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It is shown that additional vertices containing higher powers [ (dQ) 2", n>2]  of the gradients of 
the field Q, which appear in the microscopic derivation of the Q-functional of the nonlinear sigma 
model, have a positive anomalous dimensionality proportional to n2 - n. By the same token, 
these vertices turn out to be substantial for sufficiently large n, notwithstanding their negative 
normal dimensionality - 2n + 2. I t  turns out that it is precisely these vertices which determine 
the asymptotic behavior of the distribution function of the mesoscopic fluctuations, as well as the 
long-time asymptotic behavior of the relaxation currents in disordered conductors. In particular, 
allowance for these vertices leads to a change of the variance in the logarithmic normal asymptote 
of the distribution function ofthe conductivity-fluctuations. 

1. INTRODUCTION smallness due to the fact that the unrenormalized value of 

A rigorous approach to the theory of weak localization the charge rn is ~ ~ o ~ o r t i o n a l  to the nth Power of the C0rI-e- 

is based on the use of the nonlinear sigma-model, the func- spending parameter. 
tional of which is of the form We investigate in the present paper the role of the ver- 

1 tices that arise in the derivation of the effective functional as 
F=-J t r(aQ)"r, ( 1 ) a result of expansion in terms of another hydrodynamic pa- 

& 

where Q is a matrix field of definite symmetry, on which are 
superimposed the geometric constraints Q2 = 1 and 
Tr  Q = 0, while the coupling constant t is inversely propor- 
tional to the conductivity of the considered disordered sys- 
tem. In the framework of this approach, proof was obtained8 
for the one-parameter scaling hypothesis, the Wigner-Dyson 
statistics was obtained9 for energy levels in metallic spheres, 
and a topological description was ~ b t a i n e d ' ~ , "  (with appro- 
priate generalization of the model) of the whole-number 
quantum Hall effect. 

Recently, however, there were raised in the theory of 
weak localization a number of problems that cannot be ade- 
quately treated by the usual sigma model. These include 
problems connected with calculation of various asymptotics 
in disordered conductors, viz., asymtotics of distribution 
functions12 of mesoscopic fluctuations, l 3 . l 4  and of the long- 
time asymptotic of relaxation currents. l 5  To solve such prob- 
lems it was necessary to expand the functional of the sigma 
model and to include in it a number of additional vertices. 
These vertices are similar to those introduced in the analysis 
of the moments of the local density of states. I R  The simplest 
of them can be represented in the form 

@,,=r, 9 tr (hQ)" dr, ( 2 )  

where h is a definite spatially homogeneous matrix. Vertices 
of this type appear in the derivation of an effective field theo- 
ry from an initial microscopic model of noninteracting elec- 
trons in a random potential, as a result of expansion in small 
parameters. For example, to consider the question of current 
relaxationI5 it was necessary to take into account all the ver- 
tices that appe,arL7 upon expansion in terms of the hydrody- 
namic parameter WT ( W  is the frequency and T is the electron 
free path time in elastic collisions). Vertices of this type are 
important because of the unusually rapid (for large n) 
growth of the charges I?, under renormalization-group 
(RG) transformations.I7 This growth compensates for the 

rameter k l  ( k  is the momentum and I = v,r is the mean free 
path). These vertices contain arbitrary powers of the field 
gradient dQ. They have been usually disregarded, since they 
are inessential in the sense of normal dimensionality. We 
shall show below, however, that just as in the case of vertices 
of type ( 2 ) ,  the anomalous dimensionality of the charges at 
these vertices increases unusually rapidly with increase of 
the number of gradients in them. 

I t  turns out that it is precisely the gradient vertices that 
control both the long-time asymptotic of the relaxation pro- 
cesses, and the asymptotic of the distribution functions of 
mesoscopic fluctuations. The point is that renormalization 
of charges at  zero-gradient vertices of type (2 )  cannot, 
strictly speaking, be carried out without allowance for the 
vertices containing high powers of the gradients. Allowance 
for these vertices alters particularly strongly the asyptotics 
of the distribution function of the conductance fluctuations: 
the variance in the logarithmic normal distribution de- 
creases by a factor of two compared with the results obtained 
in Ref. 12 with account taken of only zero-gradient vertices. 

2. RENORMALIZATION OF VERTICES WITH A LARGE 
NUMBER OF GRADIENTS 

The effective Q-functional obtained from the model of 
non-interacting electrons in a random potential contains, be- 
sides the functional ( 1 ) of the usual sigma model, additional 
zero-gradient vertices ( 2 )  and gradient vertices of the form 

Here, just as in ( 1 ) and (2 ) ,  Q is a 2N x 2N quaternion-real 
field ( N i s  the number of replicas, assumed equal to zero in 
the final results), a, are vector indices in d-dimensional 
space, and s,, ,?,, is a tensor symmetric in any pair of indices. 
We shall not describe the procedure of deriving the vertices 
(3 ) ,  which is fully analogous to the corresponding proce- 
dure for the zero-gradient vertices (2 ) .  The unrenorma- 
lized value of the charge at  the vertex (3)  is 
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Z, (0)  a t ,,- ' I  2 n  - ', where the unrenormalized value of the 
coupling constant to- ( T E ~ T )  - I  plays the role of the weak- 
disorder parameter. 

Of course, the derivation gives rise also to vertices that 
contain higher field derivatives d'Q. It can be shown, how- 
ever, that the most substantial are precisely the vertices ( 3 ) ,  
which contain the maximum possible number of fields Q at a 
specified number ( 2 n )  of derivatives. (The situation is simi- 
lar to the case of zero-gradient vertices, where the most sub- 
stantial turned out to beI2 the vertices containing the maxi- 
mum possible number of fields Q for a given number of 
"external fields" h . )  We confine ourselves to consideration 
of the vertices (3 )  in a space of dimensionality d = 2. 

To carry out a renormalization-group ( R G )  analysis of 
the vertices (3  ) for arbitrary n, it is necessary to transform to 
conformal coordinates: 

As a result of this transformation, the vertex ( 3 )  goes over 
into a sum of all possible vertices of the type 
Tr (a,, Q...a, ,2, ,  Q), in which the subscripts p, take on values 
+ or - , and the number of derivatives d +  coincides with 
the number 8-. 

The functional (3 )  is supplementary, and it must be 
renormalized jointly with the functional ( 1 ) of the sigma 
model. The procedure of RG transformations of gradient 
vertices is in the main similar to the corresponding proce- 
dureI2," for zero-gradient vertices of type ( 2 ) ,  although it 
does turn out to be noticeably more cumbersome. We use the 
usual scheme2 of resolving the fields Q into "fast" and 
"slow" components: 

where Q, is the "fast" component of the field Q, and satisfies 
the same conditions (Q: = 1, Tr  QO = 0 )  as Q, while U +  
and Uare unitary slow fields that determine the slow compo- 
nent of the field Q. It is convenient in what follows to express 
dQ in terms of the gauge field A: 

The RG transformation procedure consists now of averag- 
ing over the fast components of the field Q,. The averaging is 
carried out with a weight exp( - F, ), where F, is that part 
of the vertex ( 1 ) which contains only fast variables. Renora- 
lization of any additional gradient vertex gives rise to the 
diagrams shown in the figure. We note that the renormaliza- 
tion of zero-gradient vertices of type ( 2 )  is described by the 
one diagram a only. The solid lines on the diagrams corre- 
spond to diffusion propagators t /q2, where A1 - ' < q < 1 - I ,  

0 < A  < 1, q is the fast momentum in terms of which the inte- 
gration is carried out in R G  transformations, and R is a scale 
factor. A square denotes a renormalized vertex containing 
2n > 2 gradients of the field Q, while a circle denotes the part 
of the vertices ( 1 ) containing both fast and slow variables. 
The power of q inside a square or a circle indicates the num- 
ber of gradients of the fast variables. Diagrams a-d are obvi- 
ously logarithmic for d - 2. Diagram e differs from zero 
only after one of the propagators is expanded in terms of a 
slow momentum. It becomes then logarithmic and acquires 
derivatives of the gauge field in the form of the combination 

FIG. 1. 

d,,A,, - d,,A,, . It follows from the definition (6 )  that the 
field A satisfies the pure calibration condition 

a,,Av-&A,-i[A,, A,] =O, ( 7 )  

so that these combinations only cancel out the field commu- 
tators [ A , ,  A,, ] that appear in other diagrams. 

In the one-loop approximation, as can be seen from the 
diagrams, there are separated in each renormalized vertex 
two fast components ofthe field Q. It is convenient to sum all 
the diagrams, fixing at first in each vertex a pair of fields 
d,, Q, d, Q, from which are separated two fast components. 
Wejesignate the operator of this partial R G  transformation 
by R,,,. . We represent the complete RC operator in the form 

where the summation is carried out over all the selections of 
pairs d,,,Q, atlIaQ in the renormalized vertex. The action of 
the operator R,,,, on the gradient vertex Tr(d,, QCd,. QD), 
where C, D = 11, a,,. .. ,. Q, depends on whether each of the 
matrices C and D contains an even or odd number of field 
gradients dQ. In the case when this number is odd we obtain 

If both matrices C and D contain an even number of dQ, we 
have 
,. 1 

R,, ~r (d,QCd,QD) = - t r  (6,, -, (d,,QCg,QD++ d,QCa,,QD+) 
2 

- avQa,Q{c, D+I 1 

Both equations are given here in the replica limit N = 0. 
Note that Eqs. (9 )  and ( 10) are applicable only to renormal- 
ization of the supplementary vertices. One cannot obtain a 
renormalization of the vertex ( 1 )  by putting in ( 1 )  
C = D = 1, since its renormalization is described only by 
diagrams a and b. The diagrams c-e, in which the renormal- 
ized vertex contains two gradients from the fast component 

1442 Sov. Phys. JETP 68 (I), July 1988 Kravtsov et aL 1442 



of the field, do not arise in this case, since the corresponding 
part of the vertex ( 1 ) is a zeroth-approximation functional. 

Equations (9)  and ( 10) show that a functional contain- 
ing only the supplementary vertex (3 )  is not closed with 
respect to R G  transformations. Firstly, the vector structure 
of the initial equation is not conserved, and secondly, ver- 
tices appear containing products of matrix traces. All the 
additional vertices generated by R G  transformations must 
also be renormalized, assuming the unrenormalized values 
of the corresponding charges to be zero. In this case, if two 
fast fields are chosen in the one-loop calculations unger the 
sign of one matrix trace, the action of the operator R,,,, on 
the corresponding vertex is described as before by Eqs. ( 9 )  
and ( 10). The two fast fields can be chosen also from diger- 
ent matrix traces. In that case the action of the operator R,,,. 
is described by the equation 

-- - '" -' ttr [ a,QapQ (C+C+) (D+D+) 
2 

Since the trace of an odd number of dQ is equal to zero, the 
matrices C and D can contain here only an odd number of 
dQ. Equations (9)-( 11 ) make it possible to carry out R G  
transformation of an arbitrary gradient vertex. 

3. ANOMALOUS DIMENSIONALITY OF GRADIENT VERTICES 

The complete set of gradient vertices, with respect to 
which the R G  transformations are closed, includes vertices 
with arbitrary placement of the vector indices, containing all 
possible products of matrix traces. The general vertex of this 
type takes the form 

Equation ( 12) contains equal numbers of derivatives d+ and 
a _ .  This circumstance, just as the condition ( 14), is due to 
the fact that all these vertices are generated by R G  transfor- 
mations from the initial vertex ( 3 ) ,  to which there corre- 
sponds in the set ( 12) a combination of vertices with s,, = 1 
ands, = 0 with I f n .  

Equations (9)-( 11 ) make it possible to determine thz 
action of the complete renormalization-group operator R 
( 8 )  on any of the vertices (12) .  The R G  equations for the 
charges on these vertices, the number of which is equal, for 
fixed n, to the number of subdivisions of n into sums of posi- 
tive integers, is of course not independent. The problem con- 
sists therefore of finding the eigenvectors of the operator R,  
i.e., vertex combinations that are self-reproducing under R G  
transformations. Denoting these vectors by I@,,, ) (n is the 
number of the fields aQ and j is the serial number of the 
vector), we write the R G  equation in the form 

Here the first term in the square brackets is the normal di- 
mensionality of any of the vertices @, , and the second is the 
anomalous dimensionality of the "vectors" I Qnj ) which 
must be determined. I t  turns out to be significant for vectors 
whose eigenvalues En, are so large that they cancel out the 
negative normal dimensionality, the smallness of the cou- 
pling constant notwithstanding. I t  is convenient to represent 
the charges at all the supplementary vertices in the form 

where the scale and dimensional factors are explicitly sepa- 
rated. Using next the Gell-Mann-Low equation for the cou- 
pling constant i- t  / 1 6 ~  of the sigma model ( 1 ) I-' 

we rewrite the R G  equations for the charges, which follow 
from ( 15 ) , in the form 

where u = l n ( t / t o ) ,  and to and t are respectively the un- 
renormalized values of the coupling constant and of those 
renormalized in accordance with ( 17). 

To  f i ~ d  E,, it is necessary to classify the action of the 
operator R in the basis ( 12). This action admits of the fol- 
lowing illustrative representation. We depict the trace of the 
product of the matrices d+Q in the form of a ring of black 
and white spheres. We set an assembly of such rings in corre- 
spondence with vertex ( 12).  The action of the operator R 
reduces then to a sum of operations of three types: a )  inver- 
sion (reversal of the order in which the spheres follow one 
another) of a definite section of one of the rings; b )  separa- 
tion of one ring into two; c )  joining together two rings into 
one. Operation a )  reduces, obviously, to permutation of the 
fields d +  Q. Operations b )  and c )  are also operations of a 
permutation group, since they correspond to permutation of 
matrix indices in some pair of fields dQ. By the same token, 
the problem of diagonalizing the operator R in the basis ( 12) 
reduces to expansion of some representation of a group of 
permutations into irreducible ones. Only the largest of the 
eigenvalues ( 18) is significant for physical applications. Just 
this eigenvalue determines the anomalous dimensionality of 
the supplementary gradient vertices. It suffices therefore to 
find only the eigenvector corresponding to the largest eigen- 
value. This eigenvector corresponds to the most symmetric 
representation of the permutation group. It is convenient to 
represent it in the form 

The "occupation numbers" s,, satisfy here the condition 
(14),  while p,, is the matrix trace (13) in which the fields 
d+Q and d-Q are in strict alternation: 

cprn=tr[ (d+Qd-Q) nL]. (21) 

Using Eqs. (9)-( 11 ) and obvious combinatorial consider- 
ations, we can express the action of the renormalization- 
group operator R on the vector ( 19) as follows ": 
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Here a,: and a,, are creation and annihilation opera- 
tors acting on the states (20) [the contributions in (22) that 
are cubic in these operators correspond to the operations b)  
and c )  described above] : 

When the inversion operator b :: + , [corresponding to oper- 
ation a )  ] acting on the states (20) serves to eliminate from 
the class of states in which the gradients a+ and d-alternate: 

(The parentheses contain here m and 1 pairs of indices, re- 
spectively.) A direct check shows, however, that when the 
operator (22) acts on the vector ( 19) all the "extra" states 
cancel out and the y c t o r  ( 19) turns out to be the eigenvec- 
tor of the operator R: 

Thus, the largest eigenvalue is E,,, = n2 - n.  Both the initial 
vertex (3 )  and those resulting from the R G  transformation 
of the vertices ( 12) and are needed for further applications 
contain also the vector ( 19) in the expansion in terms of the 
eigenvector of the operator ( 19). Their anomalous dimen- 
sionality, i.e., the growth of the corresponding charges, is 
therefore determined by this largest eigenvalue. 

Unfortunately, the solution obtained does not admit a 
2 + E expansion in the dimensionality of space. The eigen- 
vector ( 19) is made up ofstates ( 2  1 ), which can be naturally 
expressed in the conformal coordinates ( 4 ) ,  i.e., they are 
purely two-dimensional objects. For small n, however, the 
anomalous dimensionality of the vertices (3)  and ( 12) can 
be calculated directly in Cartesian coordinates. For n = 2, 
the eigenvalues depend substantially on E even in the single- 
loop approximation and turn out at E > 0 (including d = 3)  
to be irrational numbers. The feasibility of a group analysis 
of the problem for d > 2 seems therefore doubtful. F o r d  = 1 
the problem admits of an exact solution, but we shall not 
present it here. 

We shall show below how the growth (18) of the 
charges on the supplementrary vertices influences the as- 
ymptote of the distribution function of the mesoscopic fluc- 
tuations and other physical quantities. 

4. GAUGE INVARIANCE IN AN EXTERNAL FIELD AND 
MESOSCOPIC FLUCTUATIONS 

We shall show here how to modify the functional of the 
expanded nonlinear sigma model to calculate the moments 
of the mesoscopic fluctuations of the conductivity. To  derive 
an effective field theory from the initial microscopic model it 
is convenient to introduce a source such that differentiation 
with respect to it yields the conductivity and its mo- 
ments."." This source is a matrix "external field" A'"' con- 
jugate to the electron current and constitutes a matrix in the 
replica indices [the matrix structure of A'"' coincides with 
the structure of the field A in Eq. (6 )  1. On going over to the 

Q-functional it is necessary to carry out, besides the afore- 
mentioned expansion in the hydrodynamic parameters w r  
and kl, also expansion in powers of the source A""' recogniz- 
ing that to calculate the moments of the mesoscopic fluctu- 
ations it is necessary to retain all the powers of A'"' in this 
functional. 

It turns out that the effective functional containing all 
the powers of A'"' is of the form 

where F [Aex'] and a, [Aex'] are obtained from the func- 
t ional~  ( 1)  and (3 )  with the aid of the minimal substitution 

This functional is invariant to the gauge transformations 

The corresponding invariance is inherent in the initial fer- 
mion field theory and is naturally preserved in the derivation 
of the Q functional in all orders in VQ. 

Using the generating functional (25), we obtain the ex- 
pectation value of the nth power of the conductivity of a 
sample with dimensions L2, in the form l 2  

$ SQ exp (- 1 IA~"I) 

5 BQ ~ X P  (-- 1 101) 

In diagram language, (8 ) comprises n current electron 
loops joined by impurity lines in all possible manners. In  
expression (28),  on the other hand, there appear also dia- 
grams that d o  not break up into current loops, and to exclude 
these diagrams it is necessary to expand the matrix structure 
of the fields Q and A'"' and ascribe to them additional in- 
dices (the field A'"' is diagonal in these indices: 
AT' A;"'S, ) . I 2  

We shall use the R G  method to calculate the fluctuation 
moments (28).  It is necessary here to take into account all 
the vertices of type ( 12), which are generated in the renor- 
malization process (the a, Q are also replaced in these ver- 
tices by the covariant derivatives V, Q).  Owing to the special 
matrix structure of the differentiation in (28),  a direct con- 
tribution to (&) is made only by vertices having the struc- 
ture 

These vertices are contained in the gauge-invariant vertices 
( 12) of the form [pa ,  I", which are transformed in the con- 
formal coordinates (4 )  into [p+ - ] ". In Ref. 12 the vertices 
(29) were renormalized without allowance for the contribu- 
tion made by the gradient vertices; the largest eigenvalue in 
the growth rate ( 18) turned out then to equal 2n2 - 3n, i.e., 
larger than the largest eigenvalue (24) obtained by renorma- 
lizing the gradient vertices. With allowance for the contribu- 
tion of the charges of the gradient vertices, the R G  equations 
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for the charges y (29) can be symbolically written in the 
form 

where G and H a r e  definite matrices independent of u. For 
arbitrary relations between the unrenormalized values of the 
charges y and z, the renormalization of y would be deter- 
mined both by the eigenvalues of the matrix G and by the 
induced solutions proportional to the charges z. The gauge 
invariance of the functional (25), however, connects the un- 
renormalized values of the charges y and z and ensures their 
proportionality in the course of renormalization. Therefore 
no eigensolutions (30) can appear: their coefficients must 
vanish. 

Thus, the growth of the charges yn and hence the u- 
dependence of the moments of the mesoscopic fluctuations 
(on) ,  is determined by the largest eigenvalue (24) of the 
problem of gradient vertices: at large n we get (an  ) 
cc exp(un2) and not exp(2unz), as obtained in Ref. 12 with 
account taken of only the eigensolutions (30). This means 
that the variance 4u must be replaced by 2u in the logarith- 
mically normal asymptote of the distribution function of the 
mesoscopic fluctuations of the conductivity. l 2  

It can be shown that the gradient vertices determine 
also the behavior of the high moments (and consequently 
also the asymptotes of the distribution functions) of meso- 
scopic fluctuations of both the density of states1* and the 
local density of states (the "participation ratio," Ref. 16). 
The renormalization of the charges on the corresponding 
vertices can also be symbolically represented in the form 
(30). In these cases, however, there is no gauge connection 
between the charges y and z, so that both natural and in- 
duced solutions appear. Although the largest eigenvalues of 
the charges at the zero-gradient vertices coincide in these 
cases with En, = n2 - n, the growth of the fluctuation mo- 
ments is determined nonetheless by the induced solution, 
which turns out to be proportional to exp(un2). A similar 
mechanism of the influence of the gradient vertices on the 
long-time asymptote of the relaxation currents is described 
in detail in Ref. 17. We note, however, that in all these cases 
the only varying contribution in the growth exponent ( 18) is 
the one linear in u, and this leads only to a change of the pre- 
exponential factor in the corresponding logarithmically nor- 
mal asymptotic expressions, in contrast to the conductivity- 
fluctuations case, considered in the present section, in which 
the argument of the exponential changes. 

We note in conclusion the possible existence of other 
physical situations in which account must be taken of the 
supplementary gradient vertices considered here. The con- 
tribution of such vertices can turn out to be particularly im- 
portant in the strong-localization region, since their growth 
( 18) is determined by the quantity u = In ( t  /to ), which in- 
creases when this region is approached. 

The authors are deeply grateful to B. L. Al'tshuler for 
numerous discussions of the work, and also to P. B. Wieg- 
mann and D. E. Khmel'nitskiy for valuable remarks in con- 
nection with gauge invariance. 

"The operator takes the form (22) only for action on states of the form 
(20) and (2 1 ), in which the fields d+Q and d- Q alternate. We do not 
pres$nt here the more complicated equations for the action of the opera- 
tor R on states with arbitrary alternations of d+Q and a-Q, since they 
are not needed to determine the largest eigenvalue . 
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