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A calculation is described of the electric current due to various excitations in the Hubbard model. 
The electric charge for one-particle excitation is found and its value is shown to depend in a 
continuous manner on the electron occupancy of the system and on the single-site repulsion 
potential. 

INTRODUCTION 

Quasi-one-dimensional highly conducting compounds 
have been the subject of major interest in the last decade. The 
most interesting effects in these compounds are associated 
with the electron-phonon and electron-electron interac- 
tions. The electron-phonon interaction creates charge den- 
sity waves associated with the transition of a material from a 
metallic to an insulating state (Peierls effect). The excited 
states of a Peierls insulator are self-localized states such as 
solitons or polarons, which exhibit an anomalous coupling 
of the spin to the charge. A theory of the Peierls effect has 
been developed on the basis of discrete and continuum mod- 
els in a semiclassical (in respect of the phonon degrees of 
freedom) approximation which can be solved It  
has been found that the properties of a Peierls insulator de- 
pend strongly on the electron densityp in a unit cell; i fp = 1, 
then the steady-state excitations of the system are solitons 
(kinks) carrying a spin s = 1/2 or a charge q = + e and 
polarons with q = e and s = 1/2; i fp# 1, then spin-carrying 
(S = 1/2) zero-charge solitons are the excited states.' The 
effects of the comrnensurability4and of the discrete nature of 
the l a t t i~e ,~ , '  together with an allowance for the dispersion of 
the phonon spectrum,' are responsible for the fractional 
charge which depends continuously on the occupancyp. The 
charge of such excitations is localized in a finite region of size 
6 which is of the order of dimensions of a soliton or a po- 
laron. 

In real systems the Coulomb interaction may modify 
considerably the structure and properties of the ground state 
and of excitations of a system that carry an electric current 
and spin. We shall consider a situation opposite to that found 
in a Peierls insulator: we shall deal with a one-dimensional 
system of electrons interacting with one another but not with 
the lattice deformation. We shall investigate a current due to 
excitations in the Hubbard model, which describes a system 
of N electrons on a discrete chain of N,  sites with repulsion 
between electrons at the same site. The Hubbard model is 
used because of its simplicity and because it provides an ex- 
actly solvable quantum model. In contrast to kinks in the 
Peierls model, excitations in the Hubbard model are deloca- 
lized. The Hubbard model can be used to interpret the prop- 
erties of quasi-one-dimensional compounds in which the 
Coulomb interaction is much stronger than the electron- 
phonon interaction. 

The content of the present paper is arranged as follows. 
A model to be used later is formulated in Sec. I and the 
properties ofthe ground state needed later are given; a de- 
scription is also provided of the investigated types of excited 

states and an expression is obtained for an electric current 
carried by excitations. A consistent analysis is made of var- 
ious excited states in Sec. I1 and this is followed by a calcula- 
tion of the current j, the energy E,  the mornentump, and the 
velocity of excitations u; the electric charge is found for one- 
particle excitations. The electric charge of such excitations is 
found as the coefficient of proportionality between the cur- 
rent j( p )  carried by excitations and the velocity 
v = dddp . "  I t  is shown that in general the charge of these 
excitations is fractional and its value is governed by the ener- 
gy of the Hubbard repulsion Uand by the occupancyp of the 
electron energy band. It follows from our results that the 
excitation of such a system, for example by introduction of 
an additional particle, results in a redistribution of the quasi- 
momenta of all particles in the system. Therefore, the mo- 
tion of an excited particle is accompanied by the motion of its 
background, so that the total electric charge consists of con- 
tributions made by a current due to a screened particle and a 
countercurrent of the homogeneous background. This is the 
reason for the fractional charge of the excitations. 

I. PRINCIPAL DEFINITIONS 

The Hubbard model describes a system of interacting 
electrons on a discrete chain represented by the Hamilto- 
nianI0 

i - i  D i - 1  

where c,: and c,,, are the operators representing creation 
and annihilation of electrons with spins o = t, L at the ith 
site; n , ,  = ci: c,,,; Uis the repulsion energy of electrons with 
opposite spins at the same site; t is the integral representing 
hopping between neighboring sites. The exact solution of the 
system was obtained by Lieb and Wu." The excitations in 
this model were investigated in Refs. 12-14. The energy and 
momentum of the system for the ground and excited states 
were determined in Ref. 11 in terms of quasimomenta k,, 
which can be found from the following equations" 

Y iY,k,=2xlj + d8(2 sin kj-ah,),  1 , .  . . , , (2 )  

where 6 ( x )  = - 2 t a n 1  ( 2 x / u ) ;  M is the number of elec- 
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trons with a spinp = I; I j  and Ja are sets of integral (or half- 
integral) numbers; here and later we shall assume that 
u = U / t  and t = 1. In the case of the ground state, we have 

The quasimomenta k, for the ground state are distribut- 
ed in an interval - Q < k, < Q, where Q is expressed in terms 
of the electron density p = hJ/N, as  follow^'^: 

Q-np-4p (In 2) sin (np) /u+O ( l / u 2 ) .  (4)  

We shall consider excitations of the following type. 
1. Triplet states ofthe spin wave type with a distribution 

4 as in the ground state, and with a distribution Ja given by 

(such a state is called by Lieb and Wu "a hole in the A distri- 
bution"). 

2.One-particle excitations: a )  "a hole in the k distribu- 
tion" 

b) "a particle in the k distribution" 

The spectra of excitations of types 1 and 2 were investigated 
in Refs. 12 and 13.One-particle excitations 2 associated with 
a redistribution of the charge and differing from the ground 
state only by the distribution of the momenta should occur 
obviously only in a chain for which the electron band is not 
half-filled ( N  /Nu = p # 1 ), since for p = 1 all the k, states 
are occupied [k, are defined by Eq. ( 3 )  apart from 2nJ. 

3. Excitations with complex wave numbers. In contrast 
to excitations of types 1 and 2, these excitations describe 
states in which there are electron pairs occupying (at least in 
the limit of high values of u )  one lattice site. In contrast to 
zero-gap excitations 1 and 2, these excitations have a gap (of 
the order of u in the limit of high u) and they can appear both 
for a p = 1 and for p #  1. As demonstrated by Woynaro- 
vich,I4 such excitations should be described by complex 
wave numbers k, = x f ix. For simplicity, we shall consider 
the case of excitations with one pair of complex wave 
numbers. 

4. Excitations formed on introduction of an additional 
( N  + 1 ) -th particle or a hole into the system. In this case we 
have excited states of two types: states of type 2, differing 
from the ground state by a redistribution of the quasimo- 
menta in the case whenp+ 1 and states of type 3 with com- 
plex quasimomenta in the case of an arbitrary value of p. 

We shall calculate the current carried by various excita- 
tions. The operator describing the electric current is readily 
obtained from Eq. ( 1 ) : 

The expression for the current given by Eq. (8)  is derived in 
a standard manner, as for any other physical system, from 
the law of conservation of the electric charge: 

where dp/dt = i[H,p 1; p, = c&c, , ;  H i s  the Hamiltonian 
of Eq. ( 1 ) . In the discrete case, we have div j = j, + , - j, . 
The current operator of Eq. (8) commutes with the Hamil- 
tonian ( 1) .  Using the explicit form of the wave functions, 
taken from Ref. 11, we can find from Eq. (8) the following 
expressions for the current in the system: 

We can readily see that the wave function of this sytem is in 
the form of a Bloch function analogous to the wave function 
of quasiparticles in the crystal lattice: 

Therefore, we can determine similarly the quasimomentum 
p from the condition 

The quasimomentum found in this way can be expressed in 
terms of a set of numbers k, using the relationship p = Bk, 
(Ref. 11). By analogy with a definition of the velocity of 
quasiparticles in a periodic crystal chain, we can adopt the 
momentum representation and readily show that the veloc- 
ity u( p )  of excitations with the quasimomentump is of the 
standard form u( p )  = d ~ (  p)/dp. The electric charge of an 
excitation is found in the usual way as the ratio of the current 
transported by an excitation to the excitation velocity: 
q( P) = j (  P)/u( PI .  

11. DETERMINATION OFTHE ELECTRIC CURRENT AND 
CHARGE DUE TO EXCITED STATES 

1. Triplet states (spin wave) 

Subtracting from Eqs. (2)  and (3)  the equations for the 
ground state, we find-allowing for Eq. (5)-that in the 
limit No - w 

8u6 ( h )  dh 
2np (*) = j 

- m? u2+16(sin k-h)" 

Q 

8up ( k )  cos k dk 

j u 2 f 1 0  (sin k-A)' 
-Q 

where 

p (kj) =N,po(/ej)6kj, a(h,)=N,o0(?.,)6h,, 

p,(k) and a,(A) are the functions of the ground state: Skj 
and SA, are the shifts of the values of k, and A, relative to 
the values for the ground state; Sk, m SAa a - 0( l/Nu ). An 
investigation of the excitation spectrum reported in Ref. 13 
was based on equations for the function p, (k) :  p ( k )  
= po(k)  + p,  (k)/N, ; however, no allowance was made 

there for the asymmetry of the quasimomenta k, and k ,  
(k,# - k, ) or for the limits of integration in integrals of 
the J f (k)p(k)dk type. Hence, the momentum or current 
could not be calculated using expressions of the type 
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p=N. l k p  ( k )  dk ,  j=2NGp ( k )  sin k dk, 

but the energy was found in Ref. 13 employing an expression 
E = - 2$p(k)cos kdk with symmetric integration limits. 
The calculated energy is correct at least in the leading order 
with respect to u and this is due to the even nature of the 
function cos k in the integrand, because the contributions 
due to asymmetric boundary conditions balance out. 

The Fourier transformation given in Ref. 9 yields the 
following equation forb  ( k )  : 

1 { [ 2 z ( I  - sin l )  
p(k)=-arctg exp - 

X U 

4 4 + Jdk' cos k'p ( k t ) - R ( -  u [sin k - sin k ' ] )  , ( 10) 
-0 

U 

where 
rn 

We shall now write down the expressions for the energy, 
momentum, and current in terms of b ( k )  : 

4 

&=E-Eo=2 p (k) sin k dk ,  J Q 

It follows from Eq. ( 10) thatp(k)  is a function ofp(sin k ) ;  
if p = 1, Q = .n, we find that 

We shall consider the case of high values of u w h e n p ~  1; in 
the leading order with respect to l/u, we obtain 

It follows from Eq. ( 13) that i f p  = 1 the current van- 
ishes [it is clear from Eq. ( 10) tha t j  = 0 for any value of u] .  
This is to be expected because in thep = 1 case the phase of a 
spin density wave is fixed so that there is no electric current. 

The spectrum of a spin wave was found earlier,'-' and it 
was shown in Refs. 16 and 17 that in the states with spin 
waves there is an electric current proportional to the quasi- 
momentum, in accordance with Ref. 16. 

A compact expression cannot be obtained for the spin 
current. However, in the limit of high values of u the equa- 
tions for spin excitations in the Hubbard model reduce for 
p = 1 to equations for triplet excitations in a Heisenberg 
chain with an exchange integral J = 4t 2/u. The current is 
calculated readily in the spin model and the value obtained 
should correspond to the spin current in the Hubbard model. 
Equations of the Bethe ansatz for a chain of spins can be 
written in the form" 

T 

The energy, momentum, and spin currents are described by 

E = - Z(L + cos Pi), p = P,, j, = z , s i n  P,. (IS) 

In the case of high values of u, Eqs. (2 )  and (3 )  become 
identical with the expressions in the system ( 141, if they are 
written in the form 

Following the procedure used to obtain Eq. ( 1 1 ), we can use 
Eq. ( 16) and write down the equations for &(A) in the case 
of triplet excitations (J, + , - J, = 1 + 6 ,,,, ): 

4uo (h')  dh' 
2x6 (i) = 2n0 (h-ho) - S u 2 + 4 ( a - h , ) 2  1 

which is readily solved to give 

The spin current is defined by analogy to the electric current 
employing a relationship dS,,,/dt + div j,, = 0, where S,, 
is the spin density at the nth site in the chain. Using the 
variables A and &(A), we can write down the expressions for 
the spin current and momentum with the aid of Eqs. ( 16) 
and (17): 

03 

8ua ( h )  dh 2nho 
= 2 arctg erp (- -- ), 

- 03 1L 

(18 )  
0) 

where $(x) is the Euler function. In the limit of high values 
of A, (low p) ,  it follows from Eq. ( 18) that 

In contrast to the electric current, which is zero for p = 1, 
the spin current of Eq. ( 19) does not vanish. 

For comparison we shall write down the expression for 
the current in an antiferromagnetic chain obtained for an 
approximation utilizing the Holstein-Primakoff transfor- 
mation. The current carried by a magnon i s j  = 4J sin2(k 1'2) 
(J is the exchange integral for the nearest neighbors), and 
the dispersion law for magnons has the familiar form: 
~ ~ ( k )  = W sin k. 

2. Particle and hole states 

a )  Hole states differ from the ground state by a hole in 
the distribution of the quasimomenta k, of the particles. 
Subtracting from Eq. (2 )  the equation for the ground state, 
we obtain subject to Eq. (6)  
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2np (k) =2nB (k-k,) + j 8ua (A) dh 

d2+16 (sin k-A)' ' 
4 (20) 

8up (k) cos k dk 4ua (a') dl '  
= 2na j u2+4 (A-1.) 2 ' -P 

where k, = k,(>, whereas p(k, ), O(Aa are defined as in Eq. 
(9 ) .  The following equation for the function p ( k )  follows 
readily from Eq. (20):  

Q 

0 (k) -0 (k-k.) + dkf eos k'p (kg) 
-P 

4 4 
x _R (;- [sink - sin k']). (21) 

In the case of high values of u, we find from Eq. (21) that 

p (k)  =0(k-k,)+2 (nu)-'(sin Q-sin k,)ln 2. (22) 

The expressions for the energy, momentum, and cur- 
rent are now 

E=E-E,=-2{cos np-cos(np-p) 

-4- y [sin2 np-sin2(np-p) I ) ,  p=np-2,- y sin k,, 
(23) 

j=2 {sin np-sin(xp-p) 

+y [sin np(sin np-sin(xp-p))/np-'/, sin 2xp 

+'I2 sin 2 (np-17) I ) ,  y=4pu-' In 2. 

We shall determine the excitation velocity from Eq. (23) 
accurate to within O( l /u) :  

r=2 [sin(np-p) -y sin 2(np-p) 1, (24) 

so that the charge is now given by 

sin np - sill (np-p) 
G'= 

sin (np-P) 

+ y sin np 
[sin np - sin (np-p) If sin p}. (25) 

sin(xc~-pj { np 

It follows from Eq. (25) that in the general case of q# 1 we 
find that in the limit k, -Q the charge becomes 9-0. It 
should be stressed once again that these excitations occur in 
a system withpf 1, i.e., when Q #n-. 

b )  Particle states are obtained if a particle with a quasi- 
momentum k, = Q is in a state with k ,  > Q. Subtracting 
from Eqs. (2 )  and ( 3 )  the equations for the ground state of 
N particles, we find from Eq. ( 7 )  that 

? ~ a ( k )  = J Sua (h) dh 
- rn u2+lG (si~i  k-h) ' (26) 

j 8u cos kp ( h )  dh 4ua (A') dh' 
u 2 t 1 i ,  (>ill k-A) 

4 (?. - sin I<,) 4 (A - sin Q) + 2 arctg - 2 arctg 
U U 

, (27) 

wherep(k), 0(A) are defined as in Eq. (9 ) .  Equations (26) 
and (27) yeild the following expressions for p ( k ) ,  0 ( k )  : 

4 4 + J - R (- [sin k - sin k r ]  ) ( l c r )  cos kr dk', (28) 
-Q U, 

exp (-io sin k,) - esp (-io sin Q) 
6 ( 0 ) = -  

i o  ch (ou/4) 

+ j d r ' a  ( 0 ) ' )  exp (- 1 w1 1 u/4) sin[ (w-w') sin Q]  
- -- 

2n ch (w u/4)  0-0' 

a (w) = j ~ ( h )  e-iokdh. (29) 

We can easily see that equations f o r p ( k ) ,  0 (w)  differ 
only by the sign of the free term from the equations for the 
distribution functions p ( k )  - O(k - k,) and C(w) of the 
hole states. Therefore, the expressions for the energy, mo- 
mentum, and charge will differ only in sign from the corre- 
spondingexpressions given by Eqs. (23) and (24) and appli- 
cable to the hole states, on condition that these states are 
characterized by I koI < Q, whereas in the case of the particle 
states we have Ikol > Q. A combination of the particle and 
hole states represents a particle-hole excitation formed on 
transfer of an electron from a state with a quasimomentum 
Ik, I < Q to a state with a quasimomentum Ik21 > Q. The ex- 
pressions for the energy, momentum, and current are trivial 
combinations of expressions of the type given by Eq. (23).  

3. Excitations with a gap described by complex wave 
numbers 

Such excitations have been investigated in Ref. 14, 
where the band structure was found. We shall assume that 
there is a state with a pair of complex quasimomenta 
k,,, = ?c + ix .  Then, Eq. ( 2 )  for j = j, becomes 

+ 0 (2 [sin (x+iX) ]-A). (30) 

In Eq. (30) it is assumedI4 that all the values of AD, apart 
from one, shift by 0 ( 1 / N )  relative to the values for the 
ground state. It is found in Ref. 14 that 

+'I,[ (u/4)'+(*1-i)'] I ' } ,  cos x<0, ( 3  1b) 

where I, is a set of values for the ground state of N particles 
with two holes and Ja is the set of values for the ground state 
of N - 2 particles. The numbers Ja are selected so as to sepa- 
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rate excitations associated only with the excitation of the 
electric charge and not of the spin. In the case of states k, in 
the continuous spectrum, A, can be obtained by analogy 
with the treatments given in the preceding sections and 
equations for p ( k ) ,  a ( A )  are 

4 (sin k-11) 8ua (A) dh - 2 arctg 
u rr'+l((sink-A)' ' 

'2 ( 3 3 )  
8up ( k )  cos k dk 4116 (A')&,' 

u2+11(sin k-h)' 
=?,,(a)+ J 

-Q 
U2S4 (A-I.') ' 

and hence we find that p ( k )  is described by 

1 4 (s in k -A)  p (k)=-1+0(k-k,) +0(k-k,) - - arctg 
n u 

+ ~ C O S  k ' p ( ~ ' ) - ~  f (: - [ s i n k  - sin k l ] ) d k ' .  ( 3 4 )  

We shall find the current carried by excitations. Using Eq. 
( 3 4 )  we obtain 

j = 2 Jp  ( k )  cos k dkf4.1. ( 3 5 )  

The value of A corresponding top  = 1 is defined in Ref. 14: 

;i=(sin k,+sin k,)/2. ( 3 6 )  

Equation ( 3 4 )  corresponding top = 1 can be solved exactly: 

1 4 (sin k--1) 
p ( k )  =-1+0(k-kl)+O(k-k,) - - arctg - 

n 11 

4 4 ( + j )-R (- [sin k- t]  )dt. 
s i n k ,  s i n  h, l1 u 

The energy and momentum are defined in Ref. 14. In the 
case of the current we find from Eqs. ( 3 4 ) - ( 3 6 )  that if 
p = 1, then integration of Eq. ( 3 4 )  with a weighting factor 
cos k  yields j = 0 .  For an arbitrary value ofp in the limit of 
high u it follows from Eqs. ( 3 4 ) - ( 3 6 )  that 

p(li)=0(k-kl)+0(k-I~,,,)-1-4[~i~ k-'1 

+(sin kl+sin k,,,)In 2 ] /nu .  

( 3 7 )  

The energy, momentum, and current are then found from 
Eqs. (30)-(35) and ( 3 7 ) :  

e=u+l! (cos kl-cos Q )  +2 (cos I?,,,-cos Q )  
+ 4 sin(2Q)/zn+8(I-Q,'z)/u, 

p=-k,-km+8A(Q/n-l)ln-4 (111 2 )  Q(s in  Bl+-in k,,)/nu, 

j=-2 sin kl-2 sin k ,+4A 
( 3 8 )  

+8 sin Q[3.1-( sin kl+5in k,,,)ln 2 ] / x u .  

The parameter A can be found with the aid of the results 
in Ref. 14: 

A= (sin k,+sin k,,)/(llr,-Ni-2). ( 3 9 )  

The expression ( 3 9 )  is derived from the exact equations in 
the limit ofhigh u and forp = 1 ,  we obtain Eq. ( 3 6 )  whereas 
forp# 1 ( N o  - N $ 1 )  it follows that A - 0 .  

4. Excited states of a system of N+l particles 

a. Introduction of an additional particle into a system of 
N particles may give rise to excited states of two types. We 
shall first consider a system withp < 1 and find the effects of 
introduction of a particle with a quasimomentum 
k ,  ( I k,l > Q) and a spin a = t. States of this kind differ from 
the ground distribution of electrons between the quasimo- 
menta and are similar to the particle excitations discussed in 
subsection 2b of the present section. The numbers I, and J, 
are related to the numbers I: and JE for the state of a system 
of N  particles: 

Subtracting from Eqs. ( 2 )  and ( 3 )  the equations for the 
ground states of a system of N particles and using Eq. ( 4 0 ) ,  
we find equations for the functionsp ( k ) ,  a ( A )  defined in Eq. 
( 9 ) :  

8u6 (A) dh 
2.p ( k )  = j 

uL+16 (s in k-A) ' 
8up (k)cos k dk , - = 2n6 (A) 

u2+ i 6  (sin k-h) 
4ua (A') dh' 4 ( A -  s i nk , )  

+ ' u2+4 (hi,') ' + 2 arctg 
u 

Equation ( 4 1 )  and the Fourier transformation can be 
used to find the following equation forp(k):  

+ j dl.' cos 
-Q 

Expanding Eq. ( 4 2 )  as a series in terms of l / u ,  we obtain 

P(k)=2( ln  2 )  (s in ko-sin k ) / n u .  (43.1 

The energy, momentum, current, velocity, and electric 
charge of excitations deduced from Eq. ( 2 3 )  are given by the 
following expressions deduced in the leading order in l/u: 

E=-2 cos p-2y sinzp-y [ l - s in(2np) /2np] ,  
p=k,+y sink,,  j=2 [I-y cos p+y s in(np) /np]  sin p, ( 4 4 )  
v=2(l-2y cos p)s inp ,  q=l+y cosp+y s in(np) /np .  

Depending on the values of p and p, the value of q can be 
greater or smaller than unity. 

We can similarly consider the excited states obtained 
when one particle with a momentum Ik,l< Q is removed 
from a system. The values of Zj and Ja are selected as follows: 

The equations for p ( k )  and C ( A )  differ from Eqs. (41  ) and 
( 4 2 )  obtained for the case (k , (  > Qonly in respect of the sign 
of the free term. The expressions for the energy, momentum, 
current, and charge differ from Eq. ( 4 2 )  only in respect of 
the sign. 

b. In addition to these excitations of a system withp # 1, 
the addition of a particle can give rise to excited states with a 
high energy (of the order of u or greater than u ) ,  which 
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appear when an additional particle is placed at an occupied 
lattice site. Such excitations, which occur for bothp = 1 and 
p #  1, are described by complex wave vectors by analogy 
with subsection 3, so that we shall now use the results ob- 
tained in that subsection. 

We shall consider an excited state with one pair of com- 
plex quasimomenta formed when an additional particle with 
a spin a = r is introduced into a system with N - 1 particles. 
Equations ( 3  1 )-( 34) are modified slightly and the terms 
containing k, disappear; the set of numbers I, is obtained 
from the 19 sequence of numbers for the ground state of a 
system of N - 1 particles by removing one value I, ,  modify- 
ing Eq. (32) by the substitution o f j  = 1, ... N - 2, and alter- 
ing Eq. (33) so that instead of the free term - 277 there is 
- 77. 

In the case ofP(k) we now have the following equation: 

1 1  4 (sin k-A) p (12) =0 (k-k,) - - - - arctg 
Q 

2 n u 

+ cos kfp(kf) [sink - sink1] ). (45) 
-Q 

u 

I fp  = 1, the equation can be solved exactly: 

.I 1 4 (sin k-A) 
p(k) = B(k-lc,) - - - - arctg 

2 n u 

where A = sin k, is found with the aid of Ref. 14. In the case 
of p = 1 we can write down the exact expressions for the 
momentum, energy, current, and charge of excitations: 

p = ( k i  dl+,, E = 2 1 p ( k )  sin k dk-4 cos k ch ~ + p - ,  

(47) 
j-4 sin k,C? Ji l  (k)cos k dk = 2 sin k , ,  

whereP(k) is given by Eq. (46); x andx are defined by Eq. 
(3  1 ); ,L- is the chemical potential given in Ref. 11: 

For an arbitrary p, we obtain expressions for p (k) ,  energy, 
momentum, current, and velocity in the leading order in re- 
spect of l/u: 

(k) =B(k-k,) -'/,-4 (sin k-Afilz sin k, In 2 )  /nu, 
li = { s i n k  PSI 

p=-k,-y sin .'.'I, 
0 p<l 

E=U+II.+~[COSP-cos npSy(sinz p-sin2 np)], 
p=dE,/dN=2 cos[n(l-p) ] 

-7 [Z-cos(2np) --sin(2rrp)/2xp], (48) 
-2(1-y cos p) sin p, 

i={ P=I, 
2[ 1-7 cos p+y sin(np)/np], p<l, 

v=-2 (1-2y cos p) sin p. 

The electric charge is given by 

1+y cos p, p=l, 
= {-[ i + y  cw p+y sin(np)inp], p<l. 

(49) 

cal, in the p #  1 case, with the charge of hole excitations of 
Eq. (44), indicating that in this case the current is mainly 
due to holes. 

We shall conclude by noting that the expression for the 
electric current given by Eq. (8)  can be derived from the 
general expression j = - (SH /SA ) , where H i s  the Hamil- 
tonian and A is the potential of the electric field. We can 
easily see that introduction of a constant vector potential A 
gives an expression for the energy E = - 22  cos(k, - eA), 
which can be differentiated with respect to A to give 
j = 2 2  sin kj. The velocity of excitations is 

and it is not equal to 22  sink,, because the differentials 
dk, = f (d I  ,,..., dI,,dJ ,,..., dJ, ) are not independent as a re- 
sult of which we have in general q = j / v #  e, which is a conse- 
quence of the fact that E # E ( p  - eA) and that 
E = 2f(k, - eA). 

CONCLUSIONS 

We calculated the electric current carried by various 
excitations in the Hubbard model. We considered excited 
states resulting from a redistribution of particles in a system 
or created by introduction of an additional particle or a hole. 
The former include quasicovalent excitations of the triplet 
type (spin waves), particle and hole states, and excitations 
with complex quasimomenta. We demonstrated that a spin 
wave in a system with an energy band which is not half-filled 
( p # 1 ) can carry an electric current [Eq. ( 13) 1 .  The spin 
current carried by a spin wave was found for the case when 
p = 1 [Eqs. ( 18) and ( 19) 1. According to the classification 
of Refs. 16, 17, and 12, all the excitations can be divided into 
quasicovalent and quasiionic. Quasicovalent excitations are 
those which do not exhibit ionic structures when the sites in 
a chain are moved apart ( U / t -  co ) and are eigenstates of 
the spin Heisenberg Hamiltonian. From the point of view of 
the exact solutions these quasicovalent excitations are asso- 
ciated with holes in the distribution of the numbers J,, 
whereas the excitations associated with holes in the I, distri- 
bution are known as quasi-ionic because (apart from spin 
waves) are of the quasi-ionic type. 

We investigated zero-gap hole or particle states result- 
ing from a redistribution of quasimomenta kJ of particles: in 
the case of a hole state a particle from a state with a quasimo- 
mentum 1 k,l < Q is located at the edge of an energy band in a 
state with the quasimomentum Q, whereas in the case of a 
particle state with a quasimomentum Q a particle is located 
in a state with a quasimomentum lkol > Q. Such excitations 
are possible for a system with p #  1. The current carried by 
such excitations is described by Eq. (23) and the charge, 
defined as the ratio of the current to the excitation rate, is 
given by Eq. (25). In the case of low momenta ( p-0) we 
find that the current and the charge both approach zero ( j, 
9'0). 

We investigated excited states of a system with a gap in 
the spectrum (E-u in the limit of high u) ,  described by 
complex quasimomenta and corresponding to the case when 
there are two particles at one site. We found that if p = 1, 
such excitations do not carry an electric current [Eq. (33) 1, 
whereas for 0 # 1 the value of the current is proportional to - A 

It is interesting to note that the charge of Eq. (49) is identi- lp - 1 l /u  [ ~ q .  (38) 1. 
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We discussed excitations of the system resulting from 
introduction of an additional particle and calculated the 
spectrum, electric current, and charge of excitations in the 
limit of high u. We investigated two different states, one of 
which was obtained for p # 1 when an additional particle is 
located in a state with a quasimomentum 1 kol > Q, has an 
energy of the order ofp,  carries the current described by Eq. 
(44),  and has a fractional charge also described by Eq. (44). 
In the limit of high values of u the charge differs from unity 
by an amount of the order of the u '. The other state has a 
much higher energy ( E - u  in the limit of high u)  and is 
described by complex quasimomenta. In the limit of high u 
such a state corresponds to a situation when there are two 
particles at one site. We derived the current [Eq. (48) ] and 
the fractional charge [Eq. (48)]  carried by an excitation. 
When the band occupancy i s p  = 1, such excitations are the 
only carriers of the current in the system among the excita- 
tions discussed above. I f p  # 1, then the current is carried by 
all the excitations discussed above: a spin wave, particle and 
hole states, and excitations with a gap obtained on introduc- 
tion of additional particles or holes into the system. 

We discussed the cases when a system has one excita- 
tion. We shall now consider a situation which arises when 
several excitations are present in a system. We can readily 
see that i fp  = 1, the additivity of the currents of excitations 
is no longer obeyed, i.e., the current is no longer equal to the 
sum of the current due to various excitations. This follows 
from the results in subsections 2, 3, and 4b of Sec. 11. For 
example, an excitation described in subsection 4b may be 
regarded as the result of superposition of two excitations: an 
excitation with a gap (subsection 3 )  and a pair of complex 
quasimomenta, and holes I, and I, when a particle with the 
number I, is added to the system. In this case the energy and 
momentum of an excitation are the sums of energies and 
momenta of the two excitations, but the current in the sys- 
tem is not equal to the sum of the currents, as demonstrated 
by Eqs. (23),  (38),  and (48). However, i fp#  1, the additi- 
vity of the current is restored, at least for the leading orders 
in l/u, as demonstrated by the same expressions. I fp  < 1, the 
rule of superposition of the current is satisfied for excitations 

of the type described in subsections 1,2, and 4b irrespective 
of the value of u. This conclusion follows in an elementary 
manner from the general form of the equations for the func- 
tions p ( k )  which have the same structure: p ( k )  = f ( k )  
+ Jp(k ' )K(k,k ' )dk '.Formationofsevera1excitationsgives 
rise t o  additive terms in f ( k ) ,  so that the solution of p ( k )  
splits into a sum of terms due to different excitations. This 
ensures the additivity of the momentum, energy and current. 

The author is grateful to S. A. Brazovskii and 1. E. 
Dzyaloshinskii for valuable discussions and comments. 
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