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For media with a decreasing dispersion law it is shown that the matching of the Kolmogorov weak 
turbulence spectrum, realized at large k, to a spectrally narrow source situated at small values of k 
is realized in terms of an intermediate solution. This solution has the form of a chain of peaks of 
decreasing amplitude on a background which decreases more slowly. The dependence of the 
energy flux carried off by the turbulence spectrum on the position of the source in k-space is 
found. 

Apparently, one of the most important and simplest to for- 
mulate questions which the theory of turbulence must an- 
swer is the question of how, knowing the amplitude and 
spectral characteristics of the energy source, one can deter- 
mine the power absorbed by the system. In this paper we 
consider weak wave turbulence, when the evolution of the 
occupation numbers n, of the plane wave states is described 
by kinetic equations, and the role of the sources is played by 
the growth rate y, of some instability: 

Here Stin, ,n,.) is the collision term describing the wave- 
wave interactions, and r, is the wave damping decrement 
playing the role of an energy sink. We discuss the traditional 
Kolmogorov situation, when the scales of the excited waves 
and of the effectively damped waves are substantially differ- 
ent, and energy flows from the source to the sink in k-space. 

Stationary solutions of Eq. ( 1 ) which realize a constant 
energy flow P were first constructed by Zakharov' using as 
an example of media exhibiting scale invariance. For a three- 
wave collision term 

st {n., n.,)= 1 I Vkl,~26(k-kl-k,)6(~h-~l-~) 
X (n,n,-nkn,-nkn2)dkl dk, 

-2 J I V i k z  1'6 (ki-k-kz) 6 (~i-wr-wz) 

X (nknz-nlnk-nlnz)dkl dkz ( 2 )  

the stationary Kolmogorov solution has the form 

Here d is the dimensionality of k-space, m is the homogene- 
ity (scaling) index of the matrix element of the interaction 
( V,,, ,, ,.. = R " V,,.,. ), b is a dimensionless constant of the 
order of unity, depending on m and on the dispersion law 
a(@,, =Rawk, b = b(a,m). 

The energy flux carried off by the Kolomogorov spec- 
trum is usually determined from the following consider- 
ations (Ref. 1). Let the source y, be nonzero in a small 
neighborhood of width Ak near the point k = k,, i.e., is nar- 
row compared to k ( Ak 9 k,). The energy flow into the me- 
dium due to the pumping ( y  = Jy, d k )  

I 

d-1 
Pk = lykwknk dk = yw,,n,k, (4a) 

0 

is equated to the energy flux into the region of large k, deter- 
mined by the matching conditions: 

Eliminatingn,<> from (4)  weobtain (h = a - m) (Refs 1,2) 

As we shall show in the present paper, the dependence (5)  of 
the energy flux P on the position of the pumping point k, is 
incorrect. The reason is that the matching condition (4b) is 
based on the assumption that the occupation numbers n, 
depend smoothly on k in the region kzk,.  In the case of a 
narrow source, when y, is a peaked function of the magni- 
tude of the wave vector, the validity of this assumption is by 
no means obvious. One can use the estimate (4b) for 
Akzk,, but then (4a) needs to be replaced by 
P=: y,<, w,,,n,<, k ,d, and in place of (5)  we obtain 

The quantity h plays an important role in the theory of the 
weak-turbulence Kolmogorov spectra (see Refs. 1-3). In 
particular, the sign of h determines the position of the ener- 
gy-containing region of the spectrum (large or small k) ,  
since the turbulence energy is 

For h < 0 the energy integral diverges at small values of k, 
and the region containing the energy will be near the source 
k z  k,. For h > 0 the bulk of the energy is concentrated in the 
region k z  k,, where k, corresponds to the sink r, . 

As we shall show presently, the dependence (6) ,  
Pcc K F, also holds in the case of a spectrally narrow source, 
and is related to the fact that for k 5 k, the spectrum is by no 
means a monotonically decreasing function of k. We note 
that the energy flows (5 )  and (6)  differ by the factor (k,/ 
Ak)2. For a narrow source this parameter is large and Eq. 
(5)  is useless even for a rough estimate of the flow. 

We consider isotropic acoustic turbulence 
(w, = vk( 1 + a2k '), ak, g 1; I Vkk~ku l 2  = kk 'k " ) (Refs. 1- 
5). In the limit a k g  1, after averaging over angles, the colli- 
sion term (2)  takes the form (up to multiplication by a con- 
stant) 

k 
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TABLE I 

where n ,  = n,, and n, = n ,  ,, (Refs. 1,3). For three-di- 
mensional sound (d = 3) one must assume c = 2, and the 
stationary Kolmogorov solution equals nL3' = k -9'2 (Refs. 
1,s). In the case d = 2 (capillary waves on the surface of 
shallow water) c = 1 and n?' a k -3 .  This solution was first 
found by Musher, who also observed its existence in a nu- 
merical experiment (Ref. 6). The last formula differs from 
Eq. ( 3 )  because the average of a two-dimensional delta func- 
tion in the wave vectors over the angle is proportional to 
( ak )  -' (Ref. 5) .  This circumstance leads to the necessity of 
assuming here m = 1 (for details see Ref. 3 ) .  Thus, 
h = a - m = - 4 for three-dimensional sound whereas 
h = 0 for the two-dimensional case. 

We start with the case d = 2. If a source which is nar- 
row compared to k generates a narrow wave-number peak 
n, around k = k, then, on account of the properties of the 
three-wave interaction, this leads to the appearance of peaks 
at k = k, = jk,, j being a natural number. We first consider 
the interaction of the peaks with each other. Then, to first 
order in Ak /k,, we obtain from Eq. ( 7 )  the following equa- 
tion at k = k,: 

Here N, is the number of waves in the jth peak 

Equation (8 )  has a stationary solution of the Kolmogorov 
type, with asymptote NJ aj-3 for j$1  (see Ref. 4) .  It is 
understood that within the framework of Eqs. ( 1 ) and (7 )  
such a solution does not have external stability: waves out- 
side the peaks ( k  # kj) must also be generated. It is neverthe- 
less possible that the occupation numbers n ,  fork # k, grow 
to values which are substantially smaller than the ampli- 
tudes of the peaks, i.e., the spectrum which is established 
represents a chain of peaks on a low background. If such a 
solution exists, its properties can be found by perturbation 
theory in the small parameter Ak /k,. 

We write down the kinetic equation fork # kJ , consider- 
ing to first order the interaction with a chain of peaks 
(n = [ k /k,] is the integer part of k /k,,) : 

The equation ( 9 )  has the stationary solution 

where g ( k )  is an even periodic function of period k,,. Thus, 
the background of the spectrum must decrease with increase 
of k slower than the amplitude of the peaks. As a conse- 
quence, the solution under discussion is realized at an inter- 
mediate scale interval k, < k < k, , where k, is determined 
by the ratio of the amplitude of the first peak to the ampli- 
tude of the background. 

In the region k > k, the usual monotonically decreasing 
Kolmogorov spectrum n, a k -%must be realized. 

The presence of the background in the spectrum leads 
to the appearance of an additional damping for waves with 
k = k,, with a decrement 

4k,kmg=4ko-'k,k,,, J g (li) dk ,  
0 

on account of which, as k, increases, the chain of peaks devi- 
ates more and more from the Kolmogorov law (there is a 
steeper fall-off, see Table I below). Considering the next or- 
ders in perturbation theory and taking into account terms 
which are quadratic in the amplitude of the background, one 
can derive other properties of the solution under discussion 
(deviations from the Kolmogorov law n, ~ j - ~ ,  fine struc- 
ture of the peaks, etc.). 

It is curious to note when two-dimensional acoustic tur- 
bulence is excited by an external force rather then by the 
increment, i.e., when the right-hand side of Eq. ( 1 ) contains 
a term F, in place of y, n,, the stationary solution can be 
obtained analytically in closed form: 

m 
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~ ( w )  = 1 k-'eiwkFk dk. 
0 

Setting F, = S(k - k,) we obtain from Eq. ( 11 ) a solu- 
tion in the form of a chain of peaks, decreasing according to 
the Kolmogorov law: 

CO 

Incidentally, the energy flow is obtained in this case trivially: 

and does not depend on n,. The considerations about the 
structure of the spectrum stated above were verified by a 
numerical simulation of Eq. ( 1 ) with the collision term (7)  
( C  = 1 ) and a narrow source of the form 

To ensure the existence of an energy sink in the region of 
large k, we have assumed than n, =O for k > k, (see also 
Refs. 2 and 4). The equation was solved on discrete grids of 
size N = 200 and 400 points in k. The initial state was chosen 
in the form n, (0)  = const = lop5, y = 100. An explicit dif- 
ference scheme was used, with first approximation of the 
order O ( r ) ,  which was stable under the condition that the 
time step was 100 times smaller than the reciprocal of the 
increment, i.e., y~ < lop2. The calculation was carried out 
on the "conveyor" processor A-12, Ref. 7. One should note 
the anomalously large time intervals for the establishment of 
the spectra, which were of the order of hundreds of recipro- 
cal increments. 

We considered a solution as steady-state when the rela- 
tive rate of change of the occupation numbers became 
smaller than 10-"er unit of dimensionless time ( l /y).  The 
transient time increased as the relative width Ak /k, of the 
source decreased: t ~ 6 0  for Ak /k, = 3, t = 70 for Ak / 
k, = +, t=. 100 for Ak/k, = +. The steady-state spectrum 
for k, = 40, Ak = 8 is shown in Fig. 1. As can be seen, the 
amplitude of the first peak exceeds by two orders of magni- 
tude the amplitude of the background for k=: k0/2. The first 
peak is substanially narrower than the source its half-width 
at a height which is e times smaller than the maximum is 
A k , ~ 2 .  The other peaks get wider according to the law 
Ak, a k, , see Fig. 2 (the dashed lines are straight). The num- 
ber of waves in the jth period 

k,+k,/Z 

decreases approximately according to the Kolmogorov law 
N, ajp3 (See Table 1, which lists the values of the average 
spectral index S( j) ). On account of the two latter circum- 
stances ( Ak, a j, Nj ajp3) the peak amplitudes decrease ac- 
cording to the law n (kJ ) -- NJ /Ak, a j-4. In Fig. 1, the upper 
dashed line has a slope - 4, and the lower slope - 1 (in a 
logarithmic scale). It should be noted that the decay law 
n, a k - ' governs not only the amplitudes of the minima, but 
also the background as a whole, with the exception of a nar- 
row neighborhood of the peaks. This can be seen by defining 
the quantity 

FIG. 1. 

which, for instance, differs from unity by less than + in the 
intervals 13<k<28 and 56<k<65 (k, = 40, Ak = 8).  Fur- 
thermore s, ( k )  increases, in agreement with the fact that the 
spectrum goes over into the smooth Kolmogorov solution. 
The decrease of the oscillations of n, with increase of k and 
the transition to the smooth spectrum are illustrated in Fig. 
3, which corresponds to k,, = 20, Ak = 4, N = 400. The 
dashed straight line in this figure has the slope - 3. For 
k > 240 the influence of the energy sink already manifests 
itself and leads to a rapid decrease of the spectrum. 

To verify that the structure of the spectrum observed in 
the numerical experiment does not owe its existence to insuf- 
ficiently fine discretization of space, we have compared the 
results for two cases differing only in the mesh of the discreti- 
zation (Ak = 4, k, = 20, N = 200 and Ak = 4, k, = 20, 
N = 400). The energy fluxes from the sources 

for these two cases agreed within 2 X lop3 in relative magni- 
tude. The fine structure of the spectrum (ratio of occupation 
numbers at the minima and maxima, the mean index, etc). 
also agreed within several percent. In absolute magnitude 
the occupation numbers at corresponding points (k-+2k) 

A to; 

FIG. 2. The dependence of the widths of the peaks Ao, = [ ( n ,  , 
- 2n1 + n, + , ) /4n1 ] - 'IZ on their positions: Ctwo-dimensional  sound, 
o,, = k,, = 40, A o  = Ak = 8; 0-two-dimensional sound, w,  = k ,  = 20, 
A o  = Ak = 4; A-three-dimensional sound, o, = k ,  = 20, 
Aw = Ak = 4;  O-capillary waves on deep water, w,, = 10, A o  = 2. 
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FIG. 3 

differ approximately by a factor of eight (in agreement with 
the scaling n,, +A4nk, q = 2m + d - a = 3).  

It is interesting to note that the energy flow decreases as 
the relative width of the source increases: P = 1534 for Ak / 
k ,=&,  P = 1 4 4 2 f o r A k / k , = f ,  a n d P =  1362forAk/  
k, = 4.  Thus, when the integrated strength of the source, 
y = $yl dk, increases the energy flow P decreases (cf. Eq. 
( 5 )  ). On the other hand, the energy flow is practically inde- 
pendent of k, (for constant Ak /k,) to within one percent, 
owing to the discretization. 

We now turn to three-dimensional sound. In this case 
one can also obtain a solution having the form of a chain of 
peaks: N, a j b W 2 ,  j %  1; but now the equation for the back- 
ground (the analog of Eq. ( 9 )  ) does not admit of any power- 
law solutions. The results of the numerical solution of Eqs. 
( 1 ) and (7 )  with c = 2 is shown in Fig. 4, which corresponds 
to k, = 20, Ak = 4; the dependence of the mean index on j is 
given in Table I. The number of waves in the jth period de- 
creases aproximately according to the Kolmogorov law 
N, ~ j - ~ l *  , the width of the peaks increases linearly with the 
label Ak, a k , and the amplitudes of the peaks behave as 

I' n(k,) a j "  '. The dashed straight line in Fig. 4 has the 
slope - 5.5. 

We note that for k,, = 1 a monotonically decreasing 
spectrum is established, which for 1 < k <  k, is close to the 
solution n, a k -912. It should be stressed that stationary 
spectra having the form of chains of narrow peaks on a more 
slowly decreasing background occur not only in weak acous- 
tic turbulence. It appears that this type of distributions 
should be generated by a spectrally narrow source in the 
arbitrary case of weak turbulence of waves with a scale-in- 

FIG. 5 .  

variant decaying dispersion law. We have carried out the 
numerical modeling of weak turbulence of capillary waves 
over deep water (wk = k 3'2, for the expression of the matrix 
element see Refs. 1,8). Solving the kinetic equation in w- 
space (see also Ref. 8 )  on a discrete lattice with N = 128 and 
a source of width Aw = 2 placed at o, = 10 we have ob- 
tained a steady-state solution containing five well-pro- 
nounced narrow peaks at o = jw,, j = 1, ..., 5. The sixths and 
seventh peaks are weak; for w > 77 the spectrum decreases 
monotonically as k increases, Fig. 5. 

The number of waves N, in the peaks decreases as j 
increases approximately according to the Kolmogorov law; 
in this case the Kolmogorov exponent is s, = 17/6 z 2.83 
(Ref. 1 ). The widths of the peaks increase linearly with their 
order in the interval k,< k, < k, , just as for acoustic turbu- 
lence (see Fig. 2).  Thus, in the transition interval 
k, < k < k,, the amplitudes of the peaks decrease with their 
order according to a power law, with exponent (in w-space is 
larger by one than the Kolmogorov exponent (see Table 11, 
which lists the exponent so(@) ). 

Having an idea about the structure of the solution gen- 
erated by a spectrally narrow source, we return to the energy 
flow question posed at the beginning of the article. In the 
presence of a narrow peak the estimate (4a) retains its form, 
all that is needed is to substitute N ,  for n,,,: 

And now in place of (4b) we obtain 

Substituting Eq. ( 13) into ( 12) we obtain Eq. ( 6 ) .  Indeed, it 
was already mentioned that for the two-dimensional case the 
energy flow does not depend on k, (h  = 0) ,  according to the 
results of the numerical simulation. In the three-dimension- 
al case, the dependence is close to a reciprocal: Pa k ;  ' 

FIG. 4. 

TABLE I1 
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(k, = 1, P z 7 1 3 ;  ko = 10, P z 7 1 . 7 ;  ko = 20, P z 3 4 . 3 )  as it 
should for h = - 1. For capillary waves we have wo = 1 ,  
P=:110; wo = 10, P z 8 ;  wo = 20, P ~ 4 . 5 ,  which approxi- 
mately corresponds to a reciprocal dependence of the energy 
flow on the frequency: 

P ~ k o 2 h = k , - s ~ 2 = a o - ~  
(h=3/2-gll=-3/rr see Ref. 1.). 

Thus, independently of the spectral width of the source, 
the energy flow carried off by the Kolmogorov spectrum of 
decaying turbulence is proportional to k ih ,  i.e., it increases 
as the source is moved into the energy-containing region. 

We are grateful to V. E. Zakharov and V. S. L'vov for 
useful discussions of the problems touched upon here. 
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