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The Keldysh diagram technique is used to investigate the line shape of roton creation by a slow 
neutron in superfluid helium. I t  is shown that this shape is determined by the same roton-roton 
scattering probability as the kinetic coefficients of helium in the roton region. The line shape 
differs from Lorentzian in that the intensity falls off more rapidly on the negative wing. 

1. INTRODUCTION 

The aim of the present paper is a microscopic calcula- 
tion of the probability of roton production in scattering of 
low neutrons in superfluid helium with allowance for the 
interaction between the rotons. 

Slow-neutron scattering is known to be an important 
tool in the investigation of liquid helium. Recent improve- 
ments of the experimental technique permit a substantial 
increase of the resolution and make possible a detailed inves- 
tigation of the roton line shape. ' A theoretical calculation of 
this shape is therefore most vital. We shall see that this shape 
has singularities connected with a specific roton-dispersion 
law. 

The first to investigate the roton line shape was appar- 
ently Cohen.' Using the diagram technique of Bloch and de 
Dominicis, he expressed the roton-creation dynamic form 
factor in terms of a roton-roton scattering matrix. He did not 
investigate, however, the line shape in sufficient detail. This 
is why it is usually stated in later papers that Ref. 2 leads only 
to a pure Lorentz line shape, a statement we shall show be- 
low not to be valid in the entire energy-transfer region. 

The next step towards the solution of the problem was 
made by Halley and ha sting^.'.^ They expressed the scatter- 
ing probability in terms of the imaginary part of the roton 
retarded Green's function, thereby facilitating the calcula- 
tions. Even they, however, did not engage in an actual calcu- 
lation of this function. In addition, they used in the transfor- 
mations the symmetry relation for the self-energy functions, 
a relation not vlaid in the general case (see footnote 2 be- 
low). 

2. ROTON CREATION PROBABILITY IN THE KELDYSH 
DIAGRAM TECHNIQUE 

It is known that the neutron scattering probability is 
expressed in terms of the dynamic form factor of the liquid 
S(&,p),  which is the Fourier component of the expectation 
value with respect to space and time 

where Sn stands for the fluctuations of the atom-number 
density of the liquid, and E is the average density of the 
atoms. Just as in Refs. 2-4, we shall assume that roton cre- 
ation and absorption are described by a term that is linear in 
the roton creation and annihilation operators and has the 
form 

We are interested in the present paper only in the line 
broadening (and not in its shift). Since processes with 
change of the number of rotons are known to have low prob- 
ability1' (Ref. 5) ,  we shall, in contrast to Ref. 3, disregard 
them. In other words we assume, as in Ref. 2, that the inter- 
action Hamiltonian conserves the number of rotons. I t  fol- 
lows then from Eqs. ( 1 ) and (2)  that 

whereG + - (&,PI and G + ( ~ , p )  arerespectively theFourier 
components of the functions 

iG+-(r,  t ) = < Y  (r,  t)Y+ (0 ,  0) ), 

iG-T (r ,  t )  = < Y  (0 ,  (d)Y ( r ,  t )  > 
(we use a system of units in which f i  = 1 ). Here \V ' (r , t)  and 
\I'(r,t) are the roton creation and annihilation operators in 
the r-representation and are connected with i?+ and 2 in the 
usual manner, while the functions G + and G - + are two of 
the four functions involved in the Keldysh diagram tech- 
nique (see Ref. 6; we use the notation of Ref. 7) .  Equation 
(3) makes therefore possible a consistent calculation of the 
form factor S(E,P) .  The first term of this equation describes 
roton creation, and the second absorption. To  be specific, we 
shall be interested only in creation, i.e., consider only the 
first term. 

Besides the function G + - and G + we shall need also 
the usual Feynman Green's function, which we denote in 
this connection by G - -, and also the function G + +, where 

G + - ( E .  p)=-  [G--(e, p)] ' .  ( 5 )  

Expressing G + - (&,p),G + ( ~ , p )  and G - ( ~ , p )  in the 
usual manner in terms of the matrix elements of the \V opera- 
tors, we readily show that in the thermodynamic equilibri- 
um state 

G - ' ( E ,  p)=i [ I - t h ( ~ / 2 T ) ]  I1n G--(E,  p ) .  

We express now the function G in terms of more con- 
venient diagram elements, viz., self-energy functions. The 
Keldysh technique makes use of four such functions: 
8 - - , B t f  m Z + -  , and Z + ,  which satisfy the relation 

The functions 2+- and C - +  are pure imaginary, while 
C+ + and Z -  are related by an equation similar to (5)": 

with a certain coefficient {(p). x++=- (2 - - )  *. ( 7 )  
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The four G functions are connected with the X func- 
tions by the matrix equation 

where 

In terms of Fourier components, this equation reduces to a 
set of algebraic equations. Solving this set, we get 

G--= (Go-l+X++) ID, G-+=-X-+ID, ( 9 )  

where G ;  ' = E - E ~ ( P ) , E ~ ( P )  is the "unperturbed" roton 
energy at T  = 0, and D is a real quantity: 

D=(Go-'+Z+f) ( G , - I - ~ - - )  +xI--z-+. 
( 10) 

Using now the connection between the G functions ( 5 )  
and ( 6 ) ,  we see from (9)  and ( 10) that the self-energy func- 
tions Z are connected by a relation similar to ( 6 )  : 

For rotons we have 

e - 8 1 T x e - A l T  << 1. 

Neglecting terms of order exp( - E/T) we get ultimately 

where Z1(&,p) = Re 8-- (E,P). 
We are not interested here in the shift of the roton line, 

but only in its shape. this shape, as seen from (13), is deter- 
mined by the function Z+-(&,p).  We shall see that in this 
energy-shift region we have 

O=E-E ( p )  

( ~ ( p )  is the roton energy), in which Zf - is independent ofw, 
the line shape is Lorentzian of width y = /Zt - 1 .  We shall 
show below that this takes place only for Iw 1 < T. For larger 
1 w I the line deviates from Lorentzian. 

3. CALCULATION OF Z+  -(E,P) 

When Z+ - is calculated in the first nonvanishing per- 
turbation theory approximation, the Keldysh diagram tech- 
nique uses the two diagrams shown in Fig. 1 [P, stand for the 
4-vectors ( E ~  ,pi ) 1. The dashed lines describe here the inter- 
action between the rotons; dashed lines with "plus" and "mi- 
nus" signs correspond respectively to + iVand - iV, where 
Vis the Fourier component of the roton-interaction energy. 
When diagrams of higher order are added to those of Fig. 1, 
it must be recognized that by virtue of ( 12) the rotons obey 
Boltzmann statistics with high accuracy. In the language of 
Green's functions, this is manifested in the fact that 
I G - +  / < / G + - / according to (6 ) .  This means that no addi- 
tional G - +  factors appear when dashed lines are added to 
the diagrams of Fig. 1. In addition, one can choose for the 
functions G -- and G + + their values at absolute zero tem- 
perature. It turns out as a result that we need sum only "lad- 

FIG. 1. 

der" diagrams of the form shown in Fig. 2. In these dia- 
grams, all the positive dashed lines are in the left-hand part 
of the diagrams, and the negative in the right one. In fact, 
addition of a negative dashed line between positive ones 
would lead to the appearance of extra factors G -+, while 
diagrams with crossing dashed lines are equal to zero at 
T =  0 [Ref. 10, $161. (See the analogous reasoning in the 
derivation of the kinetic equation in the Baym-Kadanoff 
technique. I ). 

It is known that a diagram series of the type shown in 
Fig. 3 has its sum the quantity i I?(P1,P ; ;P,P, ) representing 
the total vertex part of roton-roton scattering. On the "phys- 
ical" surface, i.e., when the energies of all rotons are equal to 
~ ( p ) ,  this is the roton-roton scattering amplitude. As to the 
series shown in Fig. 4, its sum is i T t + ( P ' , P ;  ;P,P,)  and it 
can be shown that 

r++(pr, pir; P ,  p i )  = - r e p ,  p i ;  I-", pi1 ) .  (14) 

As a result, the sum of diagrams of the type shown in Figs. 2a 
and 2b, is equal to 

w h e r e P + P ,  = P 1 + P ; .  
When the condition ( 12) as well as the natural require- 

ment y ( A  are taken into account, it is necessary to use for 
G + - and G - + the expressions 

G'-(e, p) =-2xi6 ( E - e  ( p ) ) ,  

G-+ ( E ,  p) =-2nin (p) 6 ( E - E  ( p )  ) ,  
(16)  

where n (p )  = exp[ - &(p)/T]  is the Boltzmann distrib '-I- tion function. The use of Eqs. (16) means neglect of the d- 

function smearing due to the collisions between the rotons. 
This smearing is of the order of the linewidth y. This effect 
can be neglected if y 5 T. 

Integrating over d ~ ,  and d ~ ' ,  we reduce ( 15 ) to the form 

a 

FIG. 2. 
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FIG. 3. 

with p + p, = p' + pi.  We have introduced the roton-scat- 
tering probability 

rc (P' .  Pi'; P, P l )  ='Ill r ( p r ,  pir; p7 pi)  1 ' .  

I t  is important in what follows that the major contribu- 
tions to the integrals over d 'p, and d 'p' is made by values of 
p ,  and p '  that are close to pO: 

I p I - - p ~ l y  Ipr-~ul-max [ ( p T ) ' " ,  ( p o ) ' " ]  <PO 

(p is the roton effective mass). The momentum p of the 
created roton will also be assumed close top,,: J p  -p,,\ gp,. 
The angles 8,) between p and p,  and 8, between p' and pi are 
therefore close to the angle defined by the equality 

2po sin (012) = l p f p ~ l .  

We direct the z axis along the vector of the summary roton 
momentum p + p,, and introduce in place of p' the variables 
q, q,, and p ' defined by 

p.'= [ p o  sin (012) 1-q] cos cp' ,  p,'= [ p ,  sin (012) 

i q ]  sin cp', p,'=p, cos (012) +q, ,  

where Jql,  Iq, I gp,,. The dependene of the probability w on q 
and q, can be neglected, and the argument of the S function 
in ( 17) takes the form 

Introducing the notation 

and recognizing that w depends only on the angles 6 and p 
between the planes (p,p, ) and (pl,p; ), we reduce ( 17) to the 
form 

POP dx w do y=Np- 5 cX2- 
n'" cos (0 /3)  4;' 

151>20 

where N,, is the number of rotons per unit volume, 
x = (p ,  -p,,) ( 2 p T ) l 1 ' ,  do = sin 6d6dp is the solid angle 
of the vector p , ,  and 

The integration in ( 18 ), as already mentioned, is in fact over 
values o fp ,  close top,, i.e., 

Investigation of the diagrams of Fig. 3 shows that the 
vertex part r (hence the probability w) is in this region a 
slowly varying logarithmic function of the summary roton 
energy " . I 3 :  

E=E ( p )  + E  ( p i )  f o. 

Neglecting this dependence, we can take w outside the 
integral over dx." The result is a final equation for y (in the 
usual units) 

where yo = N, po pZ/2fi3, @ is the probability integral, and 

with the value of w taken for E - 2A - T 
We note now that 6 is precisely the same scattering 

probability that determines, according to Fomin, lhhe  vis- 
cosity 7 and the thermal conductivity x of helium in the 
roton region. Thus, for example, the viscosity is 7 = 2p,fi4/ 
1 5p2Z. It follows from the experimental data on the viscosity 
that w=25.2.10p7' erg2.cm", so that y,[K] 
= 47 T"' exp[ - A(T)/T] .  

The connection we obtained between the roton viscos- 
ity and the roton linewidth has already been used to interpret 
experimental data (see, e.g., Ref. 1) .  I t  was derived pre- 
viously, however, by applying the Born approximation to 
roton sattering, assuming a S-function interaction between 
the rotons, which certainly does not take place. We see now 
that this connection is quite general and is valid for any ro- 
ton-scattering law. The fact that the viscosity, thermal con- 
ductivity, and linewidth are determined by one and the same 
scattering probability iZ can be easily understood by noting 
that the quantity - n ( p ) i 2  - is none other than the "de- 
parture" term in the collision integral of the kinetic equa- 
tion. The viscosity and thermal conductivity are usually de- 
termined not only by the "departure" but also by the 
"arrival" terms. A peculkrity of the rotons, on the other 
hand, according to Ref. 13, that the correction to the equilib- 
rium distribution function is an odd function of p -p, at 
pzp, , .  This causes the "arrival" terms, in which the distribu- 
tion function is integrated over d 'p to be small in the param- 
eter ( p T )  1'2/p0, SO that in fact 7 and x are also determined 
only by the "departure." 

4. LINE SHAPE 

I t  follows from the foregoing that the roton-creation 
line shape is given by 

with y determined by Eq. (19).  It is seen from this formula FIG. 4 
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that y = yo for all positive w (i.e., for E ) E ( P )  ), and that on 
this wing the line is a Lorentzian of constant width yo. For 
negative w, however, the situation is different: y,, = yo only 
in the region Iw + ( p  -p,,)'/2pI 4 T. In the opposite limit- 
ing case the scattering intensity decreases more rapidly. We 
note also that Eq. (19) for y has a singularity 
w + ( p  - po) */2p = 0. This singularity is due to replace- 
ment of the Green's functions in ( 15) by 6 functions, and has 
no physical meaning. To determine the line shape more pre- 
cisely in this region, it is necessary to smear out the 6 func- 
tions with account taken of the fact that y is finite. With this 
procedure implemented, Fig. 5 shows the line shape for 
p =pO and for two temperatures, TI = 1.5 K and T, = 2 K. 
The corresponding values of yo are respectively 0.17 and 
1.06 K. The dashed curves in the figures correspond to a 
lorentz line symmetric about w.  We see that the line shape 
deviates substantially from logarithmic at w < - y,,/2. 

The available experimental dataI4 indicate apparently 
that the "negative" wing of the roton line ( w  < O), at least for 
large Iw 1, is noticeably lower than the positive one. A quanti- 
tative comparison with theory, on the other hand, calls for 
investigations at higher resolution. Such measurements can 
probably be made only by Mezei's neutron spin echo meth- 
od. ' 

The author is deeply grateful to L. P. Pitaevskii for con- 
stant help with the work and for advice. 

FIG. 5. Probability of roton production by a slow neu- 
tron a t p  = p,, versus the difference o between the ener- 
gy transfer E and the roton energy ~ ( p ) :  a - TI  = 1.5 
K b - T 2 = 2 K .  

"For example, the probability of conversion of two rotons into two phon- 
ons is low by virtue of the smallness of the phase space of the phonons, 
i.e., by virtue of the smallness of the parameter A/cp,,. 

"The authors of Ref. 3 used retarded and advanced Green's functions and 
a corresponding vertex part L , ,  = a-- + Z-+.  They used, however, 
the relation L ,  , ( - E) = ZYI (E), which in our opinion does not hold in 
general. The proof of this relation in Ref. 8 is not convincing. Reference 
9, on the other hand, contains the relation 9 ( - o,. ) = Y*(o, .  ) for 
Matsubara functions of discrete frequencies. This relation, however, can 
be shown to be the equivalent of (7 )  and contradicts the relation used in 
Ref. 3. 

"A more detailed investigation shows that this approximation is accurate 
to - 15% for lo1 - T. Note also that for lo14 T the linewidth y is ex- 
pressed exactly in terms of the quantity E introduced in Ref. 13, without 
neglect of the w ( E )  dependence. 

IF. Mezei, Phys. Rev. Lett. 44, 1601 (1980). 
'M. Cohen, Phys. Rev. 118,27 ( 1960). 
'J. W. Halley and R. Hastings, ibid. B15, 1404 (1977). 
"J. W. Halley, ibid. B17, 1462 (1978). 
'1. M. Khalatnikov, Theory ofSuperj7uidity [in Russian], Nauka, 1971. 
"L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964) [Sov. Phys. JETP 
20, 1018 (1965)l. 

'E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Pergamon, 1981. 
'F. Iachello and M. Rasetti, Phys. Rev. B12, 134 (1975). 
"P. Hohenberg and P. Martin, Ann.Phys. (N.Y.) 34, 291 ( 1965). 
"'E. M. Lifshitz and L. P. Pitaevskii, StatisticatPhysics, Part 2, Pergamon, 

1980. 
"P. Danielewicz, Ann. Phys. (N.Y.) 152, 239 (1984). 
". L. P. Pitaevskii, Zh. Eksp. Teor. Fiz. 36, 1168 (1959) [Sov. Phys. 

JETP 9, 830 (1960) 1. 
"I. A. Fomin, ibid. 60, 1178 (1971) [33, 637 ( 1971)]. 
'"0. W. Dietrich, E. H. Graff, er at., Phys. Rev. AS, 1371 (1972). 
Translated by J. G.  Adashko 

1412 Sov. Phys. JETP 68 (I), July 1988 A. B. Kazantseva 1412 


