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The effective ergospheres of neutral and charged particles near a rotating black hole in a uniform 
external magnetic field are described. The magnetic field changes the chemical potential of the 
horizon and the entropy of the black hole. Magnetic entrainment of the frame of reference around 
a charged hole occurs in a magnetic field. A Harrison transformation will in general generate 
conical singularities. A modified Kerr-Newman-Ernst solution is constructed to describe a 
rotating charged black hole in an external magnetic field. The effect of the magnetic field on the 
metric is taken into account in this solution. 

1. INTRODUCTION charged black holes, however, the situation becomes more 

Models of magnetized black holes in which a large-scale 
and fairly strong magnetic field is assumed to exist around a 
rotating black hole have recently been discussed actively in 
the literature. One such model, which was proposed in Refs. 
1-3 in an effort to interpret the rapid release of energy in the 
cores of galaxies and quasars, was subsequently refined in 
Refs. 4 and 5. The model of a magnetized black hole opens up 
the possibility of an electrodynamic mechanism for extract- 
ing energy from black holes. In principle, this mechanism 
would be more efficient than the conventional mechanisms.' 

Although several calculations, both analytic and nu- 
merical, have been carried out on the interaction ofa  magne- 
tized plasma with a black hole, further analysis is still re- 
quired to draw a general energy picture of the physics of 
magnetized black holes. This further analysis is one of the 
purposes of the present study, in which we offer a description 
of the energetics of black holes in a magnetic field in terms of 
effective ergospheres. We consider the ergospheres of 
charged particles around a rotating and slightly charged 
black hole in an asymptotically uniform test magnetic field 
(Sec. 2)  and also the ergosphere of neutral particles which 
arises from the "magnetic" entrainment of the frame of ref- 
erence around a nonrotating charged hole. We derive a theo- 
ry of the superradiation and quantum evaporation of a black 
hole in an external magnetic field (Secs. 3 and 4) .  

A theory of magnetized black holes in which the or- 
ganic relationship between electrodynamics and gravitation 
leads to new gravimagnetic effects is not only of direct astro- 
physical interest. In addition, this theory has recently at- 
tracted interest in connection with the possibility of deriving 
exact solutions of the Einstein-Maxwell equations which de- 
scribe these effects.7-' ' Although the influence of a magnetic 
field on the space-time metric would seem to be weak under 
realistic astrophysical conditions, deriving such solutions is 
worthwhile not simply as a matter of principle but also to 
reach a better understanding of the electrodynamics of "or- 
dinarv" black  hole^.'^)-'^ The auestions involved in the inter- 

complicated, since conical singularities arise near the polar 
axis in the solution derived, as suggested by Ernst and Wild,' 
from a "seed" Kerr-Newman metric through a Harrison 
transformation. The existence of conical singularities in the 
Kerr-Newman-Ernst solution was pointed out by Hiscock,I4 
although the equations in his paper are incorrect. A more 
careful analysis (Sec. 5 )  shows that the appearance of coni- 
cal singularities is a general property of the Harrison trans- 
formation,'" which is used to derive magnetized metrics. 
This transformation should be supplemented with a rule for 
determining the limits on the range of the azimuthal coordi- 
nate in the resulting solutions. 

Solutions with conical singularities have recently been 
discussed in connection with the theory of cosmic strings. " 
I t  can be shown (Refs. 20 and 21, for example) that the 
presence of conical points along some axis implies the exis- 
tence of a 6-function singularity of the energy-momentum 
tensor. An energy-momentum tensor of this sort describes 
an infinitely thin rectilinear string with a longitudinal ten- 
sion which is equal to minus the energy density in a system of 
units with G = f i  = c = 1. The Kerr-Newman-Ernst solu- 
tion in its original form is thus actually not a solution of the 
system of electrovacuum equations but instead a solution of 
the Einstein-Maxwell system of equations with a singular 
source. Eliminating the singularity by redefining the azi- 
muthal coordinate leads to a new metric, which is a solution 
of the electrovacuum equations everywhere. This solution is 
derived and analyzed in Sec. 6. It leads to some relations for 
the physical parameters of a rotating charged black hole in a 
magnetic universe which are different from those derived" 
through the "naive" use of the Harrison transformation. 

A preliminary analysis in terms of test fields (Secs. 2-4) 
promotes a better understanding of the exact magnetized 
solutions. In particular, it turns out that a Harrison transfor- 
mation provides an elegant way to describe the magnetic 
entrainment of the frame of reference. We will be using a 
system of units with c = G = f i  = 1 and a metric signature 

pretaiion and analysis of mag'netized solutions are not tri- ( + - - - ) '  

vial, and there are points which remain unclear, despite the 2. EFFECTIVE ERGOSPHERE OFCHARGED PARTICLES 
extensive literature on the subject (e.g., Refs. 13-16). For a AROUNDA BLACK HOLE IN AN EXTERNAL MAGNETIC 

Schwarzschild black hole in a magnetic ~niverse ,~ ,"  the pa- 
rameters in the solution have a completely definite physical Solutions of Maxwell's equations superposed on 
meaning. When we make the transition to rotating and Schwarzschild and Kerr geometries have been studied in 
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many places (Gal'tsov's book'' describes the solutions and 
the methods by which they were derived and cites the origi- 
nal papers). In addition, a fairly detailed study has been 
made of the orbits traced out by charged particles in the 
resultant gravitational and electromagnetic fields. At this 
point we would like to mention one aspect of the dynamics of 
particles near magnetized holes which has not previously 
been discussed in the literature, although it is important for 
reaching an understanding of the mechanisms by which en- 
ergy is extracted from black holes. We are talking about the 
effective ergosphere of charged particles in a magnetic field 
around a black hole, i.e., the region in which the particles 
have a negative total energy with respect to an observer at 
infinity. We know that the existence of an ergosphere makes 
possible extraction of energy from a black hole through the 
Penrose process and its wave analog, superradiation. A mag- 
netic field deforms the effective ergosphere of the charged 
particles and may cause substantial spreading of these parti- 
cles. In part, this effect of the magnetic field on the ergos- 
phere stems from electrostatic induction. As was first point- 
ed out by Wald,2' an asymptotically uniform magnetic field 
in the Kerr metric has the property that it generates an elec- 
tric field. The physical reason for the appearance of such a 
field lies in Faraday's law: a "rotation" of a Kerr metric 
creates an induced electric field, just as a field would be in- 
duced by rotating a loop in a magnetic field. The geometry of 
this field configuration is such that an induced potential dif- 
ference arises between the event horizon and infinity. As a 
result of this potential difference, the black hole should pref- 
erentially acquire charges of the corresponding sign from the 
plasma surrounding The hole may thereby acquire an 
electric charge 2JB, where J is the angular momentum of the 
black hole, and B is the magnetic field. The same effect 
should result from electrodynamic pair production near a 
black hole, if the induced electric field which arises exceeds 
the Schwinger value E,, = ,uZ/ez4.4- 10'" near the hori- 
zon.="hese effects, like the change in the threshold for the 
superradiation of a rotating black hole in a magnetic field 
which was pointed out in Ref. 26 (see also Ref, 1 1 ), may be 
interpreted as a result of the deformation of the effective 
ergosphere of the charged particles near a black hole by an 
external magnetic field, In addition to this induction effect, 
the magnetic fleld will act directly on the effective ergos- 
phere, 

To describe the effective ergosphere of the charged par- 
ticles near a rotating, weakly charged ( Q 4 M )  black hole, 
we consider the Hamilton-Jacobi equation 

for a charge e (with mass m )  which is moving in an electro- 
magnetic field described by the 4-potential A, in a Kerr met- 
ric: 

where A = (9 + a')' - h a 2  sin28, M is the mass, a = J / M  
is the rotation parameter of the black hole, A = r2 + a 2  
- 2Mr, and Z = ? + a2 cos28. There is an elegant way to 

introduce the Cpotential A, in a Kerr metric,23 based on the 
following circumstance: In  a vacuum gravitational field 
(R,, = 0 )  the equations for the Killingvectors Xp,  which 
characterize the symmetry of this field, 

(the semicolon means a covariant derivative), can be re- 
duced to the following equation after repeated differentation 
and commutation of the derivatives in which we make use of 
Einstein's equations R,, = 0: 

xv:yv =o. (2.4) 

This equation is the same as the equation for the 4-potential 
of an electromagnetic field in the Lorentz gauge, A = 0: 

Consequently, each Killing vector field is associated 
with a corresponding electromagnetic field which has a defi- 
nite internal relationship with the geometry of the space- 
time. As the 4-potential we adopt a linear combination X ' y 0  
and Y?/;,, of temporal and axial Killing vectors of the Kerr 
metric 

A P = c d ? ~ , + p ~ & .  (2.6) 

To assign a physical meaning to the parameters a and 8, we 
consider the electromagnetic field tensor 

- p ( 2 r  sinZ 8 d; A ~ G + A z - ~  sin 2 8  d; A d 6 )  

in the asymptotic region r )  M: 

It==--2pr sin Q ( Y ~ I I  ~ & r \ d < - k r  eos 8 d 0 ~ d { ) .  (208) 

I t  is not difficult to see that we have@ = B /2, where B is the 
uniform magnetic field, which is oriented along the polar 
axis ( thez axis). At the same time, if we examine the Komar 
surface integrals2' for the mass and angular momentum, 

along with the corresponding expression for the electric 
charge 

we can show that we have 

aJI-2pJ--'/2Q, a=aU-Q/2M. 

The 4-potential 

1526 Sov. Phys. JETP 67 (a), August 1988 A. N. Aliev and D. V. Gal'tsov 1526 



thus generates in a Kerr space-time a superposition of the 
Coulomb field of the charge Q which is at the singularity and 
an asymptotically uniform magnetic field which is directed 
along the polar axis. 

It is not difficult to see that the physical electrostatic 
potential of the horizon, which is given by 

@ a = A f i ( ~ ~ ~ + ~ H Z y ~ ) ) .  (2.13) 

according to Carter2x [a, = a/2Mr+, r +  = M + ( M  
- a 2 )  ' I 2  is the angular rotation velocity ofthe horizon], is a 

quantity which is constant at the horizon and equal to zero. 
At infinity (where we have RH = 0 ) ,  however, this potential 
is nonzero, having the value 

The potential difference between the event horizon and an 
infinitely remote point, 

turns out to be the same as that which would be produced by 
an electric charge 

For describing the effective charged-particle ergos- 
phere, however, we find potential (2.12) inconvenient, be- 
cause it does not vanish at infinity. To  make the tranforma- 
tion to a gauge with Q, = 0, it is sufficient to carry out a 
transformation of the 1 -form A = A,, dxl': 

x*=A+ ( q / 2 M )  df. (2.17) 

The potential of the horizon becomes finite [equal to the 
right side of (2.15) 1. The quadratic quantity z,A1', how- 
ever, diverges at the event horizon. This divergence does not 
involve a divergence of physical quantities, since the poten- 
tial is not observable. The nonvanishing contravariant com- 
ponents of the Cpotential 2 are 

It can be seen from these expressions that near the event 
horizon ( A  - 0 )  the magnetic field should be manifested pri- 
marily through the effective charge (2.16), while the addi- 
tional contribution (the first term in 2 v, will become rela- 
tively small. 

Substituting the potential A /' into Eq. (2.1), and writ- 
ing the action in the form 

S=-Et+Lcp+f (r, U), (2.19) 

we find the following equation for f(r, 8) :  

+ el ( R' s;' o 
11 + QBnr sin' 0 - 

The effective charged-particle ergosphere is the region 
of those values of (r ,  0) for which real solutions of Eq. 
(2.20) with E < 0 (and with all possible values of the angular 

momentum L )  exist. I t  is not possible to describe the ergo- 
sphere boundary analytically in the general case, but one can 
find an explicit expression for the boundary of the intersec- 
tion of this surface with the 8 = n/2 plane. It is clear from 
symmetry considerations that in thiscase we haveaf /a$ = 0 
and f= f ( r ) .  From Eq. (2.20) with E = 0 we find the follow- 
ing expression for f ( r ) :  

The motion may occur in that region of r values in which the 
expression in brackets is positive. Clearly, in the case E < 0 a 
particle cannot go off to infinity, so this region is bounded by 
some r,,. The value of r,, at a fixed E < 0 depends in turn on 
the projection of the orbital angular momentum L onto the 
polar axis. Equating expression (2.21 ) to zero, we find the 
corresponding values of the projection of the orbital angular 
momentum: 

In turn, the expression in brackets on the right side of (2.22) 
must be nonnegative. From the condition that this expres- 
sion vanish we find the equation 

The larger of the real roots of this equation determines the 
line at which the ergosphere intersects the equatorial plane. 
Let us consider several particular cases: a )  the ergosphere of 
a charged, nonrotating black hole in the absence of a mag- 
netic field ( a  = 0, B = 0), in which case we find from (2.23) 

b)  a nonrotating charged black hole in a magnetic field 
( a  = 0, Q #O, B # 0 ) ,  in which case the result is the same as 
that in (2.24), i.e., the magnetic field does not affect the 
boundary of the ergosphere; c )  a rotating black hole in a 
magnetic field for the particular value Q = 2aMB of the elec- 
tric charge, in which case we have 

and d )  the general case a#0 ,  Q #O, B # O  in which we find 

Analogously, we can find the ergosphere boundary for 
8 = 0, n-. In this case we should also set ilf /a0 = 0 and E = 0, 
so we find 

Under the condition a < M, the solution is 
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We thus see that in the limit Q-0 the boundary of the 
ergosphere merges with the horizon surface. 

3. CHEMICAL POTENTIAL OFTHE HORIZON AND 
SUPERRADIATION IN A MAGNETIC FIELD 

A deformation of the effective charged-particle ergo- 
sphere near a rotating charged black hole in a magnetic field 
will also be manifested through wave (or quantum) effects: 
s~perradiation'~."' and quantum evaporation." We begin 
with a more detailed look at the superradiation in a magnetic 
field. 

We write the Klein-Gordon equation for a massive 
charged scalar particle in an asymptotically uniform mag- 
netic field in the Kerr metric: 

Substituting the 4-potential (2.18) into this equation, and 
using the metric (2.2), we find 

B2 ' 2 sin 0 
- e 2 (  A+QBU~ sin2 o - p) - ~ ' E $ = o .  

4 A 

It is not possible to completely separate variables in this 
equation, but if the magnetic field is sufficiently weak we can 
use the following arguments. Clearly, the representation of a 
uniform magnetic field which stretches out to infinity is non- 
physical, and in any realistic case such a field would have to 
merge, at some distance T from the hole, with a magnetic 
field which decays at infinity. For T$r+, this region may be 
thought of as the asymptotic region, and we can calculate the 
flux of particles which are produced as a result of spontane- 
ous superradiation specifically in this region. The behavior 
of the magnetic field for r > T thus becomes unimportant for 
the given problem. If the field satisfies the condition eP < 1, 
we can ignore the terms in Eq. (3.2) which are quadratic in 
B, except the term Q %'/A, which increases rapidly toward 
the horizon. In this approximation, Eq. (3.2) allows a com- 
plete separation of variables in the following way: 

where S,,,, (8) are spheroidal functions, and the radial func- 
tions u ( r )  satisfy 

&ZL 
-- l,7e,f ( L E O ,  dl.. = - 
dr" A 

dr ,  

where the effective potential V,, takes the following form in 
the limits r* - + co : 

Far from the black hole, the potential acquires an increment 
eBm, which corresponds to a Zeeman shift of the energy of a 
charged particle in a magnetic field. In accordance with 
(3.5), we select the following boundary conditions for the 
two linearly independent solutions of Eq. (3.4): 

These solutions have been normalized in such a way that the 
corresponding "incident" waves (the terms which do not 
contain the constants A and B )  are orthonormal: 

In the scalar-product sense, we have 

Through a standard calculation3* of the vacuum expectation 
value of the components T,, and T,  of the operator which 
represents the energy-momentum tensor, we find 

where 

is the threshold frequency at which the superradiation 
ceases. We thus see that the external magnetic field shifts the 
superradiation threshold (the chemical potential ofthe hori- 
zon) by an amount corresponding to the additional electric 
charge of the hole ( - 2aMB). If the relation 

holds, intense pair production will begin as a result of the 
electrodynamic instability of the vacuum,'%nd the black 
hole will acquire a charge Q = 2aMB. 

We can use the same approximation to carry out calcu- 
lations on the quantum evaporation of a black hole in an 
external magnetic field. As Unruh has ~ h o w n , ~ "  the problem 
reduces to one of constructing the complete system of modes 
and carrying out a second quantization on an expanded 
Kruskal manifold. As the positive-frequency modes we 
should select those which exhibit this property with respect 
to a timelike Killing vector on the Cauchy surface for the 
given mode. If there is an external field, the quantization 
procedure remains the same in principle, but there are 
changes in the asymptotic conditions for the modes: Fur- 
thermore, a complete separation of variables is no longer 
possible. Repeating the discussion in Ref. 33 regarding the 
relationship between the basis functions specified on an ex- 
panded Kruskal manifold with the modes il and 3, we find 
the following expressions for the loss of mass and angular 
momentum of the black hole in this approximation in terms 
of the strength of the magnetic field: 
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where K is the surface gravitation. 

4. "MAGNETIC" ENTRAINMENTOF THE FRAME OF 
REFERENCE NEAR A NONROTATING CHARGED BLACK 
HOLE 

We turn now to another effect which is associated with 
the imposition of a magnetic field on a black hole. This is an 
effect which we pointed out previouslyZh and which is impor- 
tant for reaching a correct interpretation of the exact solu- 
tions of Ernst et ~1. '~ '  The now familiar analogy between the 
gravitational field34 of rotating masses and a magnetic field 
suggests that there may be a gravitational analog of the elec- 
tromagnetic effects which we discussed above. It turns out 
that this is the case. The gravitational field produced by su- 
perimposing the Coulomb electric field of a charge and a 
uniform magnetic field contains a rotational component go, 
if the original background field has go, = 0. In other words, 
an ergosphere for neutral particles should arise around a 
charged nonrotating black hole in an external magnetic 
field. 

We seek a quantitative description of the effect. As the 
background metric we adopt a Schwarzschild metric, and 
we assume that the black hole has a small electric charge 
Q(M, the electromagnetic field of this charge can be 
thought of as a test field. We assume that the external mag- 
netic field is a test field; i.e., we choose the overall 4-potential 
in the form (2.12) with a = 0. The corresponding electro- 
magnetic field tensor will have the form of (2.7), where the 
values of the parameters a and from (2.11) (with a = 0 )  
must be taken into account. We write the energy-momentum 
tensor in the form 

where T Z ,  is the energy-momentum tensor of the Coulomb 
field of the charge (which is proportional to Q 2 ) ,  Ty;, is the 
energy-momentum tensor of the magnetic field (which is 
proportional to B *), and the third term, which is the term in 
which we will be interested below, represents the interfer- 
ence contribution of the Coulomb field and of the uniform 
magnetic field (it is proportional to the product QB). Here is 
the explicit expression for the one nonvanishing component, 
TZB) : 

The tensor T&, is covariantly conserved Ty;,,;,, = 0. 
Those corrections h vv to the space-time metric in which we 
are interested satisfy the following equation in the linearized 
theory of gravitation in the gauge h f::' = 0 and under the 
condition h = h j = 0: 

where R "'"' is the curvature tensor, and the covariant de- 
rivatives are calculated from the Schwarzschild background 
metric. Since Eq. (4.3) is linear, the gravitational fields gen- 
erated by the Coulomb field, the magnetic field, and their 
interference (4.2) can be analyzed independently. Let us 
consider the contribution of the interference term, (4.2). 

Writing Eq. (4.3) in component form, we see that its phys- 
ical solution with energy-momentum tensor (4.2) is de- 
scribed by the one nonvanishing component h Ov, which de- 
pends on the single variable r and for which we find the 
following equation: 

Introducing the new function @ = Ah Or, we can put Eq. 
(4.4) in the form 

A general solution of this equation is 

@ ( r )  =CIr2--C2/r-2BQr. (4.6) 

The gravitational field in which we are interested 
should vanish in the case B = 0, so we set C,  = C, = 0. As a 
result we reach the conclusion that the correction to the 
Schwarzschild metric for a weakly charged black hole in a 
uniform external magnetic field is 

Omitting the indices, we have 

Comparing this expression with the component go, = 2Ma 
x sin2 0 / r  of the metric of a Kerr field with is linearized in 
the rotation parameter a, we can easily find that angular 
velocity of the magnetic entrainment of the frame of refer- 
ence which stems from the correction (4.8) in the immediate 
vicinity of the event horizon, 0, = QB /M.  An important 
distinction between the correction (4.8) and the corre- 
sponding Kerr component of the metric is that the latter 
asymptotically vanishes in the limit r -  a, while the correc- 
tion (4.8) increases. The reason for this behavior is that we 
have assumed that the uniform magnetic field stretches out 
to infinity. However, the fact that a "rotational" component 
of the metric, go,, arises is not a consequence of the represen- 
tation of a uniform magnetic field stretching out to infinity. 
To see this, let us assume that the magnetic field exists only 
in a finite region. We then see that the arguments above re- 
main valid in this region, and the solution which we have 
derived, (4.8), must then be joined with the external, asymp- 
totically flat solution. It is not difficult to see that the solu- 
tion which we have found [in the form in (4.8)] remains 
meaningful in the absence of a black hole; i.e., this solution 
describes the gravitational field which is generated by the 
superposition of the electrostatic field of a charged sphere 
and a uniform magnetic field in Minkowski space. 

5. HARRISON TRANSFORMATION AND COSMIC STRINGS 

Another way to take account of the effect of an external 
magnetic field on the geometry of space-time was pointed 
out by Ernst,' who constructed an exact solution of the Ein- 
stein-Maxwell equations describing a Schwarzschild black 
hole in a strong external magnetic field. Although that solu- 
tion is not asymptotically flat, it is quite simple to interpret 
physically, because in the case B < B ,  (where B,  = 1/ 
M=. 2.4. l O I 9  Ma / M  G; Ref. 1 I ) there exists an intermedi- 
ate asymptotic region r+ < r <  B  - ' in which the space-time is 
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approximately of a Schwarzschild nature, and the magnetic 
field is the same as the test field described in Sec. 2 in the case 
of charged and rotating black holes, however, it is a less 
trivial matter to find a physical interpretation of such solu- 
tions,'-"' since the parameter values of the seed solutions 
(M, a, and Q,) are not the same as the corresponding param- 
eter values of the magnetized solutions. These solutions and 
their physical interpretation were recently discussed by Do- 
k ~ c h a e v , ~ ~  who attempted to derive relations between the 
physical parameters of the seed solution and of the Harrison- 
transformed solution. However, Dokuchaev did not incor- 
porate an important general property of Harrison transfor- 
mations for axisymmetric steady-state fields of the 
electrovacuum. This general property requires that the re- 
sultant fields be interpreted in a manner different from that 
of Ref. 22. Specifically, it is difficult to believe that solutions 
generated through a Harrison transformation from 
Reissner-Nordstrom and Kerr-Newman metrics have sin- 
gularities at the polar axis. The singularities are of the nature 
of conical points, and their presence indicates that the corre- 
sponding solution in fact does not satisfy the system of elec- 
trovacuum equations throughout space. 

Here we would like to show that the generation of coni- 
cal singularities by Harrison transformations is a general 
property. We would also like to discuss the physical meaning 
of such solutions in light of some recent results in the theory 
of cosmic strings. Let us review the content of the method for 
deriving exact magnetized solutions. 

We consider an interval of a steady-state axisymmetric 
space-time in cylindrical coordinates: 

wheref, w, and yare  real functions. We introduce the com- 
plex electromagnetic potential Q, = A ,  + iB, and the com- 
plex gravitational potential = f - i$ (B, is a component 
of the magnetostatic potential), which generate a dual elec- 
tromagnetic field tensor ;,,. = 2B ,,,,, ,. The existence of this 
tensor, like that of the potential $, follows immediately from 
the corresponding Einsein-Maxwell equations. As a result, 
the system of Einstein-Maxwell equations reduces to a sys- 
tem of two nonlinear equations for the potentials $ and Q, 

(Ref. 35): 

f~m=a,a ,  ( ~ a - a @ * a . w ,  (5.2) 

where 

The indices are raised and lowered by means of the two- 
dimensional tensor gab = gab = diag ( 1, l ) .  The potentials 
B, and $ satisfy the equations 

where the operator V is given by V = d /dp + id /dz. System 
(5.2) is invariant under the group SU(2 , l )  of transforma- 
tions of complex  potential^.^' Applying one of the transfor- 
mations of this group'8 to some seed solution of the Eisntein- 
Maxwell equations, we can construct a new solution, which 
corresponds physically to the introduciton of a uniform 
magnetic field: 

Here f-+flandw-w'where 

while the other quantities in (5.1 ) remain unchanged. 
Let us examine the behavior of seed solution (5.1 ) and 

of the transformed solution (5.5)-(5.7) near the polar axis 
(p  = 0) .  The condition that there be no conical singularities 
in the seed solution is the requirement 

lim (pe7f- ' )  =I. 
P-0 

(5.8) 

The function f is subjected to an extension by a factor of I A I * 
in the course of the Harrison transformation (5.6). Conse- 
quently, if we are to avoid the appearance of conical singu- 
larities we must require 

lim IAI2=1. 
P-0 

In general, however, this condition does not hold. In particu- 
lar, it does not hold for magnetized Kerr-Newman-Ernst 
solutions. We thus conclude that in general Harrison trans- 
formations lead to solutions which do have conical singulari- 
ties. Here there is no contradiction with the theorem" re- 
garding the symmetry of system (5.2) under the group 
SU(2,1), since the theorem guarantees that the transformed 
solutions will satisfy the system only in a local sense. In par- 
ticular, no limits are imposed on the ranges of the coordi- 
nates in the transformed solution. 

Space-times with conical singularities along some 
spacelike axis have recently attracted interest in connection 
with the hypothesis that cosmic strings-topological defects 
of the vacuum of quantum field theory-may exist in certain 
Grand Unification models.'' Such strings might have 
formed as result of phase transitions in the early 
and might subsequently have served as sites of the condensa- 
tion of matter into structures of various scales. As V i l e n k i ~ ~ ~ ~  
has mentioned, the gravitational field of an infinitely thin 
string having an energy-momentum tensor 

(E is the energy per unit length along the string; the tension 
along the z axis is negative and equal to E in absolute value) 
corresponds to a locally plane space which has conical singu- 
larities along the z axis: 

6. PHYSICAL INTERPRETATION OF THE KERR-NEWMAN- 
ERNST SOLUTION 

Substituting Q, and for the Kerr-Newman solution 
into the Harrison-transformation equations, (5.5), 
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@=Q, [ i  cos 0-a sinz 0 (r+ia cos 0 ) - '1 ,  

iY= ( r2+a2)  sinz O+QL COS' 0-2ia.11 (3-cos2 8) 
.cos 0+ 2a sin2 0 ( r f i n  cos 8 )  -' (1Ma sinz 0-kiQO2 cos 0 ) ,  

( 6 . 1 )  

we find the function A(r, 8) and the transformed solution 

(dV-(0' d t )  2,  

where w l ( r ,  8 )  obeys Eq. ( 5 . 7 ) .  It is not difficult to see that 
the quantity A is complex; its values at 0 = 0 and .R are dif- 
ferent from unity and are complex conjugates of each other: 

We now find that the energy density of the string which 
corresponds to a conical singularity of solution ( 6 . 2 )  is 

A nonvanishing value of E indicates the existence of a conical 
singularity, so the metric ( 6 . 2 )  no longer satisfies the Ein- 
stein-Maxwell equations throughout space (including the 
polar axis). To eliminate the conical similarity, i.e., to find a 
solution which satisfies the system of electrovacuum equa- 
tions everywhere, we should change the limits on the azi- 
muthal coordinate, O<p<2a/A,,I'. Alternatively and equiv- 
alently, we can introduce a new azimuthal coordinate: 
p-p /A,,[*. As a result, we find the "corrected" solution 

where A,, is given by (6,3) (the angle q~ again has the range 
O C ~  2n), The quantity w' ( r ,  8 )  is given by a simple expres- 
sion in the approximation linear in the magnetic field B 
(Ref, 8 ) :  

where the constant of integration has been set equal to zero. 
In the case a = 0, this expression leads to Eq. (4.8), which 
was derived above. In the more general case in which the 
angular momentum of the hole is not zero, expression ( 6 . 6 )  
describes magnetic entrainment of the frame of reference 
which is caused by the gravitational effect of the magnetic 
field on the metric of the space-time of a charged black hole. 

How does a magnetic field influence the event horizon 
of a black hole? From ( 6 . 5 )  we see that a two-dimensional 
cross section of the horizon is again a sphere of radius 
r +  = M + ( M  - a2 - Qi ) 'I2, but now we have a different 
expression for the surface area of the horizon: 

We see that a strong magnetic field increases the surface area 
of the event horizon; for a seed charge Q,#O of the Kerr- 
Newman solution, this change is proportional to the square 
of the magnetic field, while in the case Q,, = 0 it is propor- 

tional to thequantity ( a / M I 2 ( B  / B ,  )4. What is the physical 
meaning of the parameter Q,, in solution ( 6 . 5 )?  To answer 
this question, we calculate the total electric-field flux 
through a closed surface around the hole. Making use of the 
properties of Ernst potential,"'." we find the following 
expression for the physical value of the electric charge: 

In precisely the same way, we can show that the magnetic 
charge remains equal to zero. 

If we evaluate the Komar surface integrals" ( 2 . 9 )  
which determine the mass M and the angular momentum J 
in the case of an asymptotically planar space-time, we find 
that they depend on the integration surface. They generally 
diverge as this surface is removed to infinity. This result is 
not surprising, since the angular momentum and mass of an 
external field which is nonzero throughout space would be 
infinite. In the approximation linear in B, an integration over 
a spherical surface of radius r,,$ M leads to the result 

i.e., the angular momentum of the field diverges even in the 
linear approximation in B (if QO# 0 ) .  

An evaluation of the Komar integrals over the surface 
of the event horizon under the condition a " ~ '  yields 

It can be seen from these expressions that the seed values of 
MandaMarenot  the sameas thequantitiesin ( 6 . 9 ) - ( 6 . 1 1 ) .  
Consequently, when there is an external magnetic field the 
parameters Q,,, M, and a can no longer be interpreted as the 
electric charge, mass, and specific angular momentum of the 
black hole. 

Expressions (67) and ( b , 8 )  are not the same as the 
corresponding expressions of Ref. 22, whcrc the nonphysical 
solution (6.2), which is singular at  the polar axis, was used 
in place of (6.5 ) . 
7. CONCLUSION 

The theory of magnetized black holes predicts effects 
which stem from the simultaneous existence of gravitational 
and electromagnetic fields and the influence of these fields 
on each other. These effects are not the simple sum of the 
effects of electrodynamics and gravitation: they are instead 
manifestations of a synthesis of the electrodynamic and 
gravitational effects and of an internal relationship. They 
lead to new electrodynamic mechanisms for an extraction of 
energy from black holes, which may be pertinent to real as- 
trophysical situations. In this paper we have attempted to 
draw an overall picture of the change in the energetics of a 
black hole in the presence of an external magnetic field, in- 
cluding both the electromagnetic effect on charged particles 
and the gravitational effect on the metric due to the external 
field. The latter effect is of course extremely small in most 
astrophysical systems, but it is definitely of fundamental in- 
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terest since it allows a deeper understanding of the nature of 
the gravitational interaction. We have also attempted to re- 
fine the existing interpretation of the interesting and physi- 
cally rich Kerr-Newman-Ernst solutions, by pointing out 
the need to incorporate the conical singularities which arise 
during Harrison transformations. If the resulting solution is 
to satisfy the system of eiectrovacuum equations every- 
where, this transformation must be supplemented with an 
appropriate change in the range of the azimuthal coordinate: 
Ogp<2n-lA,,J'. If this circumstance is ignored, one will draw 
incorrect conclusions regarding the physical meaning of the 
parameters of magnetized black holes. 
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