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We study the phase diagram of a one dimensional crystal in the field of two potentials with 
incommensurate periods. We show that in the case of sufficiently weak potentials, the dependence 
of the period on the chemical potential has the form of a "devil's staircase." 

1. Incommensurate structures are widespread experi- 
mental systems. They are found in three-dimensional (ferro- 
electrics, magnetic materials), two-dimensional (adsorbed 
films, reconstructed surfaces) and quasi-one-dimensional 
systems. The simplest model of incommensurate sturcture is 
the Frenkel-Kontorova model. In this model one studies a 
one-dimensional chain of atoms with period c in a potential 
with period b. The ground state has been extensively stud- 
ied.' A natural extension of this model is the case of two 
potentials with incommensurate periods. If the periods of 
these two potentials were commensurate, the problem could 
be reduced to a model analogous to that of Frenkel and Kon- 
torova.' For incommensurate periods, this is not the case. 
Before formulating a more concrete model let us look at a 
possible experimental realization. 

The Frenkel-Kontorova model allows the description 
of the ground state of many experimental systems with un- 
iaxial symmetry, in particular those known as uniaxial in- 
commensurate two-dimensional crystals in adsorbed films. 
In these systems the surface of the substrate crystal is strong- 
ly anisotropic (the atomic surface is a system of furrows.) 
The presence of a preferred axis (which we call X) means 
that we consider displacements of atoms of the two-dimen- 
sional structure only in the direction X (along the furrows). 
In this case the period c is the period of the lattice of adatoms 
along X, while the period b of the potential is that of the 
substrate crystal in the same direction. In such systems we 
can realize experimentally also the situation with two in- 
commensurate potentials. If the interaction between the 
adatoms is large compared with the potential variation of the 
substrate, the adatom lattice will be weakly deformed even 
for small differences between b and c .  Examples are alkali 
adsorbates (potassium, cesium) on furrowed ( 1 12) sur- 
faces of tungsten and molybdenum. One can suppose that 
such an adsorbed system is a potential contour with pre- 
ferred axis X for a lattice of adatoms of another kind, weakly 
interacting with each other. As a second adsorbate one could 
use noble gases. If the periods b and c are incommensurate, 
the description of the ground state of such a system (which 
depends only on the coordinate X) encounters the problem 
of a one-dimensional crystal in the field of two potentials 
with incommensurate periods. 

2. Let us examine such a one-dimensional crystal with 
period a in the field of two potentials with incommensurate 
periods b and c (c > 6).  We will assume that all three periods 
are close together. For simplicity, we choose the functional 
form of both potentials to be the same. We will study the 
problem in the continuum approximation and write the po- 
tential energy of the crystal in the form: 

Here u is the displacement of the atoms of the crystal at the 
point X. It is convenient to convert to the variables 

We shall use below both the original variables and the vari- 
ables (2).  The expression ( 1 ) for the energy takes the form 

where k = b /c and S = (a - b)/(c  - b). The equilibrium 
equation takes the form 

For v, = 0 Eqs. (3)  and (4)  describe the Frenkel-Kontor- 
ova model. Let us recall some of its properties. We note that 
the condition for the applicability of the continuum approxi- 
mation is the smallness of the potential relief u,,, &A. For 
v, = 0, Eq. (4) is integrable. There are two types of solution 
corresponding to the commensurate (p  = 0) and incom- 
mensurate ( p = 2 n x / e + p l ( x ) ,  p , ( x +  I) = p , ( x ) )  
structures. Near the transition between them, the latter is a 
lattice of solitons, of width I, - b(A / u l  ) ' I 2 ,  separating do- 
mains of the commensurate phase. The soliton corresponds 
to a change of the phase p by a period of the function f ( p ) .  
The period I of the soliton lattice changes continuously with 
change of a. For large 1 /I,, this dependence has the form I / 
I ,  a l/ln( la - a, I/a, ), where a, corresponds to the transi- 
tion point. For a, we have a, - b- b(u,//l) ' I 2  - b */lo. For 
1-1, the incommensurate phase will be weakly modulated 
by the substrate potential. 

If u,#O, Eq. (3)  is not integrable. An equation analo- 
gous to (3) with f (p) = - cos p arises in the problem of 
the motion of a classical particle in the field of two waves. 
This problem was studied by Escande and D e ~ e i l . ~  A de- 
scription of the results can also be found in the book of Lich- 
tenberg and Liberman.4 Although problems of the motion of 
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a particle and of the ground state of a one-dimensional crys- 
tal are described by the same equation (4) ,  they have some 
differences. The first is that the Hamiltonian of the mechan- 
ics problem corresponds to the Lagrangian of the crystal. 
More significant, however, is the requirement that the crys- 
tal energy ( 1 ) be a minimum. This leads to the fact that the 
ground state of the crystal is described by only a small subset 
of the solutions of Eq. (4).  Unfortunately, because of the 
nonintegrability of (3) ,  it is impossible to obtain a full de- 
scription of all the possible phases of the problem at hand. 
Nevertheless, it is possible to obtain information about the 
phase diagram for some limiting cases. The transition to glo- 
bal stochasticity in (4)  was studied by Escande and De- 
~ e i l . ~ . ~  For y, - y, the critical value is y, S 1. Thus we will 
consider only the limiting case when y, and y2 are small 
(weak potential). 

3. It is convenient to study the weak-potential problem 
for y, z y,. The smallness of the potential means that 
c - b%b2/1,,. For simplicity we will assume that 
f (p) = - cos p. For a close to b, two regimes can be distin- 
guished: 6 y:" (a  - b & b 2/1,,)-region I and 
y;/2 S S & 1 ( b ,/I,, 5 a - b &c - b) -region 11. Since the 
threshold for the formation of solitons at y, = 0 is 
6, = 4y;/*/a(a, - b = (4/a)b(v,/A ' I 2 ) )  , in region I we 
can assume that p is small. Keeping only the linear term in 
the expansion of the first term on the right of Eq. (4),  we 
obtain 

F(cp, t )  =kyz(cos kcp sin kt+sin kcp cos kt). ( 5 )  

We use an approach analogous to that used for the analysis 
of the oscillation of a mathematical pendulum under the ac- 
tion of a rapid driving force.5 The expression for p now takes 
the form 

cp=- (yz/k)sin kt. (6)  

The period of (6)  (in the usual units) is ca/(c - b) and it 
varies continuously with a. It is not difficult to verify that the 
solution (6)  does not have a continuous translation group. It 
is also easy to compute the energy of the solution (6)  by 
using the results of the pendulum problem. We obtain 

E=yZz+6"2. ( 7 )  

We now consider the region 11, where 
6 2 y1/2(a - b k b ,/1,,) . In this case solitons can be genera- 
ted. Let us estimate the effect of a rapidly oscillating force on 
the energy of formation of a soliton and the structure of the 
soliton lattice. For the estimate of the energy we insert the 
one-soliton solution 

in expression (3)  for the energy. The first two terms give a 
constant independent of the position to of the center of the 
soliton. The third term in (3 )  gives an oscillatory contribu- 
tion 

b(c-b) -- hy2 j dt cos k(p-t) 
2na 

- 26 (c- b) y, exp (n/2v "') - - - - L  cos kt, 
a y i  sh(nlyl'") 

NN 
2b(c-b) v, 

h-exp ( -- 21,,2) cos kt,=v, cos kt.. (9) 
a V I  

Thus, with power-law accuracy, the energy of a soliton is not 
changed relative to its value in the Frenkel-Kontorova mod- 
el, but now it does depend periodically on the position of the 
soliton. This pinning potential is analogous to the Peierls 
relief of a dislocation. Its period is equal to 2r/k (in usual 
units ca/(c - b) ). We recall that the Peierls relief arises also 
in the Frenkel-Kontorova model but only when account is 
taken of the discreteness of the lattice. In this case its period 
is equal to that of the substrate. Near the soliton creation 
threshold, when the distance between the solitons is large, 
the pinning potential v, will predominate over the repulsion 
of the solitons. There arises the problem of a one-dimension- 
a1 lattice gas with repulsion. It was investigated by Burkov 
and Sinai6 and by Bak and Bruijnsma.' For the discrete 
Frenkel-Kontorova model, an analogous problem was in- 
vestigated by Pokrov~ky.~ For large distances between soli- 
tons an infinite sequence of phases is produced with periods 
commensurate with the pinning potential. Such a sequence 
was named a "devil's staircase." If the ratio 9 of the number 
of solitons to the number of minima of the pinning potential 
is 9 = p/q (with integer p and q), the range of A6 in which 
this structure is stable is7 

dZJ qac 
A 6 m ~  --;[ dx ---I p(c-b) , 

where J ( x )  is the interaction potential between solitons. 
With decreasing distance between solitons, this interaction 
increases. Let us estimate the characteristic distance t,, at 
which this interaction becomes of the order of the amplitude 
of the Peierls relief. If the interaction falls off exponentially 
with distance, then 

y,'" exp (-yl" ' t i)- (y,lyl)exp(-n/2yi'"), (1 1) 

tl-lly,. (12) 

Since the soliton size is about y; there is a range of values 
y; ' I 2  < t < y, ' in which, on the one hand, the solitons can 
be considered point-like, while on the other the Peierls relief 
is weak compared with their interaction. Thus we have come 
again to the problem of a chain with a weak potential relief. 
For some t, - t ,  the states of a lattice with incommensurate 
periods become energetically favorable. Such lattices have a 
continuous translation group. I x8  

Let us return to Eq. (4) ,  assuming as before that y, and 
y, are small, and regarding the term with y, as a perturba- 
tion. Let the period of the unperturbed soliton (for y, = 0) 
be 7. The perturbation is also a periodic function. The Poin- 
care-Birkhoff and Kolmogorov-Arnold-Moser theorems 
then guarantee the existence of solutions of Eq. 4 for y, = 0, 
which are stable with respect to such a pert~rbation,'.~ both 
when (kr/2a) is rational and when it is irrational. For an 
irrational ratio of the periods, an arbitrary translation does 
not change the total energy of the chain, i.e., the translation 
group is continuous. 

In the investigation of the ground state for 
a - b& ( C  - b), we have considered the term with y, as a 
perturbation. For values a such that c - a c - b, we should 
consider the term with y ,  as a perturbation. Obviously, the 
picture of the ground state will be analogous to that pre- 
viously considered. 

Thus, for y,,  y, & 1, near a = b and a = c there are single 
phase regions of width -b 2/10, in which the displacements 
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of the atoms from the minima of the potentials with periods b 
and c respectively are small and are determined by Eq. ( 6 ) .  
Next comes a transition to regimes in which there are infinite 
sequences of phases with periods commensurate with the 
periods of the modulation of the potential (ca/(c - b) and 
ba/(c - b)) .  All these lattices have discrete translation 
groups. Finally, at large deviations of a from b (or from c),  
besides the solutions with discrete translation groups there 
appear solutions with continuous translation groups, whose 
period is incommensurate with the period of the modulation 
of the potential. 

Now we turn to the phase diagram for T #O. If the form 
of the ground state does not depend on the dimensionality of 
the system, the phase diagrams at T # O  are different for sys- 
tems of different dimensionality. We will discuss only two- 
dimensional systems. In the case of uniaxial systems (e.g., 
adsorbed films) the solitons are linear objects extending in 
the Y direction.' At finite temperatures, fluctuations lead to 
depinning of the structures with discrete translational sym- 
metry9.I0 and to restoration of the continuous translation 
group. The transition temperature is determined by the kink 
energy E, in the Peierls relief up, E, - [ ( A u ,  ) ' l2u, ] 'I2ca/ 
(C - b), and by the interaction between the solitons. For the 
simplest lattice with period I = nca/(c - b) (n is an in- 

teger), the depinning temperature is determined by the 
expression 

where J ( I )  is the interaction energy between two ~o l i t ons .~ . ' ~  
A more detailed description of the phase diagram of lattices 
of solitons in the presence of pinning can be found in Ref. 
(10). 

The author is grateful to V. L. Pokrovskii for a discus- 
sion. 
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