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It is shown that the Green's function of the system of linear differential equations which describe 
the behavior of small disturbances near a stationary state of a physical system can be represented 
as a path integral. The use of the asymptotic behavior of the Green's function for large times yields 
an effective method for the determination of the most stable eigenvalues in terms of the local 
dispersion equation. 

INTRODUCTION 

The investigation of the stability of stationary states 
plays an important role in plasma physics, in fluid dynamics, 
and in other disciplines of microscopic physics. Such investi- 
gations reduce to the determination of the eigenvalues for 
some system of linear equations, which is usually a quite 
complicated mathematical problem, which can be solved 
only by means of numerical methods. At the same time it is 
natural to assume that weakly inhomogeneous states must 
be amenable to a treatment similar to the WKB method for 
the Schrodinger equation. Such investigations were carried 
out in Ref. 1 for the case when the problem differs little from 
the self-adjoint problem, and were somewhat generalized in 
Ref. 2 (for the case of a second-order differential equation). 
These authors started from the construction of an approxi- 
mate eigenfunction by means of the WKB method, and only 
after that they determined the corresponding eigenvalues. 
However, it is well known that the construction of the wave 
functions is considerably more complicated than the deter- 
mination of the eigenvalues, and moreover in stability prob- 
lems it is in fact important only to determine the most unsta- 
ble eigenvalue. 

In the present paper we shall not try to construct the 
eigenfunctions, but instead, as is customary in quantum field 
theory, we shall start out from some general expression for 
the Green's function G(x,x,'t - t ') of the system of linear- 
ized equations which describe the evolution of small devia- 
tions from the equilibrium position. We shall investigate the 
limit of G(x,x,'t) as t -  cc and will indicate how to deter- 
mine in the exponential asymptotic behavior the appropriate 
exponents which characterize the growth of the most unsta- 
ble mode. 

1. EXPRESSION OFTHE GREEN'S FUNCTION AS A PATH 
INTEGRAL 

For definiteness we shall assume that the system of lin- 
earized equations is a system of partial differential equations 
for the vector-values function qb, which describes the devi- 
ation from the stationary state, is of the form: 

where the matrix L is a polynomial in a /ax and is analytic in 
x. We need to determine the retarded (matrix) Green's 
function 

(here is the unit matrix). For this we note that for small 
values of t - t '  the Green's function must be close to 
S ( x  - x') . This means that in it the only important value of 
x are those close to x', and its Fourier components are con- 
centrated essentially at large values of k. Therefore for small 
t - t ' the Green'sfunction can be approximately represented 
by the Fourier integral 

which corresponds to the Green's function of Eq. (1.2) for 
frozen coefficients, i.e., coefficients evaluated at the point 
x = x'. Solving the corresponding equation with constant 
coefficients we find 

GaP(x, X I ,  t - t ' )  = J e r y  ( i k ( x - x ' )  - iw , (k ,  x') 
I 

x ( t- t ' )  juIa ( k ,  x ' )  

where the frequencies o, are determined from the solution of 
the local dispersion equation 

I;(-io, zk, x )  =det(-io6a9-La"x',  i k )  ) = O ,  ( 1.5) 

and the local eigenvectors (the polarization vectors) satisfy 
the system of equations 

The summation in Eq. (1.4) is over all the branches of the 
dispersion equation. The formula ( 1.3) represents the gen- 
uine Green's function more accurately the smaller the time 
interval t - t '. 

If one is interested in the Green's function in the inter- 
val ( t  ' + At,t ' + 2At),onecanrepeat theoperation. Consid- 
ering the Green's function (1.3) as a new initial condition 
for the solution of Eq. (1.1) in the interval 
( t  ' + At,t ' + 2At), and using the property of the Green's 
function that it represents the solution as a convolution with 
the initial data, we obtain 

dnk ,  dnkz 
Gafl(x,  xf. t - t f )  = j dnx ,  u,: (k , ,  x , )  

iB ,  
( a n )  " ( a n )  " 

x G12Rt(k2, x,) ujlPl ( k l ,  x') uj , ' (kl ,  x ' )  exp{ ik , (x -x , )  

+ i k ,  (x , -x ' )  - iwi , ( t - -T,)  - i w j , ( ~ , - t ' )  ), 
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where we have introduced one intermediate time 7, and one 
intermediate distance x,. Partitioning the finite interval 
t - t ' into a large number of small subintervals, and taking 
the limit, we obtain a representation of the Green's function 
as a functional integral with respect to D k ( r ) h ( r ) .  If we 
had only a scalar equation and, accordingly only one branch 
of the dispersion equation, we would get a representation of 
the Feynman type, but with the action written in the Hamil- 
tonian representation rather than the more usual Lagran- 
gian representation. In the case of several branches of the 
dispersion equation, the difference is that at each instant of 
time, in addition to the integration with respect to 
D k( r )Dx(r ) ,  one must also sum over all the branches, so 
that the trajectories are considered on the Riemann surface 
corresponding to the dispersion equation. 

We shall not discuss the justification of the limiting pro- 
cess (as the number of partition points tends to infinity), 
hoping that (as happens in the case of the Wiener measure, 
corresponding to the transition from the Schrodinger equa- 
tion to the dissipative diffusion equation) the dissipative 
terms with higher derivatives will effectively provide a cutoff 
for the integration over large k and make the limiting process 
possible. The Green's function will then be represented by 
the functional integral 

2. THE SADDLE-POINT METHOD 

The general expression ( 1.7) for the Green's function 
allows one to displace the original integration contour (the 
real axis) in each of the variables ki = k(ti  ) and xi = x(ti  ) 
where ti is the running time on the integration path if the 
actions, j ,  and the mat r ice~g~,  are analytic functions of their 
arguments. By displacing the integration contour one can 
arrange things so that the integrand becomes a monotonical- 
ly decreasing function in of the distance of each variable 
from the saddle point, in the same manner as it is done in the 
usual saddle-point method for integrals of a single complex 
variable. On account of the dispersion equation ( 1.5) there 
are branch points of w(k,x) as well as branch points and 
other singularities in x due to the singularities in the quanti- 
ties L "O, which are determined by the structure of the unper- 
turbed stationary state. In this case one always chooses a 
definite "physical" branch of L "O, if these quantities are not 
single-values in the complex plane. The branch points of 
w(k,x) from the dispersion equation are of little conse- 
quence, since all the branches are represented in the integral 
( 1.7), and if in displacing the contour we cross a branch cut, 
this simply means going from one branch to the other. In the 
present section we shall assume that the coefficients L "O are 

entire functions of x, i.e., the have no singularities at any 
finite point of the complex x plane and are polynomials in k. 

In order to find the saddle trajectories we must vary 
both x and k. In doing this we assume that only a large mag- 
nitude of the action is important and that the matrix multi- 
plierskiir make an unimportant contribution to the determin- 
ation of the saddle-point trajectory. A justification for this 
assumption can be found a posteriori. 

As a result we are led to the complex Hamilton equa- 
tions 

the index j may be omitted if one considers the Riemann 
surface F = 0 and considers the equations which determine 
the trajectory as local Hamilton equations on this surface. 

We shall be interested in the asymptotic behavior of 
G(x,xf,t) for large t, and therefore, the saddle-point trajec- 
tory must return after a real time t to a real point x. In the 
sequel we shall consider one degree of freedom, i.e., x and k 
are one-dimensional vectors. The reason for this restriction 
is that the classification of recurrent solutions can be quite 
complicated in the multidimensional case. In the simplest 
cases there is no difference of principle from the one-dimen- 
sional situation. 

Hamilton's equations admit of an energy integral which 
completely determines the trajectories in the one-dimen- 
sional case: w(k,x) = w = const, and we must select this 
constant in such a way that for real t the trajectory should 
return to the real point x. There are two types of such trajec- 
tories: fixed points and periodic solutions. 

A. Trajectories of the fixed.polnt type 

In the simplest case the equations which determine a 
fixed point of the equation 

are satisfied for a real value x, and some complex k,, and it is 
these values which determine the whole trajectory. In this 
case the only important points can be the ones for which eis 
decreases monotonically as one goes away from the point 
(x,, k,). It is easy to show that if k, is also real these points 
correspond to a maximum of Im w (k,x) on the real axis. To 
ensure the possibility of the deformation of the integration 
contour from the real axis to a contour with monotonic de- 
crease of eiS, we shall assume that the saddle points (x,,k,) 
can be obtained from points of the real axis by means of 
continuous deformation of the function w(k,x). We note 
that the conditions (2.2) are the natural generalization to 
the nonhomogeneous case of the conditions for absolute in- 
stability (Ref. 3 ) .  

When x, and k, are displaced into the complex plane, 
the behavior of the trajectories in the vicinity of these points 
will be determined by the linear system of equations 

d6k d 2 0  d 2 0  d6a: d 2 0  
-=-- 61% 6x ,  -= - 8 ' 0  

6 x f - 6 k  
oh d x  d k  ax2 d ~  a x a k  ax2 

with the solutions 

1399 Sov. Phys. JETP 68 (I), July 1988 S. V. lordanskl 1399 



where 

(k+,x+ ) and (k-,x- ) are the eigenvectors, and C,  and C, 
are arbitrary complex constants. In the general caseil is not 
real, and therefore there exists one unstable and one stable 
complex direction. If the point (xo,ko) deviate little from the 
real axis, one may choose constants in such a manner that 
the trajectory should return to a real point x. For this it is 
necessary that 

which can always be realized. Obviously, for t- + cu the 
trajectory will spend more and more time near the fixed 
point and w - w (xo,ko). Obviously, such trajectories can ex- 
ist also in the nonlinear approximation. 

B. Periodic trajectories 

Periodic trajectories must have a real period ( t  is real) 
defined by the integral 

along a contour surrounding the branch points of the inte- 
grand. The dispersion equation F( - iw,ik,x) = 0 has real 
coefficients because the real functions must satisfy the origi- 
nal equations ( 1.1 ) and can be real solutions of Eq. (2.1 ) for 
real x = ik, R = - iw and for real x.  In this case the expres- 
sions (2.4) will also be real, so that, in general, solutions 
with a real period exist. Assume that we have a solution with 
the real period T(w ) on some curve w ( a )  ( u  is a parameter) 
in the complex plane. We consider solutions for a, and u, 
such that T(w(ul  ) )/T(w(02) ) = r,/r, ( r ,  and r, are real 
numbers), and we compare S, (x,x,t) and SZ(x,x,t) after a 
time interval t = r ,  TI  = r,T,: 

Assuming that 

1 r - r  1 r ,  T, = Odkldo I., dx, 

we obtain 

i (St-S,) ri (ri-r,) $ k, dz = i(T2-Ti) r, 9 k, dx, (2.5) 
Ti 

and if Im$k, dx#O, which is generally true, it is advanta- 
geous from the point of view of decreasing Im S to move 
away from the curve w (o) all the way to the final point for 
which real-periodic solutions exist. Such points could be 
points where T- cu or singular points of the oscillator type 
when, as the branch points approach each other without lim- 
it, the period in the integral (2.4) approaches a finite limit, 
and afterwards these points separate in the perpendicular 
direction and the period becomes imaginary. The limiting 
point obtained from the confluence of the branch points is a 

fixed point and the exponents il in Eq. (2.3) must be purely 
real, which is a very special case for a complex fixed point. If 
the point corresponds to real x one can show, passing to the 
real variables k and a, that it corresponds to max Im S a n d  
therefore must be discarded. 

If $xdx is purely real for some w, = w (u,), then wo and 
the corresponding trajectory must be included among the 
competing saddle points. However, this case is quite compli- 
cated for the investigation of a possible displacement of the 
contours and rather difficult to realize (simple examples of 
the dispersion equation do not lead to such a situation). 

The case of a real period which tends to infinity is possi- 
ble only when one of the turning points goes to infinity and 
the whole trajectory gets longer and longer as t increases. 
This obviously corresponds to a continuous spectrum, 
which in our case is tied only to large values of x. 

As was the case for the Schrodinger equation, such an 
approach, i.e., the determination of the steepest-descent tra- 
jectory, corresponds to the first term in an expansion with 
respect to a small parameter of "quasiclassicity," deter- 
mined subsequent comparison with the following terms of 
this expansion. Generally speaking, even in the presence of 
such a small parameter, the zeroth term may be insufficient 
for the determination of stability of the original state. For 
example, one might have Im w, = 0, and then it becomes 
necessary to determine the terms of the following order. 

The term of next order is determined by the quadratic 
terms in the action: 

with all the derivatives and the action So taken on the steep- 
est descent trajectory. In order to carry out the correspond- 
ing Gaussian quadrature in the functional integral ( 1.7 ), it is 
necessary to reduce the quadratic form to principal axes, for 
which, however, it is necessary to transform the integral to 
the Lagrangian form, carrying out the Gaussian integration 
with respect to Sk: 

1 C ) Z o  'i, 

S S =  J d r [ ( - - )  bk 
u 2 dk" 

To reduce the Lagrangian quadratic form to its principal 
axes, we utilize the usual technique based on the extremal 
properties of the form, i.e., minimizing it with the additional 
condition that it be normalized 

t 

This leads to an eigenvalue problem of the Sturm-Liouville 
type: 

1400 Sov. Phys. JETP 68 (I), July 1988 S. V. lordanskil 1400 



The corresponding Gaussian quadrature for G is easily ef- 
fected in terms of A, and we shall have 

Here A are some normalizing factors such that the product 
should have a limit. Everything else is included in the factor 
J, including the Jacobian of the transformation from x ( r )  to 
the a, 

as well as a quadrature with respect to Sk. We select as nor- 
malizing factors A, those corresponding to 

which may be considered as the case of the free particle, since 
ifd 'w/dk #O all along the steepest-descent trajectory, then 
by the substitution 

s 

a 2 0  j -aT 9' ak2 
0 

the functional SS reduces to the functional of a free particle 
of unit mass, and the factor J is easily computed. For the 
determination of the eigenvalues which characterize the in- 
stability, the quantity J does not play any role, since we are 
only interested in factors which are exponential in t. In order 
to determine them we note that the magnitude of the product 
II, (A ",A,, ) determines the factors which are substantially 
different from unity. For a large time interval t the spectrum 
of the equation (2.6) is basically dense, with intervals of the 
order of l/t. Introducing the new variable v = n/t we obtain 

and thus 
rn 

t hO(v) dv, 
GmeTSo erp j ln -- 

0 h(v) 

which determines the eigenvalue with the largest increment: 
m 

It should be noted that, in the case of a periodic trajec- 
tory with real period tending to infinity, So has a term $ p  dq 
with nonvanishing imaginary part. The integral may have a 
finite limit for t- C U ,  corresponding to finite transparency 
(the amplified waves come in freely from infinity), or it may 
diverge for t - co , when the amplified waves do not cross the 
barrier, which modifies somewhat the asymptotic behavior 
of G(x,x,t) . 

To clarify the accuracy of the obtained formulas (deter- 
mine the effective small parameter) it is necessary to do a 

perturbative calculation of the corrections to G due to 
fourth-order terms in Sk and Sx (the third order corrections 
vanish from parity considerations) and require that these 
terms be small. Roughly speaking, the effective expansion 
parameter is determined by the ratio of the second term to 
the first in Eq. (2.8). The calculation of the integral in (2.8) 
is quite complicated in the general case. In the case of trajec- 
tories of the fixed-point type, things become much simpler, 
since for large t the spectrum of (2 .6 )  is determined by the 
vicinity of the fixed point where the steepest-descent trajec- 
tory spends most of the time. Equation (2.6) reduces to one 
with constant coefficients, i.e., to the usual oscillator equa- 
tion. One can make direct use of the known result (Ref. 4) :  

where the oscillator frequency is 

aZ@ a% oZo --- [ ax2 a,' ( ax  a k ) z l  

(the branch of the root is fixed by the requirement 
Im A < 0), so that the oscillator corrections decrease the in- 
crement. It is understood that in this case one can determine 
terms in the asymptotic behavior of the Green's function the 
exponents of which differ from w ( k,,xo) by iA(i + n ), i.e., 
we have a discrete spectrum extending in the direction where 
Im w decreases. 

To conclude this section we consider a simple example. 
Let the dispersion equation have the form 
- io = k ( f(x) - ~ ' k  2), corresponding to an instability in 

the interval k * < f /E' (E is a small parameter). Assume that 
the function f converges to a constant limit as r- + a and 
attains its maximum on the real axis. The equations which 
determine the fixed point have a real solution x = x,, k = k, 
corresponding to the maximum off on the real axis and we 
have an unstable discrete spectrum starting at 
- iw = f * ( x , ) 4 ~ ~  (we don't write out the oscillator correc- 

tions which are small in the parameter E ) .  If instead of a 
maximum the function f has only one minimum, then the 
fixed point corresponds to the minimum of iSon the real axis 
and must be discarded. To determine the periodic solutions 
we solve the dispersion equation with respect to k ': 

For the sequel the branch points of k are important, where 
R = f */4t2. AS to the point k = 0, it has no bearing on insta- 
bilities. Computing the appropriate period 

we see that this quantity is real since on the opposite sides of 
the cut k ' k  *. The limiting value R = f m  / 4 ~ ~  corresponds 
to T- cu and an absolutely unstable spectrum for x -+ . 
It is easy to see that 
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so that, in agreement with the general reasoning, we must 
necessarily hit upon the limiting value of the real period 
T ( w ) .  It  is easy to verify that all the conditions that allow a 
displacement of the integration contour (in k) off the real 
axis are satisfied. The integral 

at the turning point x ,  - co characterizes the transparency of 
the barrier and will diverge iff does not converge rapidly 
enough to f ,  . In this case the asymptotic behavior of the 
Green's function at the fixed point will not be a simple expo- 
nential e-'*', but will contain an additional small factor 
related to the fact that the amplified waves do not penetrate 
easily back to the point. This factor can be enhanced if one 
chooses for each t a sufficiently large x ( t ) .  

One should note that even if the subsequent terms in the 
expansion ( 1.7) yield corrections of the order of unity, the 
displacement of the integration contour in k and x into the 
complex plane may turn out to be useful. In view of the 
monotone decay of the function eiS on the displaced contour 
one can, e.g., estimate G by means of the method of major- 
ants, or make use of the Feynman variational principle (Ref. 
4) .  Sometimes one can find a simpler effective equation near 
the fixed point, which replaces sufficiently accurately the 
original system ( 1.1 ) . 

3. BRANCH POINTS 

In the presence of branch points in the coefficients L aD 

as functions of x it may happen that when the integration 
contour is displaced from the real x axis (in the direction 
where leis ( decreases) we encounter a branch point in x and 
the steepest-descent trajectory goes off onto another "un- 
physical" sheet of the Riemann surface of the coeficients 
L "8. In this case, as happens for usual contour integrals, the 
value of G (in the presence of an appropriate large param- 
eter) will be determined directly by the branch point. At the 
same time the extremals of the corresponding action in the 
expression for the function G will satisfy the condition that 
the first variations with respect to k vanish, a condition 
which, on account of the fact that x = x,, reduces to the 
equalities: 

Thus, in this case the extermal trajectory consists of a por- 
tion described by the complete Hamilton equations, from the 
point x to the point x, where at the same time the velocity 
dx/dt vanishes. After that the trajectory remains for some 

Green's function will be determined exactly as in the preced- 
ing section. 

CONCLUSION 

We have shown that for an arbitrary system of differen- 
tial equations describing a physical system (a  "correct" sys- 
tem, i.e., one where the solutions which oscillate rapidly in 
space are damped in time) one can write a functional inte- 
gral representing the Green's function for such a system. 
The main distinction of this representation from the usual 
Feynman integral representation of the Green's function of 
the Schrodinger equation consist in the many-sheeted nature 
of the Hamiltonian, corresponding to the different branches 
of the dispersion equation (1 .5) ,  as well as in the complex- 
valued nature of all the variables on the trajectories. The 
introduction of such a representation allows one to consider 
complex values for the differential operator id /dx and of the 
independent variable x and to construct the asymptotic be- 
havior of the green's function for large real times, by solving 
Hamilton's equations with o (k ,x )  playing the role of Ham- 
iltonian. For the case of a single spatial variable the possible 
types of trajectories reduce to three: a )  the fixed point, b )  
periodic trajectories with real period and real $k dx; both 
these cases yield a discrete spectrum, and c )  periodic trajec- 
tories with real period tending to infinity, yielding a contin- 
uous spectrum. It should be stressed once again that each 
trajectory needs to be checked for its adequacy in represent- 
ing the asymptotic behavior of the original functional inte- 
gral. 

The results permit a simple investigation of the stability 
of weakly inhomogeneous states, if the dispersion equation 
for linear disturbances is known in the local approximation. 
The approach itself remain unchanged for the case of a large 
number of dimensions, but the behavior of the steepest des- 
cent trajectories may be quite complicated and the problem 
of finding the correct saddle-points is quite difficult. The 
confinement to differential equations does not seem essen- 
tial, since the final results are formulated only in terms of the 
local dispersion equation. We note that Hamilton's equa- 
tions with small imaginary terms have been used in Ref. 5 for 
the solution of the problem of propagation of wave packets in 
unstable media. In the book by Maslov" Hamiltonian equa- 
tions which are close to real ones have been utilized for the 
construction of solutions of linear equations. 

The author expresses his deep gratitude to A. G. Kuli- 
kovskii for a valuable discussion of various problems during 
work on this paper. 
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