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One of the main distinguishing features of the now known class of high-temperature 
superconductors (HTS) is that the superconducting coherence length 6, extrapolated to zero 
temperature is small (in co1,trast to ordinary superconductors, for which it is comparable to the 
average interatomic or interelectronic distanced) . This circumstance foreordains the importance 
of taking into account, for HTS, the fluctuations of the order parameter, viz., the macroscopic 
wave function Y = 7 exp(ip).  A second important feature of the investigated HTS is the quite 
strong anisotropy of their principal superconducting characteristics. The properties of 
anisotropic superconductors with small ratio ( , /d  are discussed here from three standpoints: 1 ) 
from the standpoint of the usual macroscopic Ginzburg-Landau or the Y theory of 
superconductivity, in which thermal fluctuations of \V are not taken into account; 2 )  in the 
framework the same theory, with account taken of small fluctuation corrections; 3 )  on the basis of 
the generalized macroscopic Y theory of superconductivity, intended for use in the critical region 
near T, and in the analog of the generalized Y theory of superfluidity of helium I1 near the R point. 
Considered in addition is the case of very strongly anisotropic (layered) superconductors for the 
description of the superconducting properties of which by the macroscopic approach it is 
necessary to change from local differential equations to differential-difference equations. In all 
cases, basic equations are given for the most important observed characteristics of 
superconductors in terms of a small number of phenomenological parameters of the theory. The 
theoretical results are compared with available experimental data for YBa,Cu,O,., single 
crystals. 

1. INTRODUCTION 

The ordinary superconductors known prior to 1986, 
with critical temperature T, < 25 K, have a coherence length 
["s[(O), extrapolated to zero temperature, that exceeds the 
characteristic interatomic or interelectronic distance 
d-  10-X-10-7 cm. The critical region near T, ,  in which the 
fluctuations are appreciable, is therefore small. For this rea- 
son, it is practically always possible to use near T,  the mean- 
field theory and, specifically, the Ginzburg-Landau ( G L )  
macrosopic theory or Y theory of superconductivity.' On 
the contrary, according to the available data, the high-tem- 
perature superconductors (HTS) observed in 1986 -1987 
have a small length [(,, so that the ratio c0/d cannot be re- 
garded as large. It is therefore relevant, quite independently 
of the present fundamental problem of the theory, that of 
elucidating the nature and mechanism of the HTS, to devel- 
op a macroscopic superconductivity theory that is suitable 
also in the critical region. 

It is known that the ratio Co/d is not large (specifically, 
close to unity) also near the R point of liquid helium, so that 
in the theory of superfluidity of helium I1 near the il point it 
is necessary to go outside the limits of the Landau theory of 
phase transitions or of the mean-field theory. A correspond- 
ing superfluidity theory that takes into account the most 
substantial fluctuations has been developed in a number of 
papers (see Refs. 2 and 3 and the literature cited therein). 
The theory which we have in mind here is based on the use of 
modified temperature dependences of the coefficients in the 
expression for the incomplete thermodynamic potential ( the 
effective Hamiltonian) of the system as a function of the 
order parameter-the macroscopic wave function 
Y = exp(ip).  As shown in Ref. 3, such a theory of 

superfluidity near the il point agrees with the known experi- 
mental data. 

We consider in the present paper an analogous general- 
ization of the usual Y theory of superconductivity. Note that 
the need for such a generalization has already been indicated 
in Refs. 4 and 5. In Ref. 4 was considered a hypothetical class 
of isotropic superconductors containing the so-called local 
electron pairs that exist, unlike the Cooper pairs, not only 
below but also above T,. One cannot exclude the possibility 
that in any superconductor (including HTS) the supercon- 
ducting current is transported precisely by such local pairs. 
As already stated, however, the need for taking fluctuation 
effects into account in macroscopic superconductivity theo- 
ry does not depend directly on this circumstance, and is de- 
termined only by the value of the ratio f,/d. 

An important distinguishing feature of the known class 
of HTS is also the rather large anisotropy of the critical mag- 
netic fields and of other parameters of the superconducting 
state. Therefore in the following discussion of fluctuation 
effects we shall take into account from the very outset the 
possible crystalline anisotropy of the superconductor. In the 
local approximation corresponding to the Y theory this 
means introduction of the effective-mass tensor m z  of the 
superconducting electron ( m z  = m*6,L in the iso- 
tropic case'). Of course, the anisotropy of the properties of a 
superconductor can set in also as a result of electron pairing 
in states with nonzero orbital angular momentum I. We, 
however, confine ourselves to the simplest s-type pairing, 
i.e., we put I = 0, and therefore regard the effective Y func- 
tion as a complex scalar. 

In Sec. 2 below we present the main results of the usual 
Y theory for anisotropic superconductors. In Sec.3 we calcu- 
late on the basis of this theory the first fluctuation correc- 
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tions for various thermodynamic and kinetic quantities at 
temperatures T higher and lower than T,. We determine on 
this basis the temperature widths t, of the critical (fluctu- 
ation) region for anisotropic superconductors. Section 4 is 
devoted to the development of a generalized Y theory of 
superconductivity, intended for use in the region of large 
fluctuations, as well as the solution of a number of simplest 
problems. In Sec. 5 are discussed the changes that must be 
introduced into the theory in the case of very strongly aniso- 
tropic (layered) superconductors. The concluding Sec. 6 
contains a discussion of certain presently available experi- 
mental data for new superconductors and a list of tasks re- 
quiring further research. Taking into account the tremen- 
dous interest in HTS, we have deemed it useful to expound 
the material in sufficient detail, to serve the needs of a large 
circle of readers. 

2. MAIN RELATIONS OF THE USUALY THEORY OF 
SUPERCONDUCTIVITY FOR ANISOTROPIC 
SUPERCONDUCTORS 

In the usual Y theory of supercondu~t iv i ty , '~~ with no 
account taken of thermal fluctuations, the total free energy 
of an anisotropic superconducting body, corresponding to a 
certain macroscopic wave function Y of the condensate of 
superconducting pairs, is expressed in the form 

Here B = curl A is the magnetic-induction vector, F,,, the 
equilibrium free energy of the normal state of the supercon- 
ductor (in the absence of a magnetic field), a = a t ,  
r = ( T - T, ) / T C  is the relative distance to the supercon- 
ducting transition point, and 2mT = {2m:, 2m,*, 2mf) the 
principal values of the effective-mass tensor of the supercon- 
ducting electron pairs (with charge 2e). Obviously, at 
m: = m,* = mT = m* we are dealing with the Y theory for 
isotropic superconductors. ' Furthermore, a and b in (2.1 ) 
are certain positive constants and c is the speed of light. Fin- 
ally, we assume in (2.1 ) and everywhere that the coordinate 
axes are the principal symmetry axes of the crystal, and sum- 
mation over the repeated subscript I = {x, y,z) is implied. 

The equilibrium (most probable) value Y = Y,, corre- 
sponds to a minimum of F and is obtained by solving the 
equations 

iefi 2e2 
i f  = ---, ( Y . ~ ~ Y - Y V ~ Y . ) - -  I Y ('-41. (2.4) 2m, m1 c 

Here j is the density of the superconducting current (we 
assume the density of the normal current to be zero). The 
boundary conditions for Eqs. (2.2)-(2.4) reduce to the con- 
tinuity of all the components of the induction vector B on the 
boundary of the superconductor and to a certain boundary 
condition for the function Y. The character of the latter can 
be determined in the general case by adding to the bulk func- 

tional (2.1 ) a functional of the surface free energy'~~.~: 

which depends on the value Ys of the function \V on the 
surface of the superconductor. The coefficient y in (2.5) can 
be expressed in terms of the difference between the values of 
the coefficient a on the surface and in the bulk of the super- 
conductor or, equivalently, in terms of the difference T,  
- T , ,  of the local values of the temperature of the super- 

conducting transition in the bulk of the superconductor and 
in a surface layer having a thickness of the order of the lattice 
constant t: 

This means that in a layer of thickness d the coefficient a in 
(2.1) takes the form a* = a t  + a ( T ,  - T,,, )/T,. 

The sought boundary condition for the function Y, ob- 
tained by varying the total functional F + Fs over Y ( r )  and 
Y,, is of the form 

where n, are the components of the unit vector normal to the 
surface. Using the notation 

we can write (2.7) also in the form 

The quantities A , ,  which have the dimension of length, are 
the phenomenological characteristics of the boundary and 
are usually called the extrapolation lengths. Their numerical 
values can be positive as well as negative, depending on 
whether the boundary hinders or helps the onset of super- 
conductivity. The former case is typical of an interface 
between a superconductor and a normal metal,73%hereas 
the latter is realized, for example, near twin boundaries in 
tinlo.' I and, possibly, also near twin boundaries in certain 
investigated HTS. l 2  

The lengths A, must be compared with the coherence 
lengths 

which govern the rate of decrease of the perturbation of the 
function in the bulk of the superconductor. If A, ) f,  ( T ) ,  
condition (2.9) is transformed into the free boundary condi- 
tion 

customarily used for the interface between a superconductor 
and a vacuum (insulator).' If A, <f, (T), on the contrary, 
the condition (2.9) approaches at A > 0 the condition 

Y I 6=0, (2.12) 

which is typical of a He 11-solid  interface.'^^ 
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Note that the condition (2.11 ) can certainly be used for 
an interface with vacuum in the case of ordinary (low-tem- 
perature) superconductors by virtue of the large ratio A/ 
l ( 0 )  -c(O)/d% 1 (see Eq. (2.8)] with Tc,,<Tc, and the 
direct microscopic estimates of A in Ref. 7).  In recently ob- 
tained high-temperature superconductors, however, where 
the coherence lengths 6, (0) are comparable with the lattice 
constant, it is necessary to use the mixed condition (29) 
(which goes over into (2.12) for A > 0 near T,) even for a 
superconductor-vacuum interface. 

It is easily seen that conditions (2.7)-(2.9) lead to the 
condition that the normal component of the superconduct- 
ing current be zero at the boundary, i.e., to the condition 
(j-n) 1, = 0. This condition is perfectly natural and neces- 
sary if the medium in which the superconductor is placed is 
not superconducting. For a junction of two superconduc- 
tors, however, it is necessary to add to the surface-energy 
functional (2.5) two new terms, so that 

FS=F8,.+ ~ ~ y l ~ ~ l ~ 2 + y 2 ~ ~ 2 ~ z + y 1 2 ~ ~ 1 - ~ 2 1 2 1 ~ ~ ,  (2.13) 

where the subscripts 1 and 2 refer respectively to the first and 
second superconductors. As a result we obtain in place of 
one mixed boundary condition a system of two mixed 
boundary conditions7: 

where the normal vector n is directed from medium 1 to 
medium 2. Multiplying the first (second) equality of (2.14) 
by \y: (or respectively by '4':) and subtracting from the 
complex conjugate, we obtain for the normal component of 
the tunnel (Josephson) current flowing through the junc- 
tion from medium 1 to medium 2 (Ref. 13) 

where p, - p, is the phase difference of Y, and Y, at the 
junction. 

The sign of the real coefficient y ,, in (2.13) is not deter- 
mined beforehand and depends on the specific microscopic 
nature of the boundary. A situation of particular interest 
(realizable in the case of metallic or dielectric interlayers 
containing magnetic impuritiesI4 or of ferromagnetic metal- 
lic interlayersI5), occurs if y,, < 0. In this case, as shown in 
Refs. 14 and 16, the ground state of thejunction corresponds 
to a phase difference p, - p, = T, so that connection of such 
a junction into a closed superconducting loop should give 
rise to a weak spontaneous current that induces in the loop a 
magnetic flux smaller than or equal to half the flux quantum 
@, = ~cfi/i/lel = 2X lo-' G.cm2. 

We dwell now briefly on some basic properties of bulky 
anisotropic superconductors. 

In the absence of a magnetic field and of the current j, 
the equilibrium order parameter normalized to the density 
n, of the superconducting pairs (i.e., to half the density n,s 

= 2n, of the superconducting electrons, is 

T-T,  t=- < 0. 
T ,  

The heat capacity of the superconductor (per unit volume) 
undergoes at T = T, a finite discontinuity 

If T < Tc , the homogeneous superconducting state becomes 
thermodynamically less favored than the normal state at 
magnetic field strengths H exceeding the critical value 

A uniform magnetic field parallel to the boundary of a super- 
conductor and perpendicular to the principal symmetry axis 
I (the field-induced current is directed along I) penetrates 
into the superconductor to a depth 

The depth 6, can be expressed also in terms of the character- 
istic plasma frequency of the superconducting electrons os- 
cillating along the I axis: 

Important parameters of a superconductor are the ra- 
tios 

If all the ratios x, are less than 1/2IJ2 (we confine ourselves 
for simplicity to this case), placement of the superconductor 
in an external magnetic field H = H ,  destroys the supercon- 
ductivity (we disregard the possibility of superheating or 
supercooling) via a first-order phase transition (type-I su- 
perconductors). 

If, nevertheless, H ,  > 1/211', quantized vortex filaments 
appear first in the superconductor in fields H = H < H,  
and only when H = H L, > H, is reached does the supercon- 
ductivity vanish via a second-order phase transition (type-I1 
superconductors). 

The upper critical field of a bulky superconductor 
whose principal crystallographic axis (say, the z axis) is di- 
rected along the magnetic field) is given by 

where @,, = rrcfi/lel = ch /21e/ is the flux quantum. The 
lower critical field, on the other hand, is in this case (if 
x, % 1) 

Numerous problems solved on the basis of Eqs. (2.2)- 
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(2.4) and their corresponding boundary conditions (2.1 1 ) 
and (2.14) can be found, for example in Refs. 1, 7, and 17. 

3. FLUCTUATION EFFECTS AND TEMPERATURE WIDTH OF 
THE CRITICAL REGION OF AN ANISOTROPIC 
SUPERCONDUCTOR (CALCULATED BY PERTURBATION 
THEORY) 

In studies of fluctuation effects (see, e.g., Ref. 18 and 
the references cited in this review), the free energy (2.1 ) is 
regarded as a certain Hamiltonian that determines the prob- 
ability 

of finding the system in a state with a specified function Y ( r )  
different from the most probable function Y,,, ( r )  which cor- 
responds to the minimum of the free energy (2.1 ) and is the 
solution of Eqs. (2.2)-(2.4). 

The total equilibrium free energy F is expressed in this 
case in terms of the logarithm of the partition function: 

F=-k.l.ln SW[Y ( ~ ) ] D Y  (r) ,  (3.2) 

taken over all possible configurations (functions) Y ( r )  that 
vary little over distances smaller than or of the order of the 
lengths 6, (0 ) ,  i.e., that contain the Fourier transforms 

of the function Y ( r )  with wave numbers k, 5 5 ,  ' ( 0 )  (it is 
known that the shorter-wavelength components Y, are as- 
sumed to be included in the expression (2.1) for the free 
energy and are precisely the ones responsible for the tem- 
perature dependence of the coefficient a ) .  

The configuration integral in (3.2) cannot be evaluated 
exactly in three and two dimensions. If the fluctuations of Y 
are small, however, the integral in (3.2) can be calculated 
approximately by expanding the functional (2.1 ) in powers 
of the difference ST = Y - T,, and retaining only the first 
(quadratic) terms in this expansion. 

In this quadratic (Gaussian) approximation we obtain 
for the fluctuation contribution to the heat capacity of a . . 

bulky superconductor (per unit volume) in a zero magnetic 
field 

If 6 ,  ( 0 )  = 6,  ( 0 )  = 6 (O), these expressions are trans- 
formed, as they should be, into the well-known expression 
for the fluctuation contribution to the heat capacity of a 
bulky isotropic superconductor. "-'' 

Note that the increase of C; by a factor 2"' compared 
with C/: is due, firstly, to the 2"'-fold decrease, below T,, 
of the superconducting coherence lengths for the modulus of 
Y (indeed, below T, we have 

and secondly, to the fact that for T <  T,. the phase fluctu- 
ations of the order parameter are independent of ( T - T,. ) 
and make therefore no contribution to the heat capacity."." 

Above T,, fluctuations of Y lead likewise to a small 
diamagnetic contribution to the magnetic susceptibility (we 
assume the z axis to be directed along the field) 

and to a positive contribution to the conductivity tensor rela- 
tive to the direct current 

In the last expression, j is the coefficient in the temporal 
relaxation equation for the function Y at T> T,  (Ref. 18) :  

where the dot denotes differentiation with respect to time. 
Note that in the case of superconductors described by the 
BCS theory we have 

This relation does not hold, however, in the general case. 
Fluctuation effects in bulky (three-dimensional) super- 

conductors at temperatures lower than T,  have hardly been 
discussed in the literature. In superconductors having a low 
coherence length, such as the present-day HTS, fluctuations 
may nevertheless be quite noticeable even below T, . The per- 
tinent effects can be analyzed by using the results of Ref. 2 1,  
where a procedure was developed for a systematic calcula- 
tion of the fluctuation corrections to the equilibrium ther- 
modynamic quantities and to the order-parameter correla- 
tion function K ,  (V, V* , ) both above and below T,  , by 
expanding them in series in terms of the parameter 

To be sure, only a one-component order parameter was con- 
sidered in Ref. 21. Below T, , however, this circumstance is 
apparently immaterial since, as already noted, the phase 
fluctuations of the order parameter are independent of the 
difference / T - T, I if T <  T, , and should make no contribu- 
tion, at least in lowest-order perturbation theory, to the 
anomalies of the physical quantities. Assuming that this is 
really so, and using the results of Ref. 21, we obtain for the 
temperature dependences of the coefficients of the thermo- 
dynamic-potential (21 ) at T <  T, the following expressions 
which take into account the fluctuation corrections: 
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The parameter u = (tG/lt  I ) 'I2 in these expressions has the 
meaning of the ratio of the anomalous (i.e., dependent on 
It I ) part of the total mean square of the fluctuations of Y to 
the squared modulus of the equilibrium Y at t < 0: 

Obviously, the condition for the validity of all the foregoing 
expressions is that u be small compared with unity or, equiv- 
alently, that the following inequality be satisfied23: 

The region It I % t , ,  where all the fluctuation corrections 
are small, can be called the classical fluctuation region. 
When expressions (3.3 )-(3.6) and (3.9)-(3.11) are used, it 
must be borne in mind that they were derived without 
allowance for the influence of the magnetic field (more accu- 
rately, the field in the case (3.5) was of course taken into 
account, but in an approximation linear in the field). In ex- 
pressions (2.10), (2.19), and (2.21) for [,, S,, and tr,, the 
fluctuation corrections are obtained by substituting in them 
expressions (3.9)-(3.11): 

The values of x ,  thus become dependent on J t  1 when the 
fluctuations are taken into account. As to the corrections to 
the fields H,, , H,, , and H,, however, it would be necessary, 
strictly speaking, to repeat all the calculations with account 
taken of the influence of the magnetic field on the equilibri- 
um value Ye ( r )  and on the fluctuations SY ( r ) .  No such 
calculation was performed so far. We are of the opinion, 
however, that the fluctuation corrections to the critical fields 
can be obtained at least qualitatively by substituting expres- 
sions (3.9)-(3.11) and (3.14) in (2.18), (2.22), and 
(2.23). With this stipulation, we have 

Note that in the condition (3.13) we can express t ,  in 
the form 

i.e., this quantity is determined primarily by the ratio d /lo. 
However, t ,  contains also the ratio (kB/ACd3)2 and the 
small numerical factor 1/32a2 z 3 x lo-'. The latter ex- 
plains, in particular why the width of the critical-fluctu- 
ations region for the A transition in helium, where d -lo and 
(kB/ACd ') - 1, isin fact nolongeraslarge (t, - l op3  at the 
saturated-vapor pressure, i.e., the width ofthe critical region 
i s A T =  I T - - T , l z 2 ~ 1 0 - ~ K ) .  

4. MACROSCOPIC THEORY OF SUPERCONDUCTIVITY IN 
THE CRITICAL REGION 

As T approaches T,, or when the measurement accura- 
cy is increased, the first-order fluctuation corrections can 
obviously no longer be used in expressions (3.9)-(3.11) to 
obtain a more accurate temperature dependence of the coef- 
ficients of the thermodynamic potential (2.1 ) . Further- 
more, starting with a certain value of u = (tG/It  1)'12, per- 
turbation theory in terms of this parameter becomes in itself 
meaningless. In the intermediate range of ( t  1, when u - 1, no 
definite theoretical predictions whatever can be made with 
respect to the coefficients a, b, and m: in (2.1 ). The situa- 
tion, however, is again improved in a certain closer vicinity 
of T,, which is in fact the one usually called critical. To 
determine the temperature dependences of the coefficients in 
the expression for the density of a renormalized thermody- 
namic potential of the type (2.1) [averaged over Y fluctu- 
ations with scales smaller than or of the order of [, ( t )  1, use 
can be made of the principles of universality and scale invar- 
iance of the critical phenomena, as well as of the results of 
calculation of these dependences by the renormalization- 
group-theory method. By virtue of the universality principle 
we can resort, in our description of superconductors with the 
aid of the complex scalar function Y, also to experimental 
data on the A transition in liquid 4He (recall that in Refs. 2 
and 3 we describe the A transition by an analogous function). 

All these considerations lead to the c o n c l ~ s i o n ~ ~ ~  that 
for superconductors in the critical temperature region near 
T, one can use in lieu of (2.1 ) the following expression for 
the thermodynamic potential of nonequilibrium states: 

In this expression we have neglected the possible small devi- 
ation from zero of the critical exponents 2 and & that are 
indicative of the divergence, as It / -0, of the heat capacity 
C, oc It I - %nd of the coefficients fi2/4mT K It I - " preceding 
the terms with spatial derivatives in (4.1 ). As evidenced by 
renormalization-group calculations and by experimental 
data on the A transition in helium (see Refs. 2 and 3 and the 
literature cited therein), the corresponding differences are 
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very small ( la I - u .5 0.02) and are immaterial for all practi- 
cal purposes." Note that expressions similar to (4.1 ), with 
the various simplifications, have already been used in Refs. 4 
and 24-26. 

In accordance with (4.1 ), the equilibrium equation for 
the function Y takes now the form 

It differs from Eq. (2.2) of the usual Y theory of supercon- 
ductivity not only by a different temperature dependence of 
the coefficients, but also by the presence of Y raised to the 
fifth power. Two other basic equations of the theory, Eq. 
(2.3) for the vector potential A and Eq. (2.4) for the super- 
conductor-current density, as well as the boundary condi- 
tions (2.9) and (2.14) for Eqs. ( 4 . l ) ,  (2.3), and (2.40) re- 
tain their form intact also in the critical region. 

From (4.1 ) and (4.2) we find that the temperature de- 
pendences of the equilibrium value of I Y, I at t < 0 and of the 
anomalous part C * of the heat capacity of a bulky supercon- 
ductor are determined in the absence of a magnetic field by 
the expressions 

To describe the effects occurring near theA transition in 
helium and due to the deviation from zero of the coefficient 
g,, of the term with Y raised to the sixth power in Eq. (4.1 ), a 
dimensionless parameter 

with an experimental value close to 1/2, was introduced in 
Refs. 2 and 3. One can expect, on the basis of the universality 
and the scaling invariance of the critical phenomena, this 
parameter to have the same numerical value for the super- 
conducting-transition case of interest to us. Moreover, ac- 
cording to the universality and scaling-invariance hypoth- 
eses (see Ref. 3 for the pertinent literature) all dimensionless 
combination of the coefficients ("amplitudes") of the criti- 
cal temperature dependences of the physical quantities 
should be the same for all three-dimensional systems de- 
scribed by the complex scalar function Y. From this stand- 
point it seems probable that the ratio Co/AC of supercon- 
ductors in the critical region is, just as in superfluid helium, 
approximately equal to 1/4. 

Taking (4.5) into account, we can rewrite expressions 
(4.3) and (4.4) Y,, for and ACin the form 

which is close to expressions (2.16) and (2.17) of the usual 
Y theory of superconductivity. 

Disregarding certain differences, due to the need for 

taking into account in (4.1) the term with Y raised to the 
sixth power, between the numerical values of the coeffi- 
cients, all the results of the usual Y theory of superconduc- 
tivity can be made automatically valid in the critical region 
by replacing in them a = a t  by a0t It 1"' and b = const by 
bolt I"'.  In particular, for the temperature dependences of 
the principal values of the tensors of the superconducting 
coherence lengths and of the magnetic-field penetration 
depths we now have [cf. Eqs. (2.10) and (2.19) 1 

We see that in the critical region the temperature depen- 
dences of the superconducting coherence lengths become 
stronger, and the penetration depths weaker, compared with 
their linear dependences on It ( far from T,. In the critical 
region, as a result, the ratios of these lengths are no longer 
constant but decrease as 1 t / -+ 0 like 

so that a superconductor that is of type-I1 far from T,, be- 
comes of type-I close enough to T,. . In the case of an isotropic 
superconductor, this transformation should take place at 
x ( t )  equal to 

whereas in the case of an anisotropic superconductor an 
analogous critical value will be possessed by definite x ,  com- 
binations that depend on the magnetic-field orientation rela- 
tive to the principal axes of the crystal see, e.g., (2.22) 1. 

Changes of the temperature dependences of the lengths 
6, and 6, give rise to changes of the temperature depen- 
dences of the upper and lower critical magnetic fields. thus, 
for a field directed along the crystallographic x axis we have 

H,," = 
@ 0 

t" Itl' ', w, ( t )  E z  ( t )  

and (in the case In (x, x, ) >) 1 ) 

ln(x,x,)  
H,," = Itl4'1nItl-'. 

Sn6, ( t )  6, ( t )  

At the same time, the temperature dependence of the ther- 
modynamic critical field remains linear in the critical region: 

When account is taken of the nonzero critical exponent 
6 in the expression C, = cc t 1 '; for the heat capacity, we 
have 

where, remember, 161 5 0.02. 
We point out (see also Refs. 4 and 26) that according to 

(4.11 ) the curvature ( d  'H, ,  / d T  9 of the plot ofH,, vs It / is 
positive in the critical region. At the same time, this curva- 
ture is negative in classical-fluctuation region [see (3.17) 1 .  
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The H,, ( t )  curves should thus have an inflection point at the f ,  ( T) sfz ( T), which is perpendicular to the layers, ex- 
boundary between the regions of the classical and critical ceeds substantially the distance d between the layers. If this 
 fluctuation^.^' condition is not met, differential-difference equations can be 

Attainment of a critical region above T, can be attested used.30731 
to by changes in the character of the temperature depen- For simplicity, we assume hereafter that the electron 
dences of the fluctuation contribution to the susceptibility motion inside the layers is isotropic, and use the tight-bind- 

n koT . F ( t )  
ing approximation to describe the electron transitions 

Xa =--- - It 1 -%, S= (E.f ,E,) "l(4.15) between layers In this approach, the electron spectrum is 
6 @ o  t . i ( t ) t . b ( t )  given by 

and to the conductivity tensor 

1 he2ikBT -,,. oik. = - 
16x mi,'a2 ( t j  i3 ( t )  

li2 
E (k) = - (k,2f  ky2) + 21(1 - cos k,d) , (5.1) 

2m!, 
(4.16) 

where k represents the electron quasimomenta, x and y are 

The first of these equations is obtained simply by substitut- 
ing in Eqs. (3.5) and (2.10) the modified temperature de- 
pendence of the coefficient a,  while the second is obtained by 
substituting in Eq. ( 3 . 6 )  the same a ( t )  dependence and the 
modified temperature dependence of the relaxation coeffi- 
cient 2.3 

(which is contained in the temporal Equation (3.7) for the 
function Y ) . 

Special attention must be paid, in the case of supercon- 
ductors having a small coherence length, to the peculiarities 
of the solutions of various kinds of surface problems and of 
problems connected with the action of a magnetic field on 
thin superconducting plates, films, small particles, etc. The 
point is that in the solutions of problems of this type the 
amplitude distribution of the function \V in a direction trans- 
verse to the film, or inside the small particle, is usually re- 
garded as uniform; this is justified (see Sec. 2),  inasmuch as 
in ordinary superconductors the extrapolation length A for a 
superconductor-vacuum interface is of the order of { /d - 1 
cm and greatly exceeds the length l ( T ) .  The latter is the 
reason why a boundary condition (2.1 1) of the type 
dY/dz = 0 is used. For superconductors with iO-d ,  how- 
ever, as already emphasized in Sec. 2, the inequality A) ( T) 
is not strong even far from T,, while near T,, in a region that 
may be accessible to experimentation, this inequality is re- 
versed, so that on the interface with the vacuum the deriva- 
tive dY/dz must now not be regarded as zero, and the more 
general boundary condition (2.9) must be used. This diffi- 
culty is even more aggravated in the critical region, for in the 
calculation of the distribution of the function Y(z) near the 
boundary it is necessary to takeintoaccount the term with Y 
raised to the sixth power in Eq. (4.1 ) for the density of the 
thermodynamic potential. 

In view of the foregoing, we have not attempted to use in 
the case of the critical region the solutions of many known 
problems dealing, for example with oscillations of the criti- 
cal temperature of a superconducting cylindrical film as a 
function of the external magnetic field (the Little-Parks ef- 
fect), calculations of the thermodynamic critical field for a 
small superconducting sphere,27 and so forth. 

5. LAYERED SUPERCONDUCTORS (USE OF DIFFERENTIAL- 
DIFFERENCE EQUATIONS) 

The analysis in the preceding section, which involves 
introduction of the effective-mass t e n ~ o r , ~ . ~ ' ~ ~ ~  is suitable for 
layered compounds only so long as the coherence length 

the coordinate axes in the layer plane, d is the distance 
between layers, mil is the electron mass for motion inside the 
layer, and I is the resonance integral for electron motion 
between layers. The spectrum (5.1 ) leads to anisotropy of 
the electron velocity on the Fermi surface. Within the frame- 
work of the BCS theory we obtain for (2.1 ) in a pure super- 
conductor the following values of the reciprocal effective - 
mass tensor components along the principal  axe^^^.^': 

Corresponding to these values are the principal values of the 
superconducting coherence length tensor at T = 0 

and {* (0 )  = lx (0 )  (mil /m, ) 'I2, which determine the di- 
mensions of the Cooper pair in the directions of the axes x, y, 
and z, respectively. 

So long as {= ( T) )d, the layered structure of the crystal 
along the direction z is immaterial and the differential equa- 
tions (2.2)-(2.4) are assumed valid. For l= ( T )  S d ,  how- 
ever, this approximation, as already stated, is not suitable 
and account must be taken of the inhomogeneity of the elec- 
tron density in the direction transverse to the layers. The 
distribution of the order parameter Y along z must accord- 
ingly be regarded in this case as strongly nonuniform. 

A model with Josephson interaction between the layers 
has been proposed in Ref. 30 for the description of layered 
systems with f ,  ( T )  $d. Each layer is described by a discrete 
variable (the number n of the layer), and a discrete order 
parameter Y,, (x, y )  that depends on the layer number n and 
on the continuous coordinates x and y inside the layer is 
introduced. The equations for the functions Y, (x, y )  are 
now difference equations in the coordinate n and differential 
equations in the coordinate p = (x,  y ) .  The latter can be 
obtained from the BCS scheme by introducing a localized 
Wannier representation for the electron wave functions [the 
functions w,, ( p, z )  ] along the coordinate z and by expand- 
ing the initial microscopic order parameter A ( p, z )  in terms 
of these functions: 

and discarding the terms with n ,  # n,. The result for the pa- 
rameters A,, ( p)  =A,,, ( p )  is an integral equation in the 
variable p and a difference equation in the discrete variable 
n. For a pure superconductor with an electron mean free 
path A >l (0 )  and A $ f i u F l l  /I, for I< k ,  T, ,  the interaction 
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between layer n and layer n + m is proportional to ( I /  
kB T, 12". Confining ourselves to terms of lowest order in 
( I / k B  T, ) I ,  we obtain the sought differential-difference 
equations fbr the functions q, ( x ,  y )  (Refs. 30-33): 

+ ar(2Yf-Y n+le-ixn-Yn-l.eiXn) =O, 
( n + t ) d  

2e 
T - T )  ~ n = -  J A z L ,  (5.3) 

fit "d 

The condition A $ +ivFiI /I means that the characteristic time 
T = A /vF 1 1  of the electron mean free path in the layer is much 
longer than the electron transit time fi/Z between layers. 
Near T,, where 

Eqs. (5.3) go over into the ordinary Y-theory differential 
equations (2.2) with a correlation length gZ ( T )  = d( r /  
It 1 )  - ' I2 .  Such a transition is always possible if r$  1, but if 
r g  1 and It I $ r the description of the superconductivity must 
be based on the difference equations (5.3), and not on an 
equation that is differential in the variable z. Thus, Joseph- 
son interaction between the layers is realized for r <  1, i.e., 
for pure superconductors at I< k, T,. 

In dirty superconductors with k, T,r/+i< 1 the coeffi- 
cients l / a  and r must be multiplied by the factor k, T, r/+i 
(Ref. 33). The parameter r is then decreased and Josephson 
interaction between the layers is possible at larger values of 
I /kB T,. In the considered case ofdirty superconductors, the 
interaction of layer n with layer n + m is also proportional to 
the factor rm, and Eqs. (5.3) are applicable as before only so 
long as 1-4 1 and It I +r .  

Equations ( 5.3 ) can be regarded also as phenomenolog- 
ical equations that are valid irrespective of the particular 
superconductivity model. It must be emphasized, however, 
that it is sensible to use them only if r g  1, for if r 2  1 it is no 
longer possible to confine oneself to interaction between 
nearest-neighbor layers. 

Transition to Josephson interaction of the layers leads 
to the appearance of qualitatively new superconducting 
properties. Thus, a change takes place in the temperature 
dependence of the upper critical magnetic field HC2, parallel 
to the layers. In the immediate vicinity of T,, but not yet in 
the critical region, the field H,2,11 in layered superconduc- 
tors, just as in ordinary three-dimensional systems, is pro- 
portional to It I [see (2.22) ]. However, on approaching the 
point It / = t * = 2r, in which lz ( t  * )  = d/2I1' , the orbital 
pair-breaking effect of the magnetic field weakens, and at 
It I > t * it vanishes completely."-" This vanishing of the or- 
bital effect at It I > t *, which takes place only in the self-con- 
sistent-field appro~imat ion, '~  can be attributed to the fact 
that for gz <2- ' I2d the normal core of the vortex is in a 
space between layers and the superconducting order param- 
eter inside the layers changes little under the influence of the 
field. Thus, the field Hc2.11 increases steeply as the tempera- 
ture approaches the point It I = t * = 2r from above. Below 
this temperature, the field H,2,11 is bounded only by the para- 

magnetic effect and by the order-parameter fluctuations that 
play a noticeable role in view of their quasi-two-dimensional 
~ha rac te r . ' ~  

Since the upper critical field increases near T, linearly 
with decrease of temperature, the parameter r can be ex- 
pressed in terms of the derivatives of Hc,,l, and H,,,, with 
respect to T a t  the point T,. Calculating these derivatives 
with the aid of Eqs. (5.3),  we obtain for the parameter r, in 
both pure and in dirty superconductors, 

where H; = - (dH,,,,/dT) ,= ,;, I = x, y, z. Equation (5.4) 
permits r to be calculated from measurements of the H,,,, 
( T) dependences near T, . 

Josephson interaction of the layers is also manifested by 
the singularities of the behavior of layered systems at 1 t 1 2 2r 
in an electric field perpendicular to the layers. Highly pro- 
nounced effects, similar to the nonstationary Josephson ef- 
fect, should be observed in this case. Unfortunately, there 
are at present no detailed investigations whatever of such 
Josephson effects in layered systems. 

We emphasize, finally, that the screening (penetration 
depth) of the magnetic field in the regime of Josephson inter- 
action between layers should be strongly anisotropic. In- 
deed, it follows from Eqs. (5.3) that the ratio of the penetra- 
tion depth S, for a field directed along the z axis (i.e., 
perpendicular to the layers) to the penetration depth S I  for a 
field perpendicular to z (i.e., along the layers) is 

The lower critical magnetic field Hc, , l I ,  which determines the 
start of penetration of the vortices along the layers, is there- 
fore likewise weak. For the ratio of the fields H,.l,Il and H,,., 
we have (11 = lx = ly) 

H C l ~  4arm11'd' ( / :: ) -- - rd2 
A 

In- 111- m- 
Hc1,1 5,' (0) ' 

(5.6) 

We have replaced S I  /g by S I  /d  under the logarithm sign in 
the expression for H,l,lI. The reason is that in a field parallel 
to the layers the vortex axes penetrate into the space between 
the layers, meaning that it makes no sense to speak of a nor- 
mal core for them (this is why the cutoff parameter g I l  is 
replaced in (5.6) by d ) .  

We have used everywhere above the self-consistent- 
field approximation. This approximation is justified for 
T <  T, if long-range superconducting order exists in the sys- 
tem. In a strictly two-dimensional system, however, there is 
no such order in a certain temperature interval between the 
initial critical temperature T, (calculated in the self-consis- 
tent-field approximation) and the temperature T,,,. of the 
Berezinskii-Kosterlitz-Thouless approximation. In this 
temperature interval T,,, < T <  T, the correlation function 
(Y ( r ) Y  (0))  decreases with distance exponentially, owing 
to spontaneous vortex production." Below T,,.,., individual 
point vortices are bound into pairs and the exponential de- 
crease of the correlation function gives way to a power-law 
decrease. This suffices for a superconducting behavior of the 
system, i.e., for the presence of infinite conductivity and of 
the Meissner effect, although formally there is no long-range 
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superconducting order at T <  TBKT, as before, owing to the 
divergence of the long-wave phase fluctuations. 

In a layered system with a large enough number N of 
layers, spontaneous formation of vortices perpendicular to 
the layers becomes impossible, since the energy E of forma- 
tion of such a vortex increases in proportion to the vortex 
length, i.e., to the number N of layers. It is therefore mean- 
ingless to speak of a Berezinskii-Kosterlitz-Thouless transi- 
tion in a layered system. In addition, the Josephson interac- 
tion between the layers eliminates the divergence of the 
long-wave phase fluctuations below T,. By the same token, 
the use of the self-consistent-field approximation for layered 
systems can be regarded as justified both above and below 
T,, with the obvious exclusion of the region of critical fluctu- 
ations. The width t ,  of this region must now be calculated on 
the basis of (5.3 ), as will be done below. 

Within the framework of the differential-difference 
equations (5.3 ) , the expressions for the Gaussian correc- 
tions to the temperature dependences of various physical 
quantities differ substantially for It 1 < r  and It / >) r. In the 
It 1 < r  region, where the differential-difference equations 
(5.3) are close to the differential equations (2.2 ), the corre- 
sponding equations, as expected, are transformed into those 
of Sec. 3 by the substitution lz (0)  = drl''. The region 1 t  1 < r 
can be therefore called the region of ordinary three-dimen- 
sional fluctuations. In the region 1 t / >) r, on the contrary, one 
can disregard in first approximation the correlations 
between the \V fluctuations in neighboring layers, and use for 
the fluctuation corrections the same expressions as for a sys- 
tem of thin (two-dimensional) films of thickness d. In this 
quasi-two-dimensional case we obtain, above T,, for the 
Gaussian fluctuation contributions to the heat capacity 
C?,, to the conductivity u?,,,~ along the layers, and to the 
susceptibility x;,,, in a field perpendicular to the layers'x332 

Hz'  

where C;,, u ~ ~ , ~ ,  and x;,,, are determined by Eqs. (3.4)- 
(3.6) with lz ( t )  = d(r/ t) lI2.  

Equation (5.7) with t replaced by J t  I remains in force 
also below T,, with no change of the numerical value of the 
coefficient. As to the fluctuation corrections to the coeffi- 
cients a, b, and rnr for T <  T,, they have not been calculated 
for the two-dimensional case. We note also that account is 
taken in Eqs. (3.6) and (5.8) of only that part of the fluctu- 
ation contribution to the conductivity which can be calculat- 
ed without going outside the framework of the temporal 
equation (3.7). More general expressions for uz ( t )  are giv- 
en in Refs. 18 and 32. 

The width of the critical region in the regime of two- 
dimensional fluctuations can be estimated from the condi- 
tion C?, ( t )  = AC, where AC = a2/bTc is the heat-capacity 
discontinuity at the transition point. Using this condition, 
we get 

where t , , ,  - t ,  is given by Eq. (3.13). 
Within the framework of the microscopic BCS theory, 

we have for t,, ,  and t , , ,  in pure superconductors 
(k, T, ~ / f i  < 1 ) the estimate 

and in the case of dirty superconductors (k, T,r/fi>) I) ,  

where I = u, T is the mean free path, E ,  is the Fermi energy, 
and fik, is the Fermi momentum. 

It is appropriate to use the estimate (5.10) only if 
r < t , , ,  , for if r > t , , ,  the transition from the region of 
Gaussian two-dimensional fluctuations into the region of 
the three-dimensional ones occurs before the critical region 
is reached. Interest attaches to the character of the tempera- 
ture dependences of the coefficients in Eqs. (5.3) in the re- 
gion of two-dimensional critical fluctuations (i.e., in the in- 
terval r 5 1 t  1 5 t , , ,  ). To our knowledge, however, this 
question has not been investigated theoretically at all. 

6. DISCUSSION OF RESULTS AS APPLIED TO HIGH- 
TEMPERATURESUPERCONDUCTORS 

We examine now the available experimental data on the 
high-temperature superconductor YBa,Cu,O, - , and at- 
tempt to determine for it the parameters r and t,. 

Measurements, near Tc, of the upper magnetic field H,, 
of a single crystal yield according to Ref. 36 Hf,,, 
= HA,,, = 2.3 X lo4 Oe/K and H:,,, = 0.46X lo4 Oe/K, 

and according to Ref. 37 H f,,, = HI,,, = 3.9X lo4 Oe/K 
and H f,,, = 1.1 X lo4 Oe/K. Substituting these values in 
(5.4) we obtain r z  2 for a distance d z 4  A between the con- 
ducting Cu-0 layers. It can therefore be concluded that no 
Josephson interaction between layer is reached in the 
YBa,Cu,O, _ , superconductor and that even far from T, 
the situation is more readily intermediate between a three- 
dimensional anisotropic system and a Josephson system. It 
must be noted, to be sure, that the quantities 
HA,,, = ( - d H  ,,,, /dT) ., ,<, used above call for some cau- 
tion. The point is that the temperature dependence of the 
resistance R ( T) (from which H,, is in fact determined) is 
not so much shifted to the left by the magnetic field as it is 
broadened without a shift of the start of the resistance falloff. 
The Hc2 determined from the half-width of the normal resis- 
tance, or from its 10% or 90% level, is not strictly speaking 
the quantity usually referred to as H,, . It is therefore diffi- 
cult as yet to determine the true value of r. Thus if the cited 
values of H :,,, are assumed, we get r z  2 and the fluctuations 
must be regarded as three-dimensional near T,. We can then 
determine t ,  from the equation (obtained by substituting in 
(3.13) the values c:(O) = ZTT, H:,,,/@,) 

where AC is the experimentally measured heat-capacity dis- 
continuity. Reference 38 cites for this discontinuity a value 
4. lo5 erg/cm3.K, while Ref. 39 gives somewhat higher val- 
ues (up to 6.10' erg/cmXK). For all the above values, we 
find from (6.1 ) that t, = (0.2 - 2 )  . This estimate 
shows that in the presently available HTS the range of criti- 
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cal fluctuations is relatively narrow (on the order of lo-' 
K)  and difficult to obtain in experiment. The smallness of 
t,, however, still does not prevent observation of quite no- 
ticeable Gaussian fluctuation effects at It I $ t,. In fact, the 
scale of these effects is determined by the ratio (t,/It I ) 'I2, 
equal to about 1 % when the distance from T, is of the order 
of T,, but reaching already 10% for It I = IT- T, I/Tc 
- 

One such Gaussian fluctuation effects was investigated 
recently in Ref. 40, where the fluctuation conductivity a,* of 
epitaxial oriented YBa,Cu307 - films was measured in the 
x direction along the copper-oxygen films. The question of 
the H,, ( T) dependence for these films is still open, for in this 
case, too, the magnetic field mainly broadens the supercon- 
ducting transition without shifting its starting point. I t  was 
observed in Ref. 40 that near T, the @ ( t )  dependence corre- 
sponds to the regime of three-dimensional fluctuations 
(a,* a t  -I1'), but with increasing distance from T, the 
a,* ( t )  dependence approaches the relation a,* a t - '  corre- 
sponding to two-dimensional fluctuations. The crossover 
temperature T, ,z  1.1 T, at which the Josephson interaction 
regime sets in between the layers, corresponds to r z0 .1 ,  
which does not agree with the data of Refs. 36 and 37 for 
single crystals. In addition, the numerical value of a,* was 
found to be three to seven times lower than that calculated 
on thebasisofEqs. (3.6) and (3.8) or  (5.8) and (3.8). This 
could have been due to incomplete filling of the sample by 
the superconducting phase. However, the interpretation of 
the data of Ref. 40 and of analogous data 41 for single crystals 
is ambiguous also for another and more important reason. 
The point is that all the investigated HTS contain twin do- 
mains and, as already noted in Sec. 2, local superconductivi- 
ty can set in on the boundaries of such domains at  a certain 
temperature T: higher than the superconducting transition 
temperature T, in the bulk. Indicating this possibility are 

TABLE I. Parameters of$he superconducting single crystal YBa,Cu,O, _ , . 

measurements of the Hc, ( T) temperature dependence near 
the point at which superconductivity sets in. l 2  I t  turned out 
that here H,, a ( T i  - T )  'I2, as it should in the case of local 
superconductivity.l' The presence of superconductivity lo- 
calized near twin boundaries is evidenced also by measure- 
ments of the heat capacity of YBa2Cu,07 -, single crys- 
t a l ~ , ~ '  which we now proceed to discuss. 

In Ref. 38 were observed a discontinuity and a peak of 
the heat capacity at Tc = 89 K. They were preceded above 
Tc, at T i  = 93 K, by a smooth growth of the heat capacity 
and by an additional small discontinuity amounting to ap- 
proximately 20% of the main discontinuity. Below T,, when 
the temperature was lowered to 87 K, the heat capacity un- 
derwent a rapid decrease that slowed down and smoothened 
subsequently. The anomaly of the heat capacity at  the point 
T: and its smooth increase in the interval from T i  to Tc can 
be interpreted as a contribution from the superconductivity 
localized on the twinning planes.42 This superconductivity 
can also account for the smooth a,* ( t )  increase observed in 
Refs. 40 and 41 and attributed there to fluctuations. On the 
other hand, the maximum of the heat capacity in the range 
from 87 to 89 K cannot be ascribed to the influence of the 
twinning boundaries, since they decrease rather than in- 
crease the heat-capacity anomaly below T,. 

The experimental data available above Tc can thus not 
be unambiguously interpreted as yet. Below Tc, however, 
they attest to the presence of a rather noticeable fluctuation 
contribution exceeding the negative contribution to the heat 
capacity from the domain walls42 and varying near T, like 

This value of((0) is in satisfactory agreement with the H f,,, 
that yield for ((0) the values 16.5 and 12 A, respec- 

tively. 

Experimental parameter values I Calculated parameter values 

T, = 90 IE, 
n = 6.1021 c m '  
AC = 4.105 erg/cm'.K . . 

a = 1 . 2 .  10-l4 erg, b = 4.10-36 erg.cm3 I 

m i  = 130 m,, rn, = mu = 10 me 

EL ( 0 )  = 5.1 A ,  4 ,  ( 0 )  = 5u ( 0 )  = 18 A,  
(U) = 12 A 

6 ,  (0)=2.1.103 .9, 6 ,  ( 0 ) = 6 ,  ( 0 )  
=0.6.103 A,  x,=410 

x, = x, = 33, H:,,, = 18 o ~ / K , H ~ ~ , ~  

' 6.9 Oe/K =Hei , y  = 

t~=1 .3 .10- \  r =  1 . 7  
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On the basis of the data of Refs. 36-38 we can calculate 
all the principal parameters of the superconducting state, 
and also the coefficients a and b in (2.1 ). The pertinent re- 
sults are summarized in Table I. 

Note that the coefficients a and b and the masses 
m,*, m,*, m t  were determined assuming isotropy of my in the 
planes of the Cu-0 layers, and the square I Ye I = n, (0)  It I /  
2 of the equilibrium value of the order parameter was nor- 
malized to the value n, (0)/2 = 3. lo2' ~ r n - ~ .  This accords 
with certain published estimates of the conduction-electron 
density ( n  = 6 .  lo2' ~ r n - ~ )  in HTS crystals at T> T,. This 
choice of n, (0) does not influence, however, the values of 
&I (01, 6, (01, x , ,  and of other actually measurable physical 
quantities, since all these quantities are independent of the 
normalization of '4. 

We call particular attention to the unusually large val- 
ues of the ratio 2AC/kBn for the investigated HTS. Recall 
that according to the BCS theory this ratio is proportional to 
k, T, / E ~  and is therefore usually small. In Pb, for example, 
the discontinuity is AC= 2.3.104 erg/cm3.K and conse- 
quently AC/kB n = 1.7. (for n = ~ m - ~ ) .  The ra- 
tio C/kBn of the available HTS, however, is close to unity 
(thus, 2AC/k, n = 1.0 for AC = 4. lo5 erg/cm3 K and 
n = 6X 10'' ~ m - ~ ) .  This circumstance, in addition to the 
proximity of the ratios d /&, (0) to unity emphasizes all the 
more the similarity of this class of superconductors to super- 
fluid4 He, where the AC/kB n equals 2.6. 

Of course, the proximity ofg(0) to d in no way prevents 
the use of the macroscopic theory in the region close to T,, 
since application of the macroscopic approach requires only 
that the ratios &( T)/d and &( T)/{(O) be large. Note that 
the value of &(O) used by us is arbitrary (it is obtained by 
extrapolation from the region near T, ) and need not neces- 
sarily agree with the value of the superconducting coherence 
length at T = 0. 

The existing HTS fluctuation effects are thus fully ob- 
servable (amount to several percent) at deviations as large 
as 10 K from Tc . One can not exclude the possibility of inves- 
tigating some HTS even in critical fluctuation region itself. 

What information can one hope to extract by investigat- 
ing fluctuation effects? Firstly, such investigations permit 
assessment of the degree of anisotropy (two-dimensionali- 
ty) of the superconductor. Second, as already emphasized in 
Ref. 38, comparison of the fluctuation contributions above 
and below Tc yields direct information on the number of 
order-parameter components. On the other hand, in the case 
of the critical region the quantities dependent on the struc- 
ture (number of components) of the order parameter are not 
only the ratios of the coefficients of the power-law depen- 
dences of the various physical quantities, but also the critical 
exponents (indices) themselves. Finally, by investigating 
fluctuation effects one can ascertain whether a supercon- 
ducting transition belongs to the same universality class as 
the il transition in helium. Within the framework of a four- 
fermion Hamiltonian of the BCS type, the similarity of the 
superfluid and superconducting transitions is beyond doubt. 
There is no proof, however, for the general case. Moreover, 
according to Ref. 43, in the case of strong electron-phonon 
interaction the functional (2.1) is not suitable for the de- 
scription of even the first fluctuation corrections to fluctu- 
ation effects in superconductors. 

All the foregoing makes further research into fluctu- 
ation effects in HTS, as well as other questions touched upon 
here, of particularly great interest. 

"Certain remarks were made in Ref. 44 concerning the possibility of using 
expression (4.1 ) in the critical region. We, however, disagree with these 
remarks (see Refs. 2, 3, and 22). 

''In nonideal crystals with an appreciable twinning-plane density, an in- 
flection can appear near T, on the plot of H,, vs It / even if no account is 
taken of fluctuation effects.' I." 

'V. L. Ginzburgand L. D. Landau, Zh. Eksp. Teor. Fiz. 20,1064 (1950). 
'V. L. Ginzburg and A. A. Sobyanin, Usp. Fiz. Nauk 120, 153 (1976) 
[Sov. Phys. Usp. 19,773 (1976)l. V. L. Ginzburgand A. A. Sobyanin, J. 
Low Temp. Phys. 49,597 ( 1982). 

'V. L. Ginzburg and A. A. Sobyanin, J. Appl. Phys. Jpn. 26, Suppl. 26-3, 
1785 ( 1987). Superconductiuity, Superdiamagnetism, and Superpuidity, 
ed. by V. L. Ginzburg, Mir, 1987, Chap. 6. 

4L. N. Bulaevskii, A. A. Sobyanin, and D. I. Khomskii, Zh. Eksp. Teor. 
Fiz. 87, 1490 ( 1984) [Sov. Phys. JETP 60, 856 ( 1984) 1. 

WV. L. Ginzburg, J. Appl. Phys. Jpn 26, Suppl. 26-3, 2046 ( 1987). 
'V. L. Ginzburg, Zh. Eksp. Teor. Fiz. 23,236 (1952). 
7P. G. de Gennes, Superconductivity of Metals and Alloys, Benjamin, 
1966. 

nA. I. Buzdin and L. N. Bulaevskii, Pis'ma Zh. Eksp. Teor. Fiz. 34, 118 
(1981) [JETP Lett. 34, 112 (1981)l. 

"R. 0. Zaitsev, Zh. Eksp. Teor. Fiz. 48, 644, 1759 (1965); 50, 1055 
(1966) [Sov. Phys. JETP 21,426 (1965); 23, 702 (1966)l. 

"'M. S. Khaikin and I. N. Khlyustikov, Pis'ma Zh. Eksp. Teor. Fiz. 33, 
167 (1981) [JETP Lett. 33, 158 (1981 ) ] .  

"I. N. Khlyustikov and A. I. Buzdin, Adv. Phys. 36, 271 (1987). 
I'M. M. Fang, V. G.  Kogan, D. K. Finnemoreetal., Phys. Rev. B37, No. 

1 (1988). 
I3B. D. Josephson, Phys. Lett. 1,251 (1962). 
I4L. N. Bulaevskii, V. V. Kuzii, and A. A. Sobyanin, Pis'ma Zh. Eksp. 

Teor. Fiz. 25,314 (1977) [JETP Lett. 25,290 (1977)l. Sol. St. Comm. 
25, 1053 (1978). 

I5A. I. Buzdin, L. N. Bulaevskii, and S. V. Panyukov, Pis'ma Zh. Eksp. 
Teor. Fiz. 35. 147 (1982) IJETP Lett. 35, 178 (1982) 1. Sol. St. Comm. . . .  
44,539 (1982). 

"A. F. Andreev. Pis'ma Zh. E k s ~ .  Teor. Fiz. 46,463 ( 1987) I JETP Lett. 
46, 584 (1987)l. 

I'M. Cyrot, Rep. Progr. Phys. 36, 103 (1973). 
InW. Y. Skocpol and M. Tinkham, ibid. 38, 1049 (1975). 
'9. J. Thouless, Ann. Phys. (N.Y.) 10, 553 (1960). 
"'A. P. Levanyuk, Fiz. Tverd. Tela (Leningrad) 5, 1776 (1963) [Sov. 

Phys. Solid State 5, 1294 (1964)l. 
"V. G. Vaks, A. I. Larkin, and S. A. Pikin, Zh. Eksp. Teor. Fiz. 51, 361 

(1966) [Sov. Phys. JETP 24,240 (1967)l. 
"V. L. Ginzburg, A. P. Levanyuk, and A. A. Sobyanin, Ferroelectrics 73, 

171 (1987). 
"V. L. Ginzburg, Fiz. Tverd. Tela (Leningrad) 2, 2031 (1960) [Sov. 

Phys. Solid State 2, 1824 ( 1961 ) 1. 
'4M. Kulic and H. Stenschke, Preprint, 1987. 
"C. J. Lobb, Phys Rev. B36, 3930 (1987). 
"B. Ya. Shapiro, Pis'ma Zh. Eksp. Teor. Fiz. 46,451 ( 1987) [JETP Lett. 

46,569 (1987)l. 
I7V. L. Ginzburg, Zh. Eksp.Teor. Fiz. 34,113 ( 1958) [Sov. Phys. JETP 7, - 

78 (1958)l. 
"L. P. Gor'kov and T. K. Melik-Barkhudarov, ibid. 45,1493 ( 1964) 118, 

1031 (196511. 
"I. E. Dzyaloshinskii and E. I. Kats, ibid. 55, 338,2373 ( 1968) [28, 178 

(1968)l. 
"'W. E. Lawrence and S. Doniach, Proc. of 12th Conf. on Low Temp. 

Phys. (LT-12), Kyoto, 1970, p. 361. 
"L. N. Bulaevskii, Zh. Eksp. Teor. Fiz. 64,2241 ( 1973); 65,1785 (1973) 

[Sov. Phys. JETP 37, 1133 (1973), 38, 674 (1974)l. Usp. Fiz. Nauk 
116,449 (1975) [Sov. Phys. Usp. 18, 514 (1975)l. High-Temperature 
Superconductiuity, V. L. Ginzburg and D. A. Kirzhnits, eds., Consul- 
tants Bureau, 1982). 

"L. G. Aslamazov and A. A. Varlamov, J. Low Temp. Phys. 38, 223 
(1980). 

"R. A. Klemm, M. R. Beasley, and A. Luther, Phys. Rev. B8, 5072 
(1973); ibid. B12,877 (1974); J. Low Temp. Phys. 16,607 (1974). 

'4K. B. Efetov, Zh. Eksp. Teor. Fiz. 76,1781 ( 1979) [Sov. Phys. JETP 49, 
905 (1979)l. 

"J. M. Kosterlitz and D. J. Thouless, Progr. Low Temp. Phys. 7, 371 
( 1978). P. Minnhagen, Rev. Mod. Phys. 59,1001 ( 1987), and thelitera- 
ture cited in these papers. 

1509 Sov. Phys. JETP 68 (1), July 1988 Bulaevskil et a/. 1509 



"T. K. Worthington, W. J. Gallagher, and T. R. Dinger, Phys. Rev. Lett. Preprint, 1987. 
59, 1160 (1987). "A. A. Abrikosov and A. I. Buzdin, Pis'ma Zh. Eksp. Teor. Fiz. 47,204 

17 T. Sakakibara, T. Goto, Y. Iye et al. ,  Techn. Rep. ISSP, 1987, Ser. A, (1988) [JETP Lett. 47 (198811. 
No. 1851. "L. N. Bulaevskii and 0 .  V. Dologov, Sol. St. Comm. 65 ( 1988). 

"S. E. Inderhees, M. B. Salamon, N. Goldenfeld et al. Preprint, 1987. 4JA. Z. Patashinskii and V. L. Pokrovskii, Fluctuation Theory of Phase 
"T. Laegreid, K. Fossheim, E. Sandvold et al. Phys. Rev. B37 (1988). Transitions, Pergamon, 1979. 
"'B. Oh, K. Char, R. H. Hammand et al. ,  Preprint, 1987. 
"N. Goldenfeld, P. D. Olmsted, T.  A. Freidmann, and D. M. Ginsberg, Translated by J. G.  Adashko 

151 0 Sov. Phys. JETP 68 (I), July 1988 Bulaevskil et aL 151 0 


