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We consider nonlinear wave processes in a weakly inhomogeneous plasma. We obtain a quasi- 
linear equation taking into account the effect of waves on resonant particles under conditions 
when the inhomogeneity appreciably affects the nature of the resonance interaction. Under the 
same conditions we study three-wave interactions. As an example we consider the nonlinear 
interaction in a relativistic plasma moving along a strong curvilinear magnetic field. 

1. It has been shown in Ref. 1 that the strongest effect of packet. There is in ( 3  summation over the different local 
an inhomogeneity in a medium is on the resonance interac- wave numbers which characterize the wave packets. TO de- 
tion between waves and particles. Even when the character- scribe the electromagnetic properties of a weakly dispersive 
istic size L of the inhomogeneity is much larger than the medium in the linear approximation it is necessary to find 
wavelength of the oscillations considered, the permittivity tensor ( q , r , ~  ). By using the energy con- 

servation law, the authors of Ref. 1 showed that the quantity 
kLB1, ( I )  E , ~  is defined as follows: 

the inhomogeneity can radically change the nature of the 
interaction of the charged particles in the medium with the 
electromagnetic waves. The fact is that the quantities which 
characterize the wave emission and absorption processes are 
the formation length I, and, in the case of strong collective 
interactions, the quantity which is the inverse of the spatial 
growth rate x- ', i.e., the length over which the wave ampli- 
tude changes by a factor e. These two quantities may be com- 
parable with L. Moreover, in view of the exponential nature 
of the phase synchronism when there is resonance interac- 
tion even when I,/L and l / xLg  1, it can be important to 
take the inhomogeneity into account. 

Examples of a strong effect of an inhomogeneity on the 
damping and excitation of waves were given in Ref. 1. In 
particular, it was shown that Landau damping of Langmuir 
waves is appreciably larger in an inhomogeneous plasma 
than in a uniform one, even when the inhomogeneity is com- 
paratively weak. Therefore, even in the linear approxima- 
tion, an inhomogeneity changes the nature of the resonance 
interaction between waves and plasma particles consider- 
ably. We show also that it affects strongly also the nonlinear 
particle-wave and wave-wave interactions. 

2. The plasma inhomogeneity manifests itself in two 
ways: first of all, an irregularity in the motion of the charged 
particles is caused by the forces which sustain the given non- 
uniformity and, furthermore, there is the effect of the in- 
homogeneity on the wave motion described by the geometri- 
cal-optics equations when ( 1 ) holds. It makes therefore no 
sense to use for the description of the wave field E ( r )  an 
expansion in plane waves: 

E( r )=  J~(k)e '* 'dk ,  ( 2 )  

since they are not eigenfunctions of the field in an inhomo- 
geneous medium. It is better to use here an expansion in the 
fields of wave packets: 

E (r) = E l 3 0  (r, q) ei*(r), 

X4) 
where EL (k,r,w) is the response of the inhomogeneous me- 
dium to a plane electromagnetic wave: 

4n i (k, r, 01) = 6a8 + - (~aoO(k, r, 0 )  7 

0 

i. (r, O )  = (k; r, w ) ~ @  (k) eikr  dk, ( 5  

j ( r , ~ )  is the current excited in the medium by the wave (2) .  
We recall here that the medium is inhomogeneous but sta- 
tionary, so that all wave quantities are proportional to 
exp( - i d ) .  The quantity E% (k,r,w) for a collisionless in- 
homogeneous plasma can be easily calculated from the solu- 
tion of the kinetic equation for the particles, by using func- 
tional integration. Using the transformation (4)  we can 
write the expression for E , ~  in a collisionless plasma in the 
form' 

1 

Here f (r,p) is the distribution function of particles with 
chargee;pl = p( t l ) ,v '  = v( t f ) , andr '  = r ( t l )  aretheirmo- 
menta, velocities, and coordinates at time t ' when they are 
moving along an unperturbed trajectory such that at time t 
they have at the point r a momentum p and a velocity v. The 
quantity R* in (6) is determined by the particle trajectories: 

4 
r-rf=h(r, p, t - t ' ) ,  R'=)L(r+R'/2, p, t-t'). 

where + ( r )  is the phase determining the local wave number 
( 7 )  

q = V$, while ~ ' ( r )  is the slowly changing amplitude of the The inhomogeneity manifests itself in Eq. (4)  for the permit- 

1 /88/071380-06$04.00 @ 1989 American Institute of Physics 1380 



tivity E , ~  of a weakly inhomogeneous medium in two ways: 
firstly, through the quantity EL in which the trajectories of 
the particle motion correspond to the trajectories in the in- 
homogeneous medium, and, secondly, through the nonloca- 
lity connected with the fact that a wave with a wave vector q 
at a given point r has in a neighboring point r' a wave vector 
different from q. This corresponds to the integral nature of 
the transformation (4). 

Expression (4) is completely equivalent to writing the 
permittivity in the form 

1 
Cm(qI r)=-$ ( 2 ~ ~  6k8 (q, r) eiqq 

w h e r e ~ z ~  is the kernel of the integral connection betwen the 
electric field and the induction vectors in an inhomogeneous 
medium, symmetrized with respect to their variables: 

One finds easily from Eqs. (8)  and (9) the equation 

i d2ea: 1 d'eap0 
eaB (q, r )=  ~ a t ( q ,  r) -I- ----- +... , (10) 

2 drdq 8 dr2 8q' 

which is obtained by expanding the kernel Pd in powers of 
r - r' under the condition that Ir - rfl$ lrl. Equation ( 10) 
also follows directly from (4)  .' U s ~ a l l y ~ . ~  one uses a finite 
number of terms in the expansion ( 10). This is insufficient 
for studying the nature of the resonance wave-particle inter- 
action in an inhomogeneous medium, as can be seen from 
Eqs. (6) and (7). Indeed, the dispersive properties of the 
medium-including the contribution from the resonance 
particles-are described by the functions 

where the value of R* is not the same in an inhomogeneous 
medium as the value calculated using the particle trajector- 
ies (i.e., A ) .  We can solve Eq. (7)  for R* by expanding in iR* 
(if I,/L, l/xL < 1 ), but taking into account a finite number 
of terms is equivalent to taking into account in ( 10) all terms 
of the expansion, as R* occurs in the argument of the expo- 
nential. Moreover, Eq. (4)  gives a rather simple prescription 
for calculating the permittivity tensor cap from the quantity 
~ 0 , 8  which is found in the same way as in a homogeneous 
medium. 

Changing to a consideration of the nonlinear interac- 
tion, we note to begin with the following: the dispersion rela- 
tion for linear waves is determined in a weakly inhomogen- 
eous medium by the equations 

At the same time, we can write the solution of the Maxwell 
equations in the form [see (5)  1 

J [kak,-k2b,+ (02/e2) 8.: (r, k, o )  IEB(k)etkr dk=O. ( 12) 

Comparing ( 1 1 ) and ( 12) we see that they are equivalent, 
provided the relation 

j E (k) O (k, r) erkr  dk = Eyq, r) e" 

holds, where Q> (k,r) is an arbitrary function of the coordi- 
nates which varies slowly over a wavelength A = 21r/q. In 
thecaseof (11) and (12) 

0 (k, r) =easo(k, r) . 
Equation ( 13 ) effects the change from the expansion of the 
wave field in plane waves to an expansion in wave packets, 
which is more suitable for an inhomogeneous medium. 
Equation ( 13 ), which is obtained from the linear-approxi- 
mation equation, is valid also to any order of perturbation 
theory--each power of the wave field must be transformed 
according to ( 13 ). We show this now with the quasi-linear 
approximation that takes into account terms quadratic in 
E ( r )  as the example. Just as in obtaining the dispersion Eq. 
( 1 1 ), we use the energy conservation law 

where f  is the averaged particle distribution function, E their 
energy, and W the electromagnetic energy density in the 
wave. Recalling the expansion ( 13) we can write the deriva- 
tive d W / d t  in the form:' 

The quantity E$ is the anti-Hermitean part of the permittiv- 
ity tensor (4): 

&.H -Cag-~oa' -2n 
a8 - 

2i o 
(oao+ooa') r (16) 

where uap is the conductivity of the medium. Substituting 
( 15) and ( 16) in ( 14) we get the equation 

where on the right-hand side we have the averaged work 
done by the electric field of the waves on the current pro- 
duced by this field in the medium. On the left-hand side of 
( 17) we have the derivative df /dt which can be determined 
from the solution of the kinetic equation. Expanding the 
electrical field in the Fourier integral (2)  we can write the 
result in the form 

Here Eo and Bo make up the average electromagnetic field in 
the plasma, and the angle brackets indicate averaging over 
the realizations of the field E ( r ) .  The quasi-linear equation 
in the form ( 18 ) cannot be used for actual calculations as it is 
not clear how to average the quantity E z  (k,)EA (k).  For a 
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homogeneous medium, ( E  ( k ,  ) E, (k)  ) is proportional to 
6 ( k  - k ,  ) but this is not the case for an inhomogeneous me- 
dium, as one and the same wave field can have different 
Fourier harmonics when expanded in a Fourier series. The 
quantity ( E S  ( k , )  E, ( k )  ) depends on the magnitude of the 
inhomogeneity and is a functional of it. To perform the cor- 
rect averaging one must change in ( 18) to the representation 
of a field of wavepackets in the form ( 1 3 ) .  To do this we 
substitute Eq. ( 18) into ( 17),  integrate, and use the relation 

t 

kv' k,k,' d f  
x[a,.(i ---) + - - J X d t '  

to obtain Eq. ( 13) ,  where uaB ( k , r )  plays the role of the 
quantity @ ( k , r ) .  We see thus that in the quasi-linear approx- 
imation Eq. ( 13),  which realizes the transition to the physi- 
cally suitable representation of the electromagnetic field in a 
weakly inhomogeneous medium, follows from the conserva- 
tion law for the electromagnetic energy and the particle en- 
ergy. 

Here, as when we compared Eqs. ( 1 1 ) and ( 12),  there 
occurs in Eq. ( 13) the function @ ( k , r ) ,  which is the linear 
response to the field of the electromagnetic wave. However, 
(1 1) was obtained in Ref. 1 assuming that the transfer of 
electromagnetic energy in an inhomogeneous medium has 
the same form as in a uniform medium, whereas now we start 
from the conservation law for the total energy-of particles 
and waves. 

After the transformation ( 1 3 )  the quasi-linear Eq. ( 18) 
takes the form 

i u, d 
- - S  +--- 

2 " m  d r ,  2 o dr, 

a - J dt' e x p [ i m  ( t - t ' )  -iqR'] 
d p a - _  

R'=h ( r+R' /2 ,  p, t - t ' ) .  

We used here the fact that ( E O * ( q ) E o ( q , ) )  mS(q - q , ) .  
Just as the quasi-linear Eq. ( 1 9 ) ,  the nonlinear equa- 

tions which describe the wave-particle interaction to any or- 
der of perturbation theory can be obtained from the solution 
of the kinetic equation, by expanding the electromagnetic 
field in a Fourier series and afterwards using the transforma- 
tion ( 1 3 ) .  

We now consider the three-wave interaction. Let there 
be three waves with frequecies a,, w,, w,. Their electric fields 
have correspondingly the form 

and their local wave numbers are q, = q ,  ( w , , r )  = VIC,, . 

We consider the case where w ,  --,a, + w,. The nonlinear 
current j at the frequency w, + w,  can easily be found from 
the solution of the kinetic equation using the procedure de- 
scribed by us: 

~ , = O ~ , , ~ E , , O E ~ I ~  exp  [i($,-tl~.~)-i(o~+o3)t]. 

Here u,,,, is the nonlinear plasma conductivity: 

A 

The operators My ( w , q )  are defined as follows: 

ahi ( r + R e / 2 )  - v,' 
23r,  0 20) a,'., 

h 

The structure of the operators, M is the same as that of the 
quantity E , ~  of (61, SO that the correct symmetry is as- 
sured.' Under time reversal ( t -  - t )  the nonlinear interac- 
tion remains the same for waves with reversed fronts 
(a- - 0, q -  - q ) .  

One can similarly find the nonlinear response at the 
frequencies w , - w ,  and w  , - w,. Under the conditions 
Aw = o,  - w,  - w,  < w ,  and 1 < I (E" is the Hermi- 
tean part of the permittivity tensor, E = cH + E " ~  ) the equa- 
tion for the evolution of the wave E, can be written in the 
form 

1 3 ,, a . cv -- [mi  &o~I-Eirn Eip ---[( qiDaia 
mi do1  d t  mi Or, 

Equation ( 2  1 ) is obtained from the dispersion Eq. ( 1 1  ) by 
using the nonlinear current ( 2 0 )  in the right-hand side. As 
in a uniform medium, we choose instead of a wave with a 
fixed q  a set of waves with a wave-vector spread Sq <q .  This 
corresponds to an addition SIC, - qSr to the phase, where 
Sq = VSIC, (just SIC, - qSr, because S1C, = (dIC,/dq)Sq + qSr 
and we are interested in a set with different wave vectors q ) .  
Moreover, expanding the dispersion relation in the small 
quantities Sw, Sq, Sr and making the substitution 

we are led to the left-hand side of Eq. ( 2  1 ) . In the right-hand 
side we have taken into account the anti-Hermitean part of 
the tensor E , ~ ,  a part satisfying the estimate IsaH I /  

I -SW/W and corresponding to damping or excitation of 
waves by interactions with the particles of the medium. 

The wave amplitude E: varies slowly in space, so that it 
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can be assumed to be constant over distances comparable 
with the wavelength. We average Eq. (21) over a volume 
which contains many wavelengths, but, on the other hand, 
has a dimension 2 which is much smaller than the charac- 
teristic length L of the inhomogeneity and the length LN 
over which the waves appreciably interact with one another. 
As a result, the second term on the right-hand side of Eq. 
(2 1 ) becomes proportional to the function 

2 JexJ-i (ql-qz-q,) r-i 
'Y3 

a (ql-qz-qa) rr ] dr, (22) 
2dr 

with a characteristic width of the order of (dq/dr) ' I 2  =: (q/ 
L ) " ~  relative to Aq = q, - q, - q,. If the characteristic 
spread of the waves over the spectrum is larger than this 
quantity, we can replace the function (22) by a 6-function. 
As a result we have 

Equation (23) describes the interaction between three 
waves with fixed phases in an inhomogeneous medium. For 
waves with random phases we must average (23), separating 
in the wave E y the random component g: and the compo- 
nent ey which is correlated with the waves E and E ! .  This 
procedure is completely analogous to the one known for a 
uniform m e d i ~ m . ~  

The right-hand side of Eq. (23) is proportional to the 
total time derivative of the electromagnetic energy density of 
the wave 

namely: 
d Wi ~i OH o* o 1 
-= --&a8 Eia E I P  - - ( (~~aoh 

dt 8x 4 

Writing down the same equation for the two other waves 
with energy densities W2 and W,, we verify that the total 
energy is conserved: 

The quantity df /dt is here the change in the particle distribu- 
tion function caused not only by effects which are quadratic 
in the field, i.e., quasi-linear, but also by cubic effects which 
are connected with the nonlinear Landau damping. The 
quantity df /dt is calculated from the solution of the kinetic 
equation in the same way as in the quasi-linear approxima- 
tion ( 18). We see thus that also for the three-wave interac- 
tion the transformation ( 13 ) conserves energy. 

Concluding this section, we establish the connection 

between the nonlinear conductivity tensor a,,, (q,,q,,r) 
obtained by us and the kernel of the integral relation between 
the electrical fields and the electrical current caused by 
them: 

j. (I) = ON..& (I, r', rfl) E.(rf) EA (rff) dr' dr". 

As in (9), we determine the symmetrized kernel : 

r-r' 
ja (r) = J JaiDL (r-r/, r-r1/, - - - 

2 

The nonlinear response to plane waves a: (k,,k,,r) can then 
be expressed in terms of 3, as follows: 

On the other hand, according to ( 13), 

Substituting expression (25) into (26) we get 

exp (--iqiql-iqzq2) dql dq2. 

We see thus that, as in the linear approximation, the nonlin- 
ear conductivity is the Fourier transform of the symmetrized 
kernel (24). One also checks easily that the transformation 
( 13) corresponds, in any order of perturbation theory, to the 
following symmetrization of the kernel 6;; (n  is the order of 
the nonlinearity) : 

3. We consider now the interaction of waves in a plasma 
which is a stationary stream of relativistic charged particles 
with a Lorentz factory) 1 moving along a very strong curvi- 
linear magnetic field. As their velocity is close to the light 
velocity, practically all particles are resonant, and the in- 
homogeneity of the medium affects most strongly just the 
resonant particles. Therefore, the waves in such a plasma are 
most strongly exposed to the effect of the inhomogeneity. 
The inhomogeneity is caused by the curvature of the mag- 
netic field lines when the anisotropy vector of the plasma is 
directed along the magnetic field. Moreover, the problem 
about the emission of electromagnetic waves by such a plas- 
ma is of principal interest for the understanding of the mech- 
anism of the radio-emission of pulsars. 

Moving along a curved trajectory, the charged particles 
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emit electromagnetic waves. This radiation, called curva- 
ture radiation, has a characteristic frequency w zcy-'/p (p is 
the radius of curvature of the magnetic field line) and is 
directed in a narrow cone of aperture 8=: l /y  along the di- 
rection of the particle motion. To describe this radiation, it is 
of principal importance to take the inhomogeneity into ac- 
count. 

It was shown in Ref. 5 that a plasma moving along a 
curvilinear magnetic field is unstable to excitations of so- 
called curvature-plasma oscillations. The instability growth 
rate, which has a hydrodynamic character, is so large that 
one must take into account the nonlinear effects for both 
particle-wave and wave-wave interactions. 

It is convenient to introduce in each point in space a set 
of coordinates fixed to the field lines. The vector b is directed 
along the magnetic field (the z-axis), n is the normal vector 
(the x-axis), and 1 the binormal vector (the y-axis). It is 
convenient to introduce the parameterpll which is the parti- 
cle momentum along the vector b. We write the particle dis- 
tribution function in the form 

The last term in (27) describes the drift of the particles when 
they move along the trajectory (w, = eB /mcy is the cyclo- 
tron frequency). The magnetic field is so strong that the 
angle between the direction of motion of the particle and the 
direction of the magnetic field, when we take drift into ac- 
count, is less than the quantity y-' which characterizes the 
directivity of the emission. We can thus neglect the drift 
term in (27). Moreover, the trajectories can be assumed to 
be planar, since the radius of torsion of the magnetic-field 
line is much larger than its radius of curvature. We can also 
neglect the change in the radius of curvature along the mag- 
netic field line if bdp/dr 4 y, as is the case. 

It is necessary for what follows to know the particle 
trajectory: 

r-r'=bo,,( t-t') -nul12(t-t')2/2p-bu,~t-t')3/6p'f . . . . 
(28) 

We need here not the whole trajectory, but only that part of 
it near r on which the radiation is produced. We have there- 
fore carried out in (28) an expansion in the ratio of the pro- 
duction lengthp/y to the inhomogeneity lengthp, i.e., in the 
quantity y-I 4 1. Since 

b (r+RS/2) =b (r) +n (bR') /2p-b (bR') '/SpZ+ . . . , 
n (r+Re/2) =n (r) -b (bR*) /2p+ . . . , (29) 

the quantity R* in Eqs. ( 7 )  and (19) is equal to 

R8=buIl (t-t') -bull3 (t-t')"24p2. (30) 

With the same accuracy 

ah, (r+R'/2) 
det IS,. - I=1. 

2dr, 

Here and elsewhere vli is the longitudinal particle velocity 
and is a function ofpl l  : 

The cyclotron frequency w, is much larger than the frequen- 

cy o of the observed radiation. In such a plasma, the oscilla- 
tions considered are thus the low-frequency limit for which 
w, - CU. This means that the possible cyclotron rotation is 
instantaneously forgotten and the quantity af '/ap' equals 

Substituting (29)-(31) into Eq. ( 6 )  we find the magnitude 
of the permittivity of the plasma:' 

(32) 

It follows from (32) that in an inhomogeneous field there 
exists in the limit w <o, a response not only to the longitudi- 
nal electric field (along the magnetic field), but also to the 
field at right angles to the external field. This is connected 
with the nonlocal nature of the particle-wave interaction 
when the response at a given point r is determined also by its 
vicinity where the electrical field has a nonvanishing compo- 
nent along the magnetic field direction. 

We get similarly from the quasi-linear Eq. (19) an 
equation for the evolution of the longitudinal distribution 
function F(pII  ): 

m 

Since the emission of waves occurs along the direction of the 
particle motion with a small angular spread he- l/y, the 
distribution function f (p,r,t) also acquires a spread in trans- 
verse momenta p, , but it is small, p, /pl - y- ', and in the 
derivation of Eq. (33) we integrated over the transverse mo- 
menta. As in (32),  the evolution of the distribution function 
is determined by fields with a component both along the 
magnetic field and at right angles to it-along the normal 
vector n. 

We now find the magnitude of the nonlinear conductiv- 
ity LT,,,,,A of (20).  Using the same Eqs. (29)-(3 1 ) we get 

e u113 
i2. (o,  q) = - - j dr J d p I  exp [ i  (w-ullqb) r+iqb -- r3] 

3 
I o -- 24p2 

Substituting (34) into (20) we find 

1384 Sov. Phys. JETP 68 (I), July 1988 Ya. N. lstornin 1384 



We note that Eqs. (32), (33), (35) contain instead of the 
dispersion function l/(w - qll vll + iO), which corresponds 
to a uniform plasma, a function which can be expressed in 
terms of the integral - 

i i r3 P* 
-- Jerp [ i l r  + -]dr. E=2(0--91vII) -, 

3 
0 911"~vll 

the imaginary part of which is the Airy function A i ( 0  
which describes the emission and absorption process of elec- 
tromagnetic waves in a "curved" magnetic field. In vacuo 
when w = qc, the argument {of the Airy function becomes 
equal to 

which corresponds to the usual curvature radiation. The 
case { = 0 is possible when the refractive index n of the 
waves becomes larger than unity: n > 1 + 2 y  which corre- 
sponds to the simultaneous existence of the curvature and 

Cherenkov emission mechanisms. It is just then that the 
emission of electromagnetic waves is most efficient, so that a 
new oscillation mode which does not exist in a uniform field 
appears, named by the curvature-plasma mode.6 The insta- 
bility growth rate is so large that it is necessary to take non- 
linear effects into account. Analysis shows that saturation is 
due not to the quasi-linear relaxation of the charged-particle 
distribution function, but to three-wave decay interactions 
when the waves are removed from the narrow cone of angles 
8- l/y where their emission occurs. However, all these 
problems belong to the theory of the radio-emission of pul- 
sars and are outside the scope of the present paper. 

The consideration of an inhomogeneous medium given 
here can easily be extended to nonstationary processes. 

The author is grateful to V. S. Beskin and A. V. Gure- 
vich for fruitful discussions. 
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