sh - '  
I b / 2,  is described by the Liouville action 

For the usual operator 8, one has in the conformal gauge 
f = p - ' , h = p - J  and (9) leads to the well-known answer: 

In our case (8)  one has f = p - ' ,  h = (uIZp-'  and ( 9 )  gives 

The first term enters with coefficient - 2 (compare this 
with c = + 1 for conventional scalars). This is precisely 
what is needed to cancel the Polyakov anomaly in ( 5 ) :" 

The remaining two terms in ( 10) indicate the existence 
of additional conformal anomaly and anomaly in the gauge 
fermion symmetry. We recall that dependence o n p  violates 
conformal invariance, and dependence on u, is in fact depen- 
dence on the method of fixing local fermion symmetry. The 
gauge condition may be written in terms of two null vec- 
torsI4 

n" mn", nz=m2=mn-'/,=0, y,nuB=y,nuC,=O. 

Here C, is a first generation ghost and 

However these new anomalous terms in ( lo ) ,  dependent on 
u, , are proportional to au = Jii = J ~ X  ' and can be elimin- 
ated by an appropriate shift of the field X - in the action (5) .  

This calculation shows how the Polyakov anomaly can- 
cellation takes place in the Green-Schwarz formalism. 

Actually, it can be shown that the situation is no differ- 
ent in more general gauges, for example under the conditions 
yf a, O = 0 discussed in Ref. 14, which do not violate the 
linear realization of space-time supersymmetry. In that case 
the quantum action equals 

1542 Sov. Phys. JETP 67 (8), August 1988 R. Kallosh and A. Morozov 1542 



Here Y,, is the classical Green-Schwarz action ( 3 )  for the 
heterotic strink containing interaction terms of third and 
fourth degree; Caz C, , .rr,' are the Fadeev-Popov and Niel- 
sen-Kallosh ghosts for local fermion symmetry. The local 
integration measure now equals (Det u , ) - ~ ,  where 
uZ = d,X + - i6yf d, 0 .  The corresponding functional inte- 
gral is manifestly invariant under global supersymmetry 
transformations 

It turns out that in the action ( 11 ) a change in variables is 
possible resulting in significant simplifications: the new ac- 
tion equals 

The global symmetry is now realized as follows: 

The structure of the action (12) shows that in this 
gauge the Polyakov anomaly is absent, as before. The contri- 
butions to the anomaly of the fields X,  117?, ,Bk and of the 
reparametrization ghosts cancel for reasons explained 
above. Thezontribution to  the anomaly of the Fadeev-Po- 
pov ghosts C,", C, are canceled by the contributions of the 
Nielsen-Kallosh ghosts T?" and the field yf Oxdenoted by 
8, in ( 12). This can be seen from the fact that C," and ?.r, " 
are 1-differentials, C,  and 6, are 0-diFrentials (with con- 
ventional norms), and the statistics of C," , C, and %", e, 
are different. 

We also note that if in the general case (9) the Weyl and 
analytic anomalies are related as before, this could mean that 
the measure on the space of conventional moduli, corre- 
sponding to the superstring, is expressed in terms of holo- 
morphic sections, and therefore the nonholomorphic struc- 
tures that arise in the standard approach should cancel upon 
summation over the spin structures even in the case of the 
amplitude. Such a proposition was made in Refs. 15 and 5. 

4. ZERO MODES AND ONE-LOOP CALCULATIONS 

The action (5 )  is quadratic and therefore the functional 
integral reduces to a finitely-multiple integral over the mod- 
uli space of ratios of determinants of the corresponding dif- 
ferential operators, multiplied by the correlator of vertex 
operators. The contribution of nonzero modes to the ratio of 
determinants in one loop equals 

I det' 3, I 2P - ,-(det' 8,)'. 
(Im T) '  (det' a,) (13) 

We shall not explain in detail the well-known reasons for the 
appearance of the various contributions in this formula: 

d 2 T  I det' a, 1 
(Im T )  

is connected with the determinant of the Fadeev-Popov re- 
parametrization ghosts (with the conformal Killing vectors 
accurately taken into account); 

is the contribution of the right scalars and the left sector of 
the heterotic string. The last factor (det' is connected 
with the nonzero modes of the fields 77, and 8,. For type 2 
superstrings the contributions of the left and right sectors 
coincide and the formula takes on the form 

In one loop all the determinants coincide (we note that for 
the nonsingular metrics admissible in that case of the type 
g = dzdZ gravitational anomalies are absent in the determi- 
nants and correlators), and the required ratio of determi- 
nants turns into unity. 

For this reason the key role in the evaluation of the 
scattering amplitude for a small number of particles in the 
Green-Schwarz formalism is played by the zero modes of the 
fields 6. These zero modes are constants on the world sheet. 
We note that the fields rli ' which we introduced previously 
are not entirely arbitrary 1-differentials: they should be ex- 
pressible in the form $ u u ,  with uz = d,X +, and therefore 
they cannot, for example, be equal to (anti) holomorphic 1- 
differentials, which at first sight correspond to zero modes of 
the action J'V, ' dZ O r .  The genuine zero modes of the fields 
v7 have the form vO, = v , l h  u2,  where q,lh are constants on 
the world sheet. The action ( 5 )  is unchanged under the shift 
77, ' -vl' + 7,)- provided the field X is simultaneously 
shifted by 770k O h .  If in the action ( 5 )  one performs only the 
shift of the field X -- by vOh Ok then the zero mode of v,' 
becomes manifest: for the action 

the equation of motion has the form 

The field 6, also has a constant on the world sheet zero mode 
00, . 

The appearance of these zero modes for the Grassmann 
fields 0 explains the vanishing of the 0-, I- ,  2- and 3-point 
functions in the theory of superstrings; see also Ref. 12. In 
the Neveu-Schwarz-Ramond formalism fermion zero 
modes for certain even spin structures are absent, and this 
simple explanation has to be replaced by an involved analysis 
of the consequences of GSO projection, which rests on at 
least a nontrivial generalization of the Riemann identity and 
the Riemann theorem on zeros. In actuality this analysis has 
been carried out so far only for p = 2. 

Even the four-point functions are nonvanishing. To cal- 
culate them we make use, following Ref. 1 l ,  of the vertex in 
the 10-dimensional supersymmetric form, but write it also in 
a 2-dimensional covariant form: 

Here 77/"' are functions of 8,,tn" Bp, , and p,,,, are the second 
rank polarization tensors for the supergravity multiplet: 

As usual, in order to ensure the absence of the confor- 
mal anomaly that arises, generally speaking, when such a 
vertex is introduced, it is necessary that: 

a )  the condition of masslessness be satisfied, p' = 0, 
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b)  the vertex should be constructed from the ( 1 , l )  -dif- 
ferential Hz Hi .  

For specific calculations we follow the approach of Ref. 
11, connected with the transition to the limit p+ -0. Then 
the right side of the vertex ( 16) turns into 

in the case of bosons, and into 

in the case of fermions. 
It is seen from these formulas that four-boson and four- 

fermion amplitudes and amplitudes with two bosons and 
two fermions contain products 7," ...vl h 4  Or, ... Or,, with fer- 
mion vertices taken in the u, u, combinations. Then all eight 
fields 7," and 8 ,  in the functional integral "eat" all fermion 
zero modes in the action. 

It may seem that when 17, ': and 8 ,  are replaced in ver- 
tex operators of this kind by constant zero modes, they will 
yield in the integrand in ( 1 ) the superfluous product 

I 

Of course, this is not so: the answer is precisely equal to ( 1 ). 
The reason is that the factors u, arise from two sources: they 
enter the measure 

ensuring invariance with respect to gauge fermion symme- 
try, and they also arise upon integration over the fields 8 
with the action 10' u, d ,  8 ,  . These contributions compensate 
each other. But if one introduces under the sign of functional 
integration 8" u,OA (z, ), then the factor ui (z, ) in Det 
{u ,d> is absent-instead precisely such a factor is supplied 
from the vertex operator. (In other words, given the integral 
over two Grassmann variables I/ and X, 

J d+ esp  { Q U X )  =u, 

then 

also equals u, and not u'.) In this manner (5 )  reproduces 
without particular difficulties the four-particle amplitude 
( 1 ). We shall also give expressions for the kinematic factors, 
which arise in this calculation from the right degrees of free- 
dom under standard assumptions on the kinematics of the 
external states. I '  

where 

in the case of the four-boson amplitude; 

for the scattering amplitude of two bosons and two fermions 
and 

for the four-fermion amplitude. The tensor ti, ..., is defined 
in Ref. 11 and equals 

Of course, a number of problems must still be solved in 
order to make use of the Green-Schwarz formalism in multi- 
loop calculations. One of them has to do with the fact that 
one cannot pass to the gauge y+ 8 = 0, which we used in the 
one-loop calculation, because the gauge transformation 
66' = u, k, does not change 8 at those points on the world 
sheet where uz = a, X + vanishes. Such points exist even for 
the field X + in the general position, since for topological 
reasons the field of the 1-differential JX + has 2p - 2 zeros 
on a Riemann surface of genusp. One's attention is called to 
the intriguing coincidence with the 2p - 2 number of odd 
moduli of a super-Riemann surface of genusp, which play a 
key role in the Neveu-Schwarz-Ramond approach. There 
may also occur "accidental" zeros of +, not required for 
topological reasons. However the corresponding fields X +, 
evidently, form a set of measure zero. T o  be truthful one 
should mention the problem (present even in the case of the 
torus p = 1) due to the fact that the exact differential a + 

must have zeros on a closed surface because of being exact. It 
is possible that these zeros are not terrible, since one can use 
a different gauge," y+B = c = const f. 0, and every field on 
the torus is expressible as 6 + ( d ,  X + ) k,  , for some k,  and 
some constant < with given d i X  +. It turns out that in this 
new gauge the action coincides with ( 5 )  and (6)  after an 
appropriate shift of the variable X' . 

An important step would be also the use of the Green- 
Schwarz action in a manifestly supersymmetric gauge: Ref. 
14 and equations ( 11) and ( 12). The zero modes for this 
action have the form 

where now 

In the proof of this assertion one needs not only the shift 
X - - X - - vOk 8 ,  , but also 

It could turn out that for higher genera the manifestly 
supersymmetric gauge ( 1 1 ) and ( 12) with linearly realized 
supersymmetry transformations will be more adequate than 
y + 0  = 0, since u, = d z X  - i 8 y f  a, 6 is already not an ex- 
act form. It is therefore important that in the appropriate 
variables [see ( 12) 1 this theory is sufficiently simple and 
one can work with it. 

5. DISCUSSION OF HIGHER LOOPS 

We give here certain preliminary remarks with respect 
to multi-loop contributions to the four-pint  functions in the 
Green-Schwarz formalism. (We note that the answers in the 
standard formalism for p > 2  are as yet unknown. We shall 
attempt to show that something reasonable can be said on 
the subject even at a very naive level of understanding of the 
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Green-Schwarz formalism.) 
The contribution of the usual ghosts and scalar fields X 

to the measure in the space of moduli equals 

' (det Im T) ' det2k  1 '. 
For example, in hyperelliptic  coordinate^^.'^ 

A,=(det1 %)~~=(de t  a)"B (a)'"[s(R)lII (R) ]Ih, 

A,IIdy=(IIda/dSZ) (det O ) ' ~ ~ I  (a) -"[s(R)/II (R) lots, 

A,= (det do)'" det dz. 

Here the following notation is used: the hyperelliptic curve is 
given by the equation 

{ a , )  are "branch points"; 

iu 

Hda/dfl is the invariant measure. In hyperelliptic coordi- 
nates one has a natural choice of holomorphic l-differen- 
tials: 

These differentials are not, however, the canonical w, , that 
satisfy the conditions 

Instead, one has v ,  = avwj. 
Due to the gravitational anomaly the individual deter- 

minants depend on the choice of the metric. There is a pre- 
ferred choice of metric: lv, (z) 14, 

1)-1 

-.4 
v.' (z) =n (z- R.) dz/s ( 2 ) .  

Here {R, ) are somep - 1 branch points. Such sets of points 
{Rk ) naturally correspond to nonsingular odd theta-char- 
acteristics*. Finally, 

From the most naive point of view the contribution of 
the B fields equals simply (det and the vertex operators 
Bk u2 Bk (z, ) give rise to expressions independent of za . 
Therefore the most naive answer is: 

1 ,12n dy ' (detImT)' 171 d2z1 . . . d2z4(exp (ip,X(z,)) . . . exp (ip,X(z,) ) ). 

In the case of one loop this is the correct formula (except 
that Im r should appear to the sixth power). However for 
p>2 this is already not so. This is cleaiif for no other reason 
than because A,/& is not an anomaly-free combination of i.e., behave like a - (2/3) C-differential at each point R,. 

Since- (2/3)(C2-C,) = - (2/3)(13 - 1) = -8, this 
determinants. In particular, the gravitational anomaly re- 

"gravitational anomaly"17 means that A,/& is a - 8-dif- 
quires that A,/&, be an 8-differential at each point R,, 
where the metric Iv. l 4  has a double zero. Indeed, the Liou- 

ferential at all Rk . In more detail, we have on the hyperellip- 
tic surface 

ville action 

to which the ratio det ~ / l d e t J  1 '  is proportional, acquires 
under the infinitesimal coordinate transformation z+  f(z) 
the factor 

( s i n ~ e ~ + ~ / l f ' ( ~ ) .  Forp- lv. l 4  

d a l n l ~ . ~ ~ = 1 6 n ~ 6 ~ ( ~ - ~ , ) ,  
b 

and this factor equals 

Here 

From our discussion of anomalies in Sec. 3 we know that 
they cancel out, and the contribution of the B fields cannot be 
simply (detJ,,14. The anomaly connected with this contribu- 
tion should differ by the factorx' - 2 ( C  = - 2 instead of 
1).  Consequently, a more accurate analysis is needed. We 
shall present here a preliminary and naive attempt at such an 
analysis. 

The true contribution of the 8 fields (which replaces the 
complicated structure 

Since the determinant of the Laplace operator is invariant 29-2 

under coordinate transformations, det 2 should transform $(b IT s(Q,,) ) , s=V~P+.  . . 
with the factor e ' YI a=,  r-1 
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in the standard approach with spinors on the world sheet) Therefore (17) equals 
equals A 

I 

11 { (de"t0) "' 1 q 0  erp( 1 ~ U Z O )  q u ~ ( Z a ) } .  
h'n{ D-1 d l x ,  1 - . . d2xp J det,.,,o.(x,) 

a=l 
Det u  

(17) 1 
. [ - j 0 6  0 q  u (2.) 6  (3,) . . . b (x,) erp I qub]  }. 

We omit the uninteresting factor (exp(ip,X(z, ) )... Det u  
exp(ip,X(z,) I ) ,  due to X-fields correlators, as well as kine- 
matic factors and integration over 

Let us perform an identity thnsformation on (17). First of 
all 

= J D, db  exp ( J 0 2 0 )  exp( J qub) exp ( J bb ) .  

where b, 6 are Grassmann fields, which are ( 1,O) - and (0, l )  - 
differentials. We expand now 

Then 

(det' d,) 'I2 
DO D), (quo  ( z ) e ~ p  J q u 5 0  

Det u  

The first factor in this expression is very close to A,. We 
recall that according to Ref. 8 

A ~ -  (det' d o )  

- ~ D b D 0 0 ( z ) b ( x , )  ... b ( x , ) e r p ~ b ~ O  - (det' a,) '" 
det, ,j)mi (xj)  

In the case of genus p = 1 

1 - 5 D6 Dq qu ( z )6  (2)  e x p ( j  q u b )  =6' ( 2 - X )  dz d5. 
Det u  

and the square bracket in ( 19) equals 

Only one (pth) power of the integral ~ b b  contributes to ( 18) 
due to the absence of the propagator bb. For this reason for 
each 8 field from the vertex operator we need precisely p 
operators b (there is one zero mode 8 andp zero modes of the 
b fields ) . 

For higher genera the integral 

1 - Det u  ~ D ~ D ~ ~ U ( Z ) ~ ( X ~ )  . . . 6 ( xP)exp (  J q u 6 )  

should be replaced by something, that behaves like a + 2- 
differential at all points R ,  . Clearly, in its present form (20) 
vanishes for p > 1; p - 1 fields 7 are still missing. To repro- 
duce the gravitational anomaly one can, for example, intro- 
duce into the integrand the product 

Such a prescription leads to the answer 

AoL , \ 0 4 n d e t [ o i ( z a ) o i 1 ( ~ l )  . . . @ir(Rp-i)  I=- 
a=i 

(det o )  ' 

.n det[ui (za)u i f  ( R , )  . . . u ~ ' ( R ~ - ~ ) ]  

for (18) and 

I 
for the four-point function. As was explained in Ref. 6, this with derivatives of even order at the point R . (derivatives of 
expression should still be summed over all possible choices odd order give rise to a vanishing answer in the hyperelliptic 
of odd characteristics (i.e., sets of points { R ,  1). case ) . 

An alternative formula forp = 2 could be, for example, These expressions are free of anomalies and posseses the 
critical property of modular invariance (in hyperelliptic co- 

s l  ( R )  [det v, ( z l )  ui ( R ) ]  [det vi  (z2)  u, ( R ) ]  [det v i  (z,) vif' ( R ) ]  ordinates its role is played by projective invariance). The 
R more general expression in the case ofp = 2, possessing this - [det vi (2,) v," ( R ) ]  + permutations zl, . . . 7 24 ~ r o ~ e r t v .  contains the structure . . - .  

(31 - ai) ( 2 2  - ai)  (23 - aj) (Z" -1) + permutations 
(ai - aj)z 

(21 - a )  ( 2 %  - b) (23  - c) ( 2 4  - d )  + permutations z ,  ... Z, . 
;+I ( a  - 6)  ( c  - d )  
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We emphasize once more that in the case of multi-loop 
calculations a substantially more detailed analysis is needed. 
It should include a solution of the difficulties mentioned at 
the end of Sec. 4. Evidently it is also not possible to manage 
without an understanding of the role of total derivatives on 
the space of 

Our aim here has been to show that the Green-Schwarz 
approach may turn out to be less complicated than is usually 
assumed, and in that case it will be significantly more explic- 
it and useful than the standard Neveu-Schwarz-Ramond 
formalism. 

We are grateful to M. Green, M. Grisaru, G. Moore, M. 
~l'shanetski, A. Perelomov, A. Roslyi, A. Tseytlin and A. 
Shvarts for valuable discussions and to R. Iengo and F. Top- 
pan for participation in the early stages of the work. 

" Lebedev Physics Institute 
2' We have in mind that the topologically nontrivial relation between the 

spaces of moduli and supermoduli remains uninvestigated. With it can 
be connected, in principle, nontrivial "boundary terms" in the measures 
on the space of moduli. It seems that this is the only possibility for a 
solution to the problem connected with the choice of odd moduli (see 
below). 

" Lorentz indices are omitted: the exact formula contains the structure 
&,"P*P, *'* "Gp. 

4' One-loop calculations of the Green-Schwarz functional integral in the 
lighe-cone gauge were carried out in Ref. 13. " The origin of this factor (Det u, ) - 4  may be connected with the nonpro- 
pagating Fadeev-Popov ghosts, corresponding to the fermion gauge 
symmetry g'I2&' Cy-y+y "nip y+y 3- (Det u, ) - 3 ,  as well as 
with second class constraints in canonrcal quantization, which give rise 
to an additional (Det u, ) +4. In any case, if quantization is carried out in 
configuration space, as was done in Ref. 14, then the local measure can 
be reconstructed starting from the requirement of gauge invariance. 

"The first term in ( 10) was calculated (in original variables) by Carlip,I2 
who was the first to verify the cancelation of the conformal anomaly in 
the Green-Schwarz formalism. The second term in (10) was found by 
Iengo and Toppan (private communication). 

7' For higher genera gauges of the form 
2p - 2 

Y + ~ ( z )  = 2 S,SZ(z - Q U )  
U L  I 

may turn out to be useful. 
We note once more that the gravitational anomaly is localized at the 
points R,  , which are absent in the case o f p  = 1, which is why in that 
case the naive answer is the correct one; see below. 
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