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It is shown that in view ofthe threshold for electrons scattering by optical phonons the current- 
voltage characteristic of a semiconductor is nonanalytic in the range of weak electric fields. In the 
case oftwo-dimensional electrons this nonanalyticity is manifested by the fact that the series 
expansion of the conductivity in terms of the field does not begin with the term E but with JE 1. 
Numerical estimates of this effect are given. 

1. INTRODUCTION tic correction to the conductivity which is of the following 

In the case of weak heating of carriers (in what is 
known as the warm-electron range) the properties of a semi- 
conductor are usually represented by a regular series expan- 
sion in powers of a weak electric field. For example, the cur- 
rent-voltage characteristic can be written in the form ' 

The first nonohmic correction to the conductivity is usually 
regarded as a quadratic function of the field, which is ex- 
plained by the existence of a center of inversion in the p space 
of'the kinetic (transport) equation. In special cases such as 
that of noncentrosymmetric crystals when carriers experi- 
ence non-Born scattering by anisotropic scattering centers, 
the expansion of the conductivity includes also the linear 
terms.2 However, the regular expansion in terms of the field 
Eis not obtained in all cases and even when a semiconductor 
is isotropic and has a center of inversion there may be nonan- 
alytic corrections preceding the standard correction PE: In 
fact, if the kinetic description of the electron system in a 
semiconductor is adopted, an expression of the type given by 
Eq. ( 1.1 ) can be obtained by expanding the kinetic equation 

in terms of the quantity on the left-hand side which contains 
the field. Since the collisional term S( f ) is usually an inte- 
gral operator, it follows from Eq. ( 1.2) that the expansion in 
terms of E is in fact in terms of the highest derivative of the 
equation. It is known that such expansions sometimes lead 
to nonanalyticity of the solution so that expansions of the 
type given by Eq. ( 1.1 ) are no longer valid. 

The nonanalyticity of the solution usually occurs in the 
presence of any singularities in the coefficients of the equa- 
tion, for example, in the case of threshold effects due to in- 
elastic scattering of electrons by optical phonons. 

We shall consider the situation by tackling the example 
of the current-voltage characteristic of warm two-dimen- 
sional electrons, the heating of which has been studied in the 
last decade both in silicon metal-oxide-semiconductor struc- 
tures3 and in heterojunctions made of 111-V compounds.4 It 
has been shown that because of the threshold for scattering 
of electrons by optical phonons the direct E expansion for 
the current of the type given by Eq. ( 1.1 ) diverges. After a 
suitable modification of the series we can obtain a nonanaly- 

form: 

where w, is the limiting frequency of an optical phonon; Tis 
the lattice temperature; p, is the ohmic mobility; m is the 
mass of a carrier; AT = T -  - T +  is a discontinuity of the 
momentum relaxation time at an energy E = fiw,, which is 
due to the different efficiencies of the scattering of carriers in 
the passive ( E  < h,) and active ( E  > h,) regions of the mo- 
mentum space; a, is a numerical coefficient of the order of 
unity. 

The results obtained are mathematically analogous to 
the nonanalytic corrections to the magnetoresistance of two- 
dimensional electrons predicted in Ref. 5 and also due to 
singularities of the coefficients in the kinetic equation. 

2. KINETIC EQUATION FOR TWO-DIMENSIONAL 
ELECTRONS 

We shall consider a system of nondegenerate two-di- 
mensional electrons described by the kinetic equation ( 1.2). 
Then, the collisional term of the equation is of the form 

The linearity of the operator does not exclude the possibility 
of allowance for the electron-electron scattering, because in 
the range of weak fields of interest to us the operators de- 
scribing the ee scattering also become linear. 

We shall consider only the isotropic case and represent 
the probability of the scattering by the following expansion: 

m 

Here, ,y is the angle between the vectors p and p' and E = p2/ 
2m is the electron energy. 

We shall also represent the distribution function f(p)  as 
a Fourier series expansion in terms of the angle q, between 
the vectors p and E: 

a. 

1 
f (P) = I f d ( e ) +  Z f . ( e ) c o s ( n c p ) .  (2.3) 

n-1 

Substituting now Eq. (2.3) and also Eqs. (2.1) and (2.2) 
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into the original kinetic equation ( 1.2), we obtain a system 
of equations for the components of the distribution function 
f,, ( E ) .  We shall write this system in the following dimension- 
less form: 

We have introduced here the dimensionless electron energy 

and the dimensionless electric field 

where 

T- = T,, (h0) = (1 d 2 $ W  ( p .  P r ) ] - l  I p=(2trth~o)'!~ (2.8) 

is the scattering time at the boundary of the passive region. 
The symbols S,, (f,,) denote the corresponding original 
terms of the equations normalized to the value of r-. 

We shall postulate the following normalization of the 
distribution functions: 

m 

We shall avoid the necessary complications by limiting 
our treatment to the simplest case and including in the colli- 
sional terms of the kinetic equations only the deformation 
scattering by acoustic and optical phonons. The collisional 
term for the symmetric part of the distribution function con- 
tains a differential operator corresponding to the acoustic 
scattering and a difference part corresponding to the scatter- 
ing by optical phonons. The collisional terms for the other 
components of the distribution function ( n  #O) are identical 
and have the form of the relaxation time, i.e., the system of 
equations (2.5) can be represented as follows: 

The energy dependence of the normalized, to r - ,  relax- 
ation time r ( x )  = r " (~) / r -  is shown in Fig. 1, where 
u = h , , , kT  is the dimensionless energy of an optical 
phonon. A discontinuity 6 of the relaxation time appears at 
the boundary of the passive region because of the threshold- 
like activation of spontaneous emission of optical phonons 
by electrons. 

The expression for the dissipative current which we 
shall calculate is of the form 

0 u x 

FIG. 1. Momentum relaxation time. 

3. EXPANSION IN TERMS OFTHE FIELD E 

We can obtain the field expansion for the current by 
representing the components of the distribution function 
f, (x) as follows: 

and iterating the field terms of Eqs. (2.4) and (2.10). We 
shall show that the series obtained for the current 

OD 

j = &kj'k' 

h-0 
(3.2 

diverges. We shall do  this by calculating the first few orders 
of the series. 

In the zeroth order the current j"' is naturally zero 
because there is only a symmetric part of the distribution 
function, which is identical with the equilibrium function 

fo(OJ (x) =e-x. (3.3) 

In the first order there is a component f I" which we can find 
from Eq. (2. lo) ,  

and the corresponding contribution to the dissipative cur- 
rent 

o? 

The subsequent course of calculation of the f? expansion is 
obvious and we can easily show that the next contribution to 
the current appears in the third order and consists of two 
parts differing in respect of the component (zeroth or sec- 
ond) associated with the second-order iteration, i.e., 

where 
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A 

In Eq. ( 3 . 7 )  we have the inverse operator S ;  ' the effect 
which can be regarded as the solution of Eq. ( 2 . 4 ) .  Although 
very frequently numerical methods have to be used to solve 
this equation, this causes no fundamental difficulties. It 
should be pointed out that if we retain only the first term in 
Eq. ( 3 . 6 ) ,  the standard expression of Eq. ( 1 . 1  ) is obtained. 
This is usually so in the three-dimensional case. The justifi- 
cation for this is the smallness of the scattering inelasticity 
coefficient [which can be written symbolically in the form 
S ; ' % r ( x ) ] .  

Inclusion of the additional contribution represented by 
Eq. ( 3 . 8 )  changes the situation significantly. In fact, after 
single integration by parts, we readily see that the expression 
given by Eq. ( 3 . 8 )  acquires a term of the type 

which diverges in the vicinity of x  = u. The divergence of 
integrals in the third order is evidence of the inconsistency of 
the expansion described by Eq. ( 1 . 1 ) .  It should be pointed 
out that these difficulties do not appear when the contribu- 
tion of Eq. ( 3 . 7 )  is allowed for because of the smoothing out 
action of the operator S ;  ', which includes the differential 
form of the operator representing the scattering by acoustic 
phonons. We can easily show that stronger divergences oc- 
cur in higher orders of the series. Consequently, even if we 
limit the expansion of the current-voltage characteristic to 
the terms cubic in respect of the electric field, we have to 
carry out summation of these singular terms and thus modi- 
fy further the series. 

4. SUMMATION OF SINGULAR TERMS 

The analysis given in the preceding section shows that 
the most singular contribution is obtained when all the dif- 
ferentiation operators act on nonanalytic functions r ( x ) .  
Therefore, in the calculation of the main nonanalytic contri- 
bution in all the orders of the series we have to retain only 
this dependence on x  and replace the other x's with u. The 
summation of the most singular terms of the series obtained 
in this way is an easy task and it naturally yields a system of 
equations which are identical in form with the system 
( 2 . 1 0 ) .  It is this contribution that is determined by the solu- 
tion of the system of equations 

jo'(x)=O, 

whereas the corresponding contribution to the dissipative 
current is 

rn 

j.=u*18 5 dx f i n  ( X I .  ( 4 . 2 )  
0 

The correctness of the above conclusion is easiest to 
demonstrate by expanding the solution of the system (4 .1  ) 
as a Z? series and comparing it term-by-term with the most 
singular terms of the 8 series considered in Sec. 3 for the 
system comprising Eqs. ( 2 . 4 )  and ( 2 . 1 0 ) .  The symmetric 
part of the distribution function f ( x )  is excluded asJess 
singular because of the smoothing effect of the operator S ;  ' 

It is remarkable that the coefficients of the resultant 
system of equations (4 .1  ) are in fact independent of x .  This 
makes it possible to eliminate the field $ from Eq. (4 .1  ) by a 
suitable transformation of the variables and obtain directly 
the field dependence of the nonanalytic correction to the 
current. This transformation is of the form 

Substituting these expressions into Eqs. ( 4 . 2 )  and (4 .1  ) , we 
obtain 

where 
0 OD 

A = -  j d r ~ , ( r ) + ( 6 - 1 )  j d r ~ , ( r ) ,  ( 4 . 6 )  
-OD 0 

and the functions F,, ( r )  satisfy the following system of equa- 
tions: 

and the boundary conditions 

@or convenience we have replaced the lower integration lim- 
it in Eqs. ( 4 . 6 )  and ( 4 . 8 )  by - w , which in the final analysis 
results only in an unimportant exponential [exp( - 1 / g ) ]  
error. 

Equation ( 4 . 5 )  contains the modulus of the electric 
field I Z? I because the inhomogeneous term of Eq. (4 .1  ) in 
fact contains the S function, which after transformation of 
the variables changes from S (  g r )  to 6 ( r ) / l  Z? I. The occur- 
rence of I f? / in Eq. ( 4 . 5 )  guarantees the necessary symmetry 
properties of the current. 

It should be noted that the appearance of the quadratic 
correction for the current given by Eq. ( 4 . 5 )  is a relatively 
common occurrence. It is simply due to the presence of a 
discontinuity of the scattering intensity at the boundary of 
the passive region and the resultant injection of electrons 
into a thin boundary layer in the momentum space adjoining 
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directly this boundary. The specific model of an isotropic 
semiconductor with the deformation scattering of carriers 
by acoustic and optical phonons determines only the actual 
form of the system of equations (4 .7 ) ,  which governs the 
dimensionless factor A in Eq. ( 4 . 5 ) .  

In the case under discussion we can simplify somewhat 
Eq. (4 .7 ) .  We note that since S ( r )  is present only in the 
equation with n = 2, all the even components of F,, ( r )  
should be continuous at the point r  = 0.  Then, integrating 
term-by-term the equation with n = 1 from - w to 0  and 
from 0  to + w , and applying the boundary conditions of Eq. 
(4.8 ), we obtain 

where 

Substituting now the constant A in Eq. (4 .5 )  and then in Eq. 
(2.11 ), and returning to the dimensional variables, we ob- 
tain the final expression for the nonanalytic correction to the 
conductivity given by Eq. ( 1.3) 

The parameter a, can be estimated numerically from 
Eq. (4 .  lo) ,  retaining only a small number of functions in the 
system of equations ( 4 . 7 ) .  The value of this parameter is 
approximately a, ~ 0 . 5 .  

5. NUMERICAL ESTIMATES 

Allowing for the nonanalytic correction obtained 
above, the electrical conductivity of two-dimensional elec- 
trons in weak heating fields can be represented as follows: 

It follows from Eq. (1 .3 )  that the nonanalytic correction 
coefficient a is small and may amount to no more than 
0.2/E *, whereas fl is of the order of ( E  * ) - 2. Therefore, we 
shall obtain some numerical estimates in order to estimate 
specifically the possibility of detecting experimentally this 
nonanalytic correction. 

The coefficient a is given by Eq. ( 1.3). The coeffiQent f l  
is calculated using Eq. (3 .7 )  and the inverse operator S ;  is 
calculated by numerical solution of the relevant equation 
employing the two-part Monte Carlo method suggested ear- 
lier.6 It is assumed that the thickness d of the layer in ques- 
tion is such that the separation between the levels in the 
resultant quantum well is of the order of 4&, and if u R 1, we 
need to include only the main term. The constants and the 
operators of the electron-phonon interaction are derived 
from three-dimensional analogs following Ref. 7. 

Figure 2  shows the results for a layer of thickness d 
= 50 A in a semiconductor with a parabolic isotropic energy 

band and parameters corresponding to the heavy-hole band 
ofp-type Ge (Ref. 8). It seems to us that this material is best 
for the experimental detection of the linear correction to the 
electrical conductivity because of the strong interaction of 
holes with optical phonons. It is clear from Fig. 2  that in a 
relatively wide temperature range the value of p is at least 
two orders of magnitude less than a and it follows from Eq. 
( 5 . 1  ) that the nonanalytic correction should be a few per- 
cent of the total conductivity in electric fields, when both 
corrections become comparable. Such corrections can be de- 

T,  K 
p, cm2/V2 

1  OD ZOO 
I " O  l o - ' t  

FIG. 2. Coefficients a and B for a covalent semiconductor. 

tected experimentally using apparatus currently available. It 
should be pointed out that f l  changes its sign at T- 200 K, 
which improves the conditions for the experimental observa- 
tion of the nonanalytic correction. 

Systems of two-dimensional electrons in heterostruc- 
tures based on GaAs are at present attracting most attention. 
We obtained a qualitative estimate of the coefficients a and 
/3 for a layer of thickness d = 100 A in GaAs and in the case 
of asymmetric collisional operators we used the relaxation 
time approximation, borrowing the parameters from Ref. 9. 
This calculation showed that the temperature dependences 
o f a  and pa re  qualitatively similar to those shown in Fig. 2, 
although the absolute values are greater than for p-type Ge. 
For example, the value of a decreases monotonically from 
- 2 . 6 ~  cm/V at T =  80 K to - 3 . 8 ~  cm/V at 
T = 300 K, whereas p i s  approximately two orders of mag- 
nitude greater than the corresponding coefficient for p-type 
Ge. It is important to note that an inversion of the sign of p 
again occurs at T-- 190 K. 

In addition to the inversion of the sign of the coefficient 
p the experimental detection of the nonanalytic correction 
to the conductivity should be facilitated by various inertial 
properties of the coefficients a and 0. It is known that the 
dispersion o fp  should manifest itself at frequencies w a 7; ', 
where T~ is the energy relaxation time, whereas a is deter- 
mined by the momentum relaxation time and its dispersion 
should not appear right up to frequencies w cc ( r + )  - ' .  
6. CONCLUSIONS 

Numerical estimates obtained in the preceding section 
demonstrate that in the case of two-dimensional electrons in 
GaAs the nonanalytic correction to the conductivity can be 
detected at room and liquid nitrogen temperatures using the 
apparatus currently available. 

It should also be pointed out that in reality there is al- 
ways some smearing of the discontinuity of 7 ( x )  at the 
boundary of the passive region. This smearing is due to 
quantum-mechanical corrections and also due to the diffu- 
sion corrections to the acoustic scattering operators which 
are ignored in the system (2 .10) .  This smearing limits the 
validity of Eq. ( 5 . 1  ) on the weak field side, so that the valid- 
ity of Eq. ( 5 . 1  ) is restricted to the range 

here A& is the characteristic smearing of the discontinuity. 
Bearing in mind the broadening mechanisms mentioned 
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above, this smearing can be estimated as follows: 

which in the cases under discussion here does not exceed 0.1. 
We shall conclude by noting that the nonanalytic cor- 

rection to the conductivity occurs also in principle in the 
three-dimensional case. However, since a singularity of the 
momentun relaxation time at the boundary of a passive re- 
gion in the three-dimensional case is only of the square-root 
type, this nonanalyticity is weaker and is of the form JE1"6 1. 

The authors are grateful to I. B. Levinson and to the 
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technical Institute (Leningrad) led by V. L. Gurevich for 
discussing our results. 
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