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The question of the localization of a particle coupled with a thermostat in a two-well potential is 
investigated. It is shown in a systematic way that the partition function of this system has the same 
form as for the anisotropic Kondo model, the properties of which are well known. An analysis of 
these properties points to the localization of the particle in one of the wells at zero temperature if 
the interaction with the thermostat becomes sufficiently strong. 

1. INTRODUCTION 

Many papers have been devoted to the quantum dy- 
namics of a particle interacting with a thermostat.'-12 The 
interest in this problem is associated primarily with Joseph- 
son junctions, the quantum regime of which can be described 
starting from such ideas. 

The behavior of a particle in a symmetric two-well po- 
tential arouses particular interest. According to quantum 
mechanics, in the absence of a thermostat weak splitting of 
the levels of one well occurs in the quasiclassical approxima- 
tion. This implies that a particle initially localized in one 
well will be found after a certain time in the second, and this 
process will be repeated periodically, with a temporal period 
inversely proportional to the amount by which the levels 
move apart. 

However, as was first shown in Refs. 4 and 5, as the 
interaction with the thermostat becomes stronger this pic- 
ture can change substantially. Namely, if this interaction is 
sufficiently strong, then at zero temperature a particle local- 
ized in one of the wells will not pass over, in time, to the 
other. Its presence in the neighboring well will involve only a 
probability that decays exponentially in the coordinate. In 
this sense we can speak of the localization of the particle in 
one of the wells. Reference 1 is the most detailed review on 
this question. 

If in the expansion of the exact wavefunction of the 
"particle plus thermostat" system we confine ourselves to 
just the two lowest states of the free particle in the two-well 
potential, this problem reduces to the analysis of a two-level 
system with a thermostat."." As shown in Ref. 13, the parti- 
tion function of such a system has the same form as that for 
the Kondo model with an anisotropic exchange constant.I4 
In the language of this model, the properties of which are 
well known, the localization corresponds to a phase transi- 
tion to a state of the ferromagnetic type. The fact of the 
localization at zero temperature in a two-level system cou- 
pled sufficiently strongly with a thermostat is thereby 
proved. 

However, if we reject such a simplifying assumption as 
the expansion in two states in the initial stage of the solution 
of the problem, the question of the possibility of localization 
ceases to be entirely obvious. In fact, for a two-well potential 
the partition function has been calculated by the instanton 
rneth~d,~."hich is approximate. Thus, e.g., in Ref. 12 doubt 
was cast on the applicability of the method of instantons to 
the problem of localization. Thus, the question of the local- 
ization of a particle in a two-well potential cannot be regard- 

ed as fully clarified, and this has served as the starting point 
for the present paper. 

Localization implies degeneracy of levels of different 
parity (even and odd) with respect to the particle coordi- 
nate; this circumstance is reflected in the partition function, 
and hence it is important to study its properties. In the arti- 
cle we propose a method by which the problem of localiza- 
tion in a two-well potential can be reduced systematically to 
the analysis of the partition function of the Kondo model. In 
contrast to Refs. 14, 4, and 5, the result does not require an 
artificial cutoff of the logarithmic dependence, but takes the 
restriction on the logarithmic growth into account in a natu- 
ral manner. As a result, localization occurs also in a real two- 
well potential, and not only in simplified two-level modeling 
of it. 

The expression for the partition function is found by the 
method of functional integration in imaginary time 
t = - ir. The problem then reduces to the averaging of a 
certain effective partition function, in which the role of the 
energies is played by the quasi-energies of the Schrodinger 
equation with a potential that is periodic in imaginary time. 
The problem is solved for a two-well potential composed of 
pieces of parabolas. We demonstrate the applicability of the 
method to a two-level system, for which it gives the exact 
expression for its partition function. 

2. CHOICE OF MODEL AND BASIC RELATIONS 

In the treatment of Josephson junctions the role of the 
coordinate of the quantum particle is played by the differ- 
ence in the phases of the order parameter across the junction, 
and the thermostat is the electron subsystem. I-' The detailed 
properties of the thermostat turn out to be unimportant, 
since the effective action has a universal form with only one 
constant - the damping constant, which depends on integral 
characteristics of the thermostat. For this reason, we shall 
consider a simple model of the thermostat in the form of an 
infinite set of harmonic oscillators with coordinates y,  (Ref. 
1): 

An important characteristic of the interaction of the particle 
with the thermostat is the spectral density 
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For the case of a particle attached to an infinite elastic string, 
J(w) = ~w at all frequencies. The same approximation for 
the spectral density can be adopted in problems concerning 
Josephson  junction^.'.^ 

The quantity 7 is the damping coefficient that appears 
in the classical limit in the equation of motion 
mx + ~x + V' = 0. We shall assume that V(x) corresponds 
to a quasiclassical symmetric two-well potential. 

The partition function 2 of the multidimensional sys- 
tem ( 1 ) can be expressed in the form of a functional integral, 
over x and over all the yk , of an exponential whose exponent 
contains the classical action (of the imaginary time i/T, 
where T is the temperatureI5) corresponding to the Hamil- 
tonian ( 1 ) . Performing the Gaussian integration over all the 
yk , we obtain' 

The expression in the angular brackets in formula (5)  can be 
written in terms of the one-particle Green functionI5 of 
imaginary time: 

This function can be represented in the form 

where Yn (x, r) is an eigenfunction of the Schrodinger equa- 
tion 

The function v ( x ,  T) satisfies the same equation, but with a 
change of sign of the time derivative. 

Since the potential in Eq. ( 11 ) is, according to formula 
(8),  a periodic function of 7, the eigenfunctions Yn (x, r) 
can be written in the form16 

where the effective action 
Y n  ( x ,  T )  = e - c n ' ~ n ( x l  T),  u n ( x ,  T + I / T )  =u, ( x ,  T). ( 12) 

The quantities E,  are the quasi-energies of the Schrodinger 
equation ( 11 ) with a periodic potential. The set of functions 
Yn (x, T)  is analogous to the eigenfunctions for a time-inde- 
pendent potential. 

When the formulas (9)  and ( 10) are taken into account 
the partition function takes the form 

Here X(T)  is a periodic function with period 1/T. 
In the following we shall leave aside the contribution of 

the harmonic oscillators to the partition function 2 and as- 
sume that the partition function is simply the quantity Z. Thus, the proposed method for calculating the partition 

function is as follows: For an arbitrary periodic electric field 
P (7) (8 )  find the quasi-energies E ,  [ P ] of the Schrodinger 
equation ( 1 1 ) and then, in formula ( 13), perform the aver- 
aging using the rule (6),  (7).  

Although, at first sight, this procedure does not appear 
to be more constructive than other methods, nevertheless it 
makes it possible to reduce the partition function (3b) sys- 
tematically and rather simply to the form given below (for- 
mula (40)).  

3. EXPRESSION FOR THE PARTITION FUNCTION IN TERMS 
OFTHE QUASI-ENERGIES 

The second term in formula (4),  quadratic in ax/ar, 
can be reduced to a linear term by the well known procedure 
of introducing an additional Gaussian integration over a 
new field (7) that is periodic in T with period 1/T. After 
simple transformations we obtain 

l i T  

4. CASE OF TWO PARABOLIC WELLS 

In this section we shall consider the situation when each 
part of the two-well potential is part of a parabola: 

V ( x )  ='l,mS22(x-'l,d sgn x)'. (14) 
where the angular brackets denote averaging 

The advantage of choosing such a potential is that within 
each well Eq. ( 11 ) can be solved exactly.16 The problem is 
then to match the solutions. 

Using formulas from Ref. 16, we write the solution of 
Eq. ( 11 ) with the potential ( 14) to the left and right of the 
point x = 0: 

with the functional 

The formulas (5 1 4 7 )  are easily obtained from (3b) and (4)  
by expanding in Fourier harmonics: 
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where the functions y: can be determined from the match- 
ing conditions and we have introduced the new notation 

The function { ( T )  is connected with the electric field 29 ( 7 )  

by the relation 

The integration over v in formula ( 15) must be under- 
stood as summation over the Matsubara frequencies w,  and 
the quasi-energies E, : 

However, for convenience we shall keep the integral nota- 
tion. In formula ( 15) we have used the parabolic cylinder 
functions,17 with asymptotic forms 

Matching of the function \V(z, T )  and its derivative 
d\V/dz at the point z = 0  gives 

The formulas ( 2 0 )  are exact. At this stage we must use 
the quasiclassicality condition, which is expressed in the in- 
equality z,,s 1 and in the smallness of the time derivative in 
comparison with R. In addition, we take into account only 
the ground state of the unperturbed harmonic oscillator, 
which is valid for TgR.  In this approximation, in formula 
(201, we must discard the terms with d g / d r  and use for the 
parabolic cylinder functions their asymptotic expre~sion. '~  
Then the functions 

where T ( x )  is the gamma-function, satisfy the equations 

where A  is the amount by which the levels move apart in the 
absence of interaction with the thermostat: 

Since { ( T )  is a periodic function, the solutions of Eqs. ( 2 2 )  
will have the form 

g,, 2 - ( ~ ) = e - E t 2 ' F i ,  (24) 

whereF,,, ( T  + 1 / T  ) = F,,, (7) .  Thequantitiese,,, are the 
quasi-energies corresponding to the Schrodinger equation 
( 1 1 )  when only the lowest split level is taken into account. 
Using this, we write the partition function ( 13) in the form 

The averaging in this formula 

is performed with the functional ( 7 ) ,  in which the electric 
field must be expressed in terms of { ( T )  in accordance with 
formula ( 17) : 

"' ) ID sin n~ ( r - r , )  1 
0 

Here we have introduced the dimensionless quantity 

which is important for what follows. 
Using the harmonic expansion 

5 ( 7 )  = ( 2 T )  (to1 EOJ wn'T+gnU sin o.r), ( 2 9 )  

we can represent the functional Q ( 2 7 )  in the form 

We note that the specific form of the parabolic wells affects 
only the form of the averaging functional Q-namely, the 
terms '6 /dr3  in formula ( 2 7 ) .  

Thus, at low temperatures T g  R, in the quasiclassical 
approximation the problem of calculating the partition func- 
tion reduces to averaging, by the rules ( 2 6 ) ,  ( 2 7 ) ,  of the 
expression ( 2 5 ) ,  in which the quasi-energies E,,, are ob- 
tained from the solution of Eqs. ( 2 2 )  with the periodic func- 
tion ( 2 9 ) .  

5. SPLITTING OF THE LEVELS FOR SMALL FRICTION a< 1 

In this section we shall find the amount by which the 
levels move apart in the presence of weak interaction with 
the thermostat ( a  g 1 ). Here we are concerned with the two 
lowest-energy states of the entire quantum system ( I ) ,  of 
which one is even and the other is odd in x in the limit of 
small a. For a = 0 ,  as follows from formula ( 2 7 ) ,  6 = 0, and 
from the system ( 2 2 )  it follows that the quasi-energies 

= + A/2,  in agreement with the splitting A of the levels 
in the absence of friction. We shall find the linear (in a )  
correction to this splitting. 

The system ( 2 2 )  can be reduced to the equation 

d2g- dE dg- A2 - - i -- - - g-=O. 
d ~ '  d r  d r  4 
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We shall seek the function g-  in the form 

where a(r + 1 / T  ) = a ( r )  is a periodic function. Then, 

The quasi-energy E is determined by this equation and the 
periodicity of a( r ) ,  and this is true for any value of a. The 
calculation is particularly simple in the limit a 4 1 .  To sec- 
ond order of perturbation theory in 6 we have from Eq. ( 3 3 )  

The bar denotes time averaging. Taking the expansion ( 2 9 )  
into account, from this we easily find 

Performing the Gaussian integration in formula ( 2 5 )  
with the aid of the relations ( 2 6 )  and ( 3 0 ) ,  we find that 
Z = 2  cosh ( A / 2 T  ) , where the renormalized splitting of the 
levels is 

We note that, with logarithmic accuracy this formula is the 
well known result for the renormalized splitting of the levels 
in a two-well potential of general f ~ r m . ~ . ' ~  The formula 
( 3 6 ) ,  which includes a number together with a large loga- 
rithm, is valid with this accuracy only for the potential ( 14) 
constructed from parabolic wells. 

6. EXPRESSION FOR THE PARTIT ION FUNCTION 

In this section we shall obtain for the partition function 
the expression that follows from the solution of Eqs. ( 2 2 )  
with subsequent averaging. Iteration of the system ( 2 2 )  in 
the parameter A  gives 

The constant Cappears as a coefficient in all the terms odd in 
A and fixes the value of d g p / a r  at T = 0 .  The solution ( 3 7 )  
satisfies the condition g-  = 1 at r = 0 .  In the analogous se- 
ries for g+ the constant Cappears as a coefficient of the even 
powers of A. 

We shall find those solutions ( 2 4 )  in which 
F I , ,  ( 0 )  = 1 .  Then, from formula ( 2 5 ) ,  

Since Eq. ( 3 1 )  contains A2, we have & , ( A )  = E ,  ( - A ) .  
Since the Wronskian of Eq. ( 3 1 )  is proportional to 

exp( i<), the relation 

is valid for the solutions ( 2 4 ) .  From this and the periodicity 
in time we conclude that E ,  = - E , .  For these reasons E,  and 
E, are odd functions of A, and inside the averaging symbols 
in ( 3 8 )  is a quantity even in A. It follows from this that the 

conditions that g ,  ( 0 )  = 1 and that the quantity g ;  ( 1 /  
T  ) + g; ( 1 / T  ) be even in A  are necessary requirements on 
the solutions g ,  ( 7 ) .  These requirements are satisfied by 
two solutions of the type (37),  with constants Cof opposite 
signs. The sum in ( 3 8 )  will not depend on these constants, 
and we obtain 

The averaging in this formula by the rules ( 2 6 ) ,  ( 2 7 )  re- 
duces to a simple Gaussian integration, especially if we make 
use of the representations ( 2 9 )  and ( 3 0 ) .  As a result we 
obtain 

where the function f ( T )  is determined by the relation 

f (t) =4naT 
I-cos on r  1 + ) 

on=2nnT. ( 4 1 )  
n-I on Q2 

At zero temperature this gives 

Here y is the Euler constant. 
The partition function ( 4 0 )  has the same form as for the 

anisotropic Kondo model.I4 A formula of the same type has 
been obtained for the problem under consideration by the 
instanton technique in Refs. 4  and 5.  In contrast to these 
papers, in formula ( 4 0 )  it is not necessary to introduce an 
artificial cutoff of the logarithmic dependence at small 
times, since this is taken into account automatically thanks 
to the function f ( r )  (41  ). 

A renormalization-group analysis of the partition func- 
tion ( 4 0 )  ~ h o w s ' ~ , ~ , ~  that for a > 1 therenormalized splitting 

of the levels vanishes, corresponding to localization of the 
particle in one of the wells at zero temperature. The equality 

= 0  corresponds, in the language of the Kondo model, to 
the vanishing of that part of the exchange constant which 
gives rise to a spin flip. 

As can be seen from formula ( 4 0 ) ,  the result obtained 
by the method of instantons for small values of a is also valid 
for large values of this parameter, e.g., for a $ 1 ,  provided 
that we write the exact function f ( 7 )  in place of the loga- 
rithm. 

The concrete form ( 4 1 )  off ( T )  obtains only for para- 
bolic wells. The temperature should, in any case, be small in 
comparison with the spacing between the levels in each indi- 
vidual well, i.e., T < n .  
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7. CASE OF A TWO-LEVEL SYSTEM 

In this section we shall trace how the technique devel- 
oped can be applied in the case of a two-level system. 

The problem of the dynamics of a particle in a two-well 
potential is simplified substantially if from the outset, in the 
expansion of the wavefunction of the system in the eigen- 
functions of the Schrodinger equation without the thermos- 
tat, we take into account only the first two states. These 
states correspond to the quasiclassical splitting of the 
ground state of a free particle in the two-well potential. Here 
it is not necessary to assume parabolicity of the wells (for- 
mula ( 14) ), and the results are valid for a potential of gen- 
eral form. 

We turn to Eq. ( 11 ), the solution of which can be repre- 
sented, in accordance with the above account, in the form 

Here TI, ,  ( x )  are the exact wave functions of the ground 
state and the state split off from it in a symmetric two-well 
potential V(x). Substituting the solution (42) into Eq. ( 11 ) 
and using the orthogonality properties of the functions 
q,,, (x),  we obtain an equation for the spinor @ ( r )  with 
components p, and p,: 

From this equation we must determine the two quasi- 
energies, substitute them into formula (25 ), and average us- 
ing the rules ( 6 ) ,  ( 7 ) .  If in this situation we introduce, as 
above, the periodic quantity l ( r )  by means of the formula 
36 = gd, then Eqs. (22), which give the same values of 
the quasi-energies as Eq. (43), will hold for the functions 
g+ = exp( f i6/2)p1,, .  

In an analogous way the Hamiltonian ( 1 ) in the two- 
level approximation is reduced to the form 

and is called a spin-boson Hamiltonian." 
To obtain the formula (44) it is necessary to use the 

expansion (42),  in which the functions p ,,, also depend on 
all the phonon coordinates. Equation (43) is related to the 
Hamiltonian (44) to the same extent that Eq. ( 11 ) is related 
to the Hamiltonian ( 1 ) . 

The spin-boson Hamiltonian (44) serves as a good 
model for many problems-in particular, for the analysis of 
the hopping motion of a small polaron.13 As shown in this 
paper, the exact partition function corresponding to the 
Hamiltonian (44) is expressed by formula (40). 

We see that the formulation of the problem of the dy- 
namics of a two-level system interacting with a thermostat is 
equivalent to specifying either the Hamiltonian (44) or the 
simulating equation (43) with the corresponding averaging 
rules. By specifying the Hamiltonian (44) we thereby also 
specify the spectral function J (  ) (2 ) . The expression (40) 
for the partition function in this case follows exactly from 

this, in contrast to the situation in the preceding section, 
when we had to neglect small parameters. To calculate the 
function f (7 )  appearing in formula (40) we note that, for an 
arbitrary spectral density, in the expression ( 4 )  for the ac- 
tion it is necessary to make the formal substitution' 

The kernel Q in the functional average (6 )  also changes cor- 
respondingly. As a result, after averaging the expression 
(39) we obtain 

m 

d2 J(o) ch(o12T) - ch(oI2T-o I T I )  
I (T )=-  3t J- , o2 sh (o/2T) do. (46) 

Thus, we see that for a two-level system the method 
described in the preceding sections, like that in Ref. 13, leads 
to an exact expression (40) for the partition function, with 
the function f (r)  given by formula (46).  The requirement 
that the density J ( w )  have the linear dependence J = yw at 
small frequencies leads to logarithmic behavior off (7) at 
large times, and, consequently, to localization for a > 1. In 
contrast to the situation in the preceding section, for a two- 
level system the assumption that J ( w )  is linear at all fre- 
quencies does not give a cutoff of the function f (7) at small 
times. Therefore, in the case under consideration J ( w )  
should increase more slowly than w at large frequencies." 

We shall consider the term of order 2n in the series (40) 
for the partition function. For n = 2 and for large values of 
ri - r, the exponential factor can be represented in the form 

For large a in the limit of low T, the corresponding term 
in formula (40) is proportional to T -*. This occurs because 
the integrals over 7, - 7, and 7, - r, are concentrated at the 
inverse cutoff frequency, while the remaining two integra- 
tions occur at times T -', since with this choice of scales the 
factor in the curly brackets in formula (47) becomes equal to 
unity. 

An arbitrary term of order 2n in formula (40) is pro- 
portional to T-  " for the same reason, since all neighboring 
instantons ( r l  - r 2 ) ,  (r3 - r4 ) ,  ( r 5  - r e ) ,  . . . turnout to be 
bound in pairs, and the motion of each pair will be free. As a 
result, the partition function (40) acquires the form 

where, when formula (46) is taken into account, 
m OD 

The partition function (48) Z = 2exp( - SE /T) ,  and 
the quantity SE is a correction to the ground-state energy. 
The same result for this correction is obtained in second or- 
der of perturbation theory in A for the Hamiltonian (44).  
The applicability of perturbation theory in the magnitude of 
the bare separation of the levels is associated with a situation 
of the zero-charge type, since the renormalized & is equal to 
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zero. Allowance for four-instanton correlations corresponds 
to a term of order A4 in SE, and so on. 

The analysis of the common shift 6E of the levels is not 
fundamental in the phenomenon of localization. Neverthe- 
less, the arguments given make it possible to interpret the 
transition to the localized state as the formation, from a plas- 
ma of instantons, of a gas of their neutral atoms, which inter- 
act weakly with each other. 

In kinetic problems as well, the applicability of pertur- 
bation theory in the bare quantity A for a > 1 makes it possi- 
ble to confine oneself to second order in A in the calculation 
of the relaxation rate r. The probability of finding the parti- 
cle in the left (right) well is 

Wl.z=1/2 (If e-rt), 

where, for a$ 1,",12 

8. CONCLUSION 

The partition function of a system consisting of a parti- 
cle interacting with a thermostat reduces to the same form as 
in the anisotropic Kondo model. The properties of this mod- 
el are well known and tell us that for a sufficiently strong 
interaction with the thermostat ( a  > 1 ) the particle will be 
found to be localized in one of the wells at zero temperature. 
This corresponds to a relaxation rate I? cc T2" - ' . 

It is essential for this conclusion that the spectral den- 
sity J ( w  ) be linear in the frequency at small w.  This property 
is inherent in models describing the quantum properties of 
Josephson junctions. Such a phenomenon as localization is 
qualitatively reflected in the quantum dynamics of the phase 
difference at a low-capacitance Josephson junction." 
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