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The exact solution of the quantum one-dimensional Z,,, -invariant model corresponding to the 
two-dimensional statistical 2, -model near the critical point is constructed. The two-particle S- 
matrix of the theory coincides with that found previously by Koberle and Swieca [Phys. Lett. 
86B, 209 ( 1979) ] from phenomenological considerations. 

1. INTRODUCTION 

In recent years enormous advances have been achieved 
in our understanding of the behavior of two-dimensional sta- 
tistical models at a second-order transition point. Conformal 
field theory, the principles of which were worked out by Be- 
lavin, Polyakov, and Zamolodchikov, ' makes it possible, in 
principle, to calculate all the correlation functions at the 
critical point. Away from the critical point, on the other 
hand, the results are far more modest, although there are a 
number of publications devoted to the correlation functions 
of the Ising model away from the critical point (see, e.g., 
Refs. 2 and 3). However, it is not clear how to extend the 
results of these papers to other models. For ( 1 + 1 )-dimen- 
sional quantum integrable theories there is another ap- 
proach to the calculation of correlators, associated with the 
construction and solution of the quantum Gel'fand-Levitan- 
Marchenko (GLM) equation. For example, the form fac- 
tors for the sine-Gordon model have been calculated in the 
framework of this formalism.' These form factors turned out 
to be rather cumbersome, and a comprehensible expression 
for the Green function in this case has still not been obtained. 

In the present paper we propose an exact solution of 
models for which the form factors have the simplest possible 
form. These are the ( 1 + 1 )-dimensional integrable Z, -in- 
variant models with a mass term. Their correlators coincide 
with those of the two-dimensional 2,-invariant statistical 
models near the critical point. 

Conformal field theory possessing Z,  -invariance has 
been described by Zamolodchikov and fa tee^.^ 

The basic idea of our work rests on the fact that the 
operators of the Z,-model at the critical point can be ex- 
pressed in terms of the operators of the Wess-Zumino-Novi- 
kov-Witten (WZNW) model6.' and exponentials of the sca- 
lar field. A description of these models is given in Sec. 2 of 
the present paper. There exists a magnetic model whose 
Hamiltonian contains a continuous parameter-the mag- 
netic field 2 .  This model is solved by means of the Bethe 
ansatz. For 3F = 0 it belongs to the universality class of the 
WZNW model. Excitations of this model can be broken 
down into two independent groups-excitations of a scalar 
field and excitations of a Z,-invariant model. In a nonzero 
magnetic field the former become massless, while the latter 
become massive. From the dependence of their mass on X 
one establishes the dimension of the operator conjugate to 
the magnetic field: A, = 2 / ( N  + 2).  This is the dimension 
of the energy operator of the 2,-model. Thus, it turns out 
that the part of the Bethe equations of the magnet which 

describes the massive sector corresponds to a Z ,  -model per- 
turbed by the operator 2'2'2; we have called this model the 
Z,-model with a "mass term." A description of the model of 
the magnet is given in Sec. 3. The Bethe equations for the 
2,-model with a mass term are given in Sec. 4. 

2. DESCRIPTION OF THE MODELS 

The 2, -invariant statistical model is the generalization 
of the Ising model to the case when the lattice variable takes 
the values oh = exp (277ik /N) . In the Ising model in the con- 
tinuum limit there exist order fields a(z ,  ?) and disorder 
fields p (z ,  ?), and also a fermionic Majorana field ~ ( z ) ,  
X( t )  (here and below, z = x + it and t = x - it are com- 
plex coordinates of the plane). In the 2, -models there are 
N - 1 order fields u l  and disorder fields pi. They can be 
understood as powers of the fundamental fields u, and p,. 
The equalities 

hold. To the fermion field of the Ising model there corre- 
spond parafermion "currents" (z) and $, ( ?)-operators 
with dimensions [ ( N  - I)/N, 01 and [O, ( N  - I)/N],  re- 
spectively. The primary fields of the Z,-invariant statistical 
model and the corresponding ( 1 + 1 )-dimensional quan- 
tum theory (below we do not stipulate the difference be- 
tween these theories) are denoted by @!,k, with 

The indices m, El indicate the law of transformation of 
the given field under transformations of the group ZN x z,,, : 

(D--- - , (on~s+;; l t  I I l i  
, , i l l 1  cp,,? 

where s and tare integers characterizing the transformation. 
The numbers I, 7, together with the numbers m, El, specify 
the dimension of the operator @!,/, with even I = 2j, 7 = 27 
there are fields that are neutral under transformations of the 
group Z, XZ,; these are the fields @?:'with dimensions 

Zamolodchikov notedX that if to the action of the 2, 
invariant theory at the critical point we add the perturbation 

the perturbed theory remains integrable while the conformal 
invariance is lost. In Ref. 8 several higher conservation laws 
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for this model are constructed. 
We shall call the theory with action 

(S?' is the action of the ZN-theory at the conformally in- 
variant point) a theory of parafermions with a mass term. 
Below we shall prove its integrability and calculate the two- 
particle S-matrix of the excitations. 

As already stated in the Introduction, the idea of our 
approach stems from the close connection between the para- 
fermion current algebra and the SU(2)-invariant WZNW 
model. We shall describe this connection. 

Let p(z, F) = p (z) + p ( 2) be a free scalar field, nor- 
malized as follows: 

=-2  lnr,  (ip(r)cp (0) )=O. (2.3) 

In the combined system of the ZN-invariant theory and 
the theory of a free massless field there exist the following 
fields of dimension ( 1, 0 )  (currents) : 

N'" 
1' ( z )  = - [ql  ( z )  : exp (icp ( z )  /N") : 

2  

+ql+ ( z )  : exp (-icp ( z )  IN")  : I ,  
N" 

P ( z )  = - [ql ( 2 )  : exp (icp ( z ) / N " )  : 
2i 

-qi+ ( 2 )  : exp (-icp ( z )  /Nab)  1 .  (2.4) 

The following operator expansion5: 

N6.b &"""J(O) 
la ( 2 )  I* ( 0 )  = - + -- +... 

z2 Z 
(2.5) 

holds. It follows from this expansion that the components of 
the Laurent expansion of the currents 

+- 
E ( 2 )  = C ln'Z-"-' 

n--" 

satisfy the Kac-Moody algebra: 

The combined theory is the WZNW theory with energy- 
momentum tensor constructed from the currents: 

The central charge C of this theory is equal to 

C=3N/ ( N + 2 ) .  (2.8) 
The space of the fields of the WZNW model contains 

the primary fields G !,&, which are the m- and iii-compo- 
nents of isospins I and I (Ref. 5)  : 

where 

These fields have dimensions 

All the fields of the WZNW model can be obtained from 
the primary fields by the action of the operators J z  with 
n <O. 

There exists a simple relation between a primary field of 
the WZNW theory and a primary field of the Z,-theory 
(Ref. 5): 

This, for us, is the fundamental relation. 

3. INTEGRABLE HEISENBERG MAGNET WITH SPlNS=N/2 

Our subsequent arguments are based on the remarkable 
fact that there exists a simple integrable model belonging to 
the universality class of the WZNW model on the group 
SU (2).  This is the Heisenberg antiferromagnet with spin S. 
The Hamiltonian of the model has the form 

' Y o  

where P,, ( x )  is a polynomial of degree 2 s  of full defined 
form. We shall not need its concrete form, which can be 
found in Ref. 9. On scales much larger than the lattice con- 
stant this model possesses conformal symmetry. Affleck has 
shown1° that the central charge of the model (3.1 ) is given 
by formula (2.8) with N = 2s. In Ref. 9 Bethe equations 
were obtained for the model (3.1 ). The energy of the system 
is expressed in terms of a set {A,) of rapidities satisfying the 
following system of equations: 

where the integer M can be expressed in terms of the z-com- 
ponent of the spin of the system: 

As we should expect, in the equations for the rapidities 
of the excitations, which can be obtained from Eqs. (3.2), we 
can see a separation of the parafermion degrees of freedom 
and the degrees of freedom of the scalar field p (2.3) (see, 
e.g., Refs. 1 1 and 12). Central for our arguments is the fact 
that switching on the magnetic field A?' does not affect the 
degrees of freedom of the field p,  while at the same time 
making the excitations in the ZN-sector massive. We shall 
now prove this, and also the fact that the magnetic field pro- 
vides the action of the ZN-model with an additional term 
(2.2) g - p ,  i.e., the dimension of the square of the mag- 
netic field is equal to A, = N / ( N  + 2) .  

These two facts enable us to obtain from the Bethe equa- 
tions for the magnet described by (3. l ) the Bethe equations 
for the ZN-model with a mass term, described by (2.2). 
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We shall consider the thermodynamic equations for the 
model (3.1 ). We have taken them from Ref. 9. The free ener- 
gy of the model can be expressed in terms of the functions 
E, (A) (n = 1,2, . . .)-the excitation energies, which satis- 
fy the following system of equations: 

lim ~, /n=%, 
n-m 

where s ( A )  = ( 2  cosh T A ) ' ,  and the symbol * denotes 
convolution: 

+ m 

f * g  (A) = J f (1-A') g (A') dh'. 
-m 

Here and below we take J = 1, so that the magnon ve- 
locity u = 1. 

We shall also need equations for the particle densities 
p, and hole densities p,. In the thermoydnamic limit they 
have the form 

The equations (3.4) make sense not only in the state of 
thermodynamic equilibrium, when j?, /p,, = e x p ( ~ , ,  /T) ,  
but also for an arbitrary distribution of particles and holes. 
In the ground state, p, = s(A) and p, = O(n # N) .  A mag- 
netic field gives rise to holes in p,: j?, #O. An adequate 
description of the excitations is given in the language of holes 
with label N a n d  particles with all other labels. We rewrite 
Eqs. (3.4) in such a way that the kernels in them act on the 
functions p, and p, (n # N).  After the calculations we ob- 
tain three series of equations: 

p . + . ~ n r n * p m = d n ,  2--l+s*p, (n, m<N- l ) ,  (3.5a) 

~7,+-+A,, ,n*pn,LS=aaa*p.\-  (n, m=l,  2 , . . .  ) .  (3.5b) 

where the Fourier transforms of the kernels are equal to 

a,, (a) =esp (-n 1 o l/2), 

- - 2 cth (0/2)sh[ [ N  - max(n, m) ] o/2]sh[min (n, m) o/2] 

' sh (No/2) 

It can be seen from Eqs. (3.5) that the excitations with 
n < N a n d  those with n > Ncan be separated from each other. 
They are coupled only through the density PA,. 

FIG. 1 

We shall see what happens when a magnetic field is 
switched on. Let T-0. then from Eqs. (3.3) it follows that 

(+) E, ,=d, ,N- , *~*~a (n=l.. . . N-I). (3.6b) 

F:' (h) + ('4 A-,y) -' (h --A') e.:+) (1.') &'=-2,s 0.) 
l A ' ! > r l  

+2%'/2, &, (*B) =O. ( 3 . 6 ~ )  

where & j L " ( A )  are the positive and negative parts of the 
function E,,,. ( A  ) . 

The qualitative pattern of the behavior of the functions 
&,(A)  is given in the Figure; E, (A)>O for 
A 1 > B )  T '  l n ( l / , Y ) .  From Eq. (3.6b) we find, by 
making use of properties of the kernel, that for / A  / < B the 
equality 

4 nn 2nh 
e n  (A) = -sin - e l ,  J exp (-2nhf/3) E::) (A') dl"' (3.7) 

N N l v B  

holds. Thus, by taking into account the estimate of B( 3 ) 
and E,% ( cc ) -32',  we obtain 

nn 
6, (0) =A sin - %'+2'N, 

N 

where A is a constant that does not depend on n or F. 
Thus, at temperatures T < / Y '  ' '.' the degrees of free- 

dom with n < N are not excited, just like those with n > N, 
since E,, , ,\ 2 n c Y %  T. There remains just the single mode 
E,. For T =  0 it is described by Eq. ( 3 . 6 ~ ) .  This mode is 
gapless. Therefore, at energies much smaller than ?' ' ' "" 
the theory possesses conformal symmetry. It is not difficult 
to understand that this is the conformal symmetry of the free 
scalar-field theory. The magnetic field has broken the SU(2)  
symmetry but has preserved the U( 1 ) symmetry, leaving the 
field p (2.3) massless. One can prove rigorously that the 
low-energy fixed point corresponds to central charge C = 1. 
For this it is necessary to calculate the specific heat C,, and 
make use of Cardy's formula" 

From the dependence of the mass of the excitations 
E,, ( n < N  - 1)  on we establish the dimension of the field 
2"': A ,, = N / ( N  + 2 ) ,  and the dimension of the operator 
conjugate to this field: A, = 1 - A ,  = 2 / ( N  + 2 ) .  This, of 
course, is the operator Gi:: in the classification of the 
WZNW model. Specifically, it has the necessary dimensions 
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[see (2.1 ) and (2.10) ] and does not dependI4 on the field 9. 
Since Gg;: = at:, the integrability of the theory (2.2) is 
proved. 

4. THE BETHE EQUATIONS FOR THEZN.INVARIANT MODEL 
WITH A MASS TERM 

We return to Eqs. (3.5a), which describe the distribu- 
tions of the rapidities of the excitations of the ZN-sector. 
According to formula (3.7), the minima of the energies of 
these excitations lie at A = 0, very far from the points 
A = * Bat which the energy E, (A ) vanishes. Therefore, for 
small energies we can simply neglect the mutual influence of 
these degrees of freedom and, in Eqs. (3.5a), replace p, by 
the vacuum density pg', described by the equation 

p:) (A) + (A,,) -' (A-A') p:"' (Af) dhf=s (A). (4.1 ) 
Ih'l>B 

Then for /A / 4 B Eqs. (3.5a) acquire the following form: 

where, according to formula (3.8), 

The energy of the excitations is 
N-1 

Equations (4.2) and (4.4) are the Bethe equations for 
the ZN-model with a mass term (2.2) in the continuum lim- 
it. These equations can be obtained as a limit of the following 
discrete equations: 

sh (i/,Oj-i/,Ok-ln/N) 
exp (lMIL ah 0,) - (4.5b) 

k-1 

The equations (4.5) describe a system of m scalar parti- 
cles of mass M I ,  situated on a segment of length L. Periodic 
boundary conditions are imposed on the wave function of 
the particles. As follows from Eq. (4.5b), the two-particle S- 
matrix of these particles is equal to 

this S-matrix has a pole on the physical sheet 0 < Im 6 <a; 
correspondingly, Eq. (4.5b) admits solutions of the form 

e,cn, P ) = L ,  cn)+i (n+l-2p) (n/N) +O [exp (-LM,)], 
p=l,.  . . n; n=l , .  . . N - l ,  (4.7) 

which describe bound states of fundamental particles with 
masses 

In order to obtain Eqs. (4.2) from Eqs. (4.5), it is nec- 
essary to represent the number m of particles in the form 
m = m, + 2m, + ... + (N- l ) m N - ,  , where mj is the 
number of rapidities of the bound state with label j, rewrite 
Eqs. (4.5) in terms of these rapidities [A(]) in (4.7) 1, and go 

over to the continuum limit L - UJ, m,/L = const. 
We have restored the discrete equations from the con- 

tinuum equations. This procedure is not rigorous, but we 
shall convince ourselves of the correctness of the results ob- 
tained by ascertaining that the two-particle S-matrix satis- 
fies the requirements of unitarity and crossing symmetry. 

The requirement of crossing symmetry in the given case 
implies 

where Sj,, is the two-particle S-matrix of the jth and k th 
bound states. 

By rewriting the formula (4.5b) in terms of the rapidi- 
ties A"' and A'k' from (4.7), we obtain 

It is easy to verify that the condition (4.8) is fulfilled. 
The unitarity is obvious. The S-matrices (4.6), (4.9) were 
found earlierI5 from a purely phenomenological approach. 

5. CONCLUSION 

We note first of all a characteristic feature of our ap- 
proach: Throughout in this paper, nowhere have we needed 
the Hamiltonian of the ZN -models under consideration. The 
solution that we have obtained pertains to a whole class of 
lattice ZN-theories having the same critical behavior. 

The approach described in the paper can be generalized 
to more complicated models, in which the order and disor- 
der parameters are labeled not by integers, as in the ZN- 
models, but by the weight vectors of the groups S U ( N ) ,  
0(2N) ,  E,, E,, and E,. For the WZNW models on these 
groups factorization of the primary fields, analogous to that 
described by us in Sec. 2, occurs. The inclusion of a magnetic 
field leads in the corresponding models of magnets to a sepa- 
ration of the massive and massless modes in the excitation 
spectrum. 
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