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Fronts of switching from a state of weak absorption to a state of strong absorption and vice versa 
may propagate in an extended optically bistable medium. A combination of two such fronts forms 
a nonlinear wave. A study is reported of the motion of a traveling wave inside the medium and the 
behavior of the fronts at a boundary of a medium. At the forward boundary (considered relative 
to the exciting light) such a wave is localized and may broaden on increase in the intensity. This is 
a mechanism alternative to the propagation of kinks. Various types of behavior of the rear 
boundary are possible: wave localization, formation of self-waves, and detachment of a traveling 
wave. 

INTRODUCTION 

Optical bistability under the influence of laser pumping 
of an extended medium has been investigated for gases and 
semiconductors. A laser spark may appear in gases' and it 
may be localized near the focus of a laser beam or may travel 
in the opposite direction to meet the beam. In the case of 
semiconductors, studies have been made of the motion of a 
strong absorption kinkZz"ocalized at the forward boundary 
of a sample and propagating in jumps into the interior as the 
laser pump intensity is increased. Such kinks appear when 
the transport processes are suppressed (for example, in poly- 
crystalline samples). On the other hand, crystals exhibit lo- 
calization, self-oscillations, and propagation of a strong-ab- 
sorption domain opposite to the beam,4 depending on the 
pump intensity. 

All these processes represent the motion of a front 
switching from a state of weak absorption to a state of strong 
absorption and vice versa. We shall investigate continuous 
propagation of fronts in semiconductors, which is related to 
the processes of transport in a medium and differs from the 
jumps (kinks) based on the delay of switching. 

A nonlinear strong-absorption wave has leading and 
trailing fronts and its motion occurs as follows. 

The absorption of light creates electrons and holes 
which recombine after a time r, and having traveled a cer- 
tain distance. Nonradiative recombination in a plasma of 
concentration n increases the lattice temperature T. Propa- 
gation of a plasma and of heat in space occurs because of 
ambipolar diffusion (represented by the coefficient D) and 
because of thermal diffusivity (A). Finally, the optical ab- 
sorption edge, i.e., the width of the band gap E, and the 
absorption coefficient a ,  depends on the concentration n and 
on the temperature, a (n,  T) ,  and it is found that an increase 
in n and T reduces the width of the band gap, therefore dur- 
ing the next stage the absorption of light appears at a new 
place. The existence of feedback facilitates propagation of an 
initial perturbation (wave) to those parts of the crystal 
which are illuminated (motion of the leading front). The 
attenuation of light, recombination processes, and heat con- 
duction cause relaxation of a perturbation in those parts of a 
crystal where it has been found earlier (motion of the trail- 
ing front). There are altogether three transport-nonlinearity 
pairs: A - a ( T ) ,  D - a ( T ) ,  D - a ( n ) ,  responsible for the 
formation of waves. We shall label these waves as follows (in 

the order just given) : a thermal ( TT) wave; a thermal-con- 
centration (NT)  wave; and a concentration (NN) wave. I t  
must be stressed directly that the behavior of all three waves 
is generally different and requires an individual analysis. 
These three types of wave represent different limiting cases 
of a nonlinear strong-absorption wave and, therefore, it is 
interesting to study the motion of a mixed wave. 

This paper is organized as follows. In Sec. 1 we shall 
introduce a model transport equation and consider it deriva- 
tion for each of the three types of waves. In Sec. 2 we shall 
obtain an integral equation for the motion of two fronts of a 
wave in an  infinite medium, from which we shall derive a 
system of two nonlinear differential equations suitable for 
analysis. We shall study the motion of a wave at  a constant 
velocity and its stability. The motion of a wave in a bounded 
medium will be considered in Secs. 3-5. Section 3 is devoted 
to a wave localized at  the leading front and its broadening on 
increase in the pumping rate, and to an alternative propaga- 
tion of kinks.233 Periodic self-waves created at a contact 
between bistable and strongly absorbing media are discussed 
in Sec. 4. A steady-state wave localized at the trailing front is 
investigated in Sec. 5. An increase in the pumping rate re- 
sults in detachment of the wave from the rear boundary and 
its disappearance. On further increase in the pumping rate 
the wave becomes detached and changes into a traveling one. 

Finally, Sec. 6 deals with waves of different types travel- 
ing in an infinite medium and with the competition between 
them. Expressions for the velocity of a mixed TT-NT wave, 
which changes to an N N  wave at  the highest pumping rates, 
are obtained for the case of strong pumping. 

1. PRINCIPAL EQUATIONS OFTHE PROBLEM 

The plasma concentration n (r ,  t ) ,  the temperature T(r ,  
t ) ,  and theintensity oflight J ( r ,  t )  are described by transport 
equations. We shall adopt a one-dimensional model because 
the effects under consideration are manifested even in this 
simple model: 

Here, a ( n ,  T )  is the absorption coefficient governing the 
bistability effect; T ,  and T ,  are the relaxation times of n and 
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c andp are the specific heats and the density of the medi- 
um; R  is the thermal diffusivity. The term n/r, models the 
diffusion of a plasma across the beam and recombination, 
whereas the term T / r T  models the thermal diffusivity across 
the beam. The following expressions apply: 

where R, and R T  are the transverse dimensions of a plasma 
and of the temperature field; A,, and A. are numerical coeffi- 
cients of the order of unity. 

If a light beam has a cylindrical shape, then J =  I, 
where I is the surface power density (erg.cm - 2.s - I), 
whereas in the case of a conical beam we have J = r21, where 
r is the distance to the focus. In the latter case we have to 
modify Eq. (2)  by replacing a with a/? and, moreover, in 
Eqs. (2 )  and (3)  it is assumed that the longitudinal (along 
the beam) part of the Laplacian rP2(?(  ... ): ): reduces to 
(...)::, i.e., the thickness of the wave front is much less than 
r. 

Equations (1)-(3) were used in Refs. 2 and 3 to de- 
scribe the propagation of kinks in an optically bistable semi- 
conductor CdZn,S, _. , but in the case of longitudinal trans- 
port it was assumed that D = A  = 0. In this limit the 
observed motion of kinks remains the only theoretical mech- 
anism of broadening of the strong-absorption region on in- 
crease in the pumping rate. In this approach the terms which 
are dropped are of the same order as those which are re- 
tained. 

We can solve Eqs. ( 1 )-(3) by making some assump- 
tions about the nature of the function a ( n ,  T). In an optical- 
ly bistable semiconductor the dependence of a on the plasma 
concentration n, associated with exchange, correlation, and 
degeneracy of electrons and holes, appears at concentrations 
of n - 10'7-1018 cm-'. The concentrations achieved experi- 
mentally have been lower and generally in the range n 5 10" 
cm -"Refs. 2 and 4) ,  so that optical bistability is due to the 
influence of temperature on the width of the band gap. We 
shall assume that a (n, T) = a, + (a, - a,) 8( T - T,) 
+ (a,, - a,)8(n -no) ,  where 8 ( x )  is the step function, 

whereas TO and no are the critical temperature and concen- 
tration. Such a form of the function a ( n ,  T) corresponds to 
the strong bistability case. Moreover, the need to allow for a, 
does not always arise and unless otherwise stated, we shall 
assume that a,, = 0. 

Equations (1)-(3) should be supplemented by the 
boundary and initial conditions. For Eq. ( 1 ), we have I( co , 
t )  =IO. The initial conditions should be considered sepa- 
rately in each specific case for Eqs. (2)  and (3 )  because the 
solution depends strongly on these conditions. In the case of 
the boundary conditions we can consider infinite and semi- 
infinite samples. In the former case, we have 

At the boundary of a sample we have 

n,' ( t )  =T,'(t) =O. (6)  

The principal system of equations, which we shall dis- 
cuss in Secs. 2-5, is as follows: 

yt'=yl.x"-p'y+jO (y-yo), (7)  

We can easily show that any of the three types of waves 
can be reduced to the system of equations (7)  if suitable 
assumptions are made. For example, the system (7)  de- 
scribes a thermal ( TT) wave as long as the solution of Eq. 
(2)  is of quasisteady and local nature corresponding to 
n = aJr, /&I < no and the following substitution of the vari- 
ables is made: 

We can describe a thermal-concentration (NT) wave if in 
turn Eq. (3)  has a quasistationary local solution T 
= nfior,/r, cp and if the following substitution of vari- 

ables is made: 

Finally, a description of a concentration (NN) wave is ob- 
tained if we drop Eq. (3)  and make the substitutions 

x=a,,r, t ++ tDanZ, y=n/nn, yo=no/n,, p= ( T , D ~ ~ ~ ) - " ' ,  

The behavior of the waves of different types and of 
mixed waves is outside the range of validity of the system (7)  
and is therefore discussed in Sec. 6. 

2. INFINITE SAMPLE. TRAVELING WAVE 

The solution of the system (7)  in the form of a wave 
traveling at a constant velocity was investigated by Raizer. 
He sought the solution of Eq. (7)  dependent on an argument 
x - ut and having the form of a wave with leading and trail- 
ing fronts, separated by a distance (width) d. Raizer ob- 
tained a system of two transcendental equations for u and d, 
which was solved numerically (Fig. 1 ). The question of sta- 
bility of these solutions was not considered. The problem of 
stability does not reduce to the usual linearization because 
there is a nonlinearity of an "infinite" order ( 8  function). 

In this section we shall use the system (7)  to derive 
integrals and then approximate differential equations of mo- 
tion of two fronts of a wave in an infinite sample. The initial 
and boundary conditions for the system (7)  are then as fol- 
lows: 

Y(X, O)=Yo(x), j(m)=1, (11) 

We shall assume that the leading and trailing fronts of a 
wave are located at the points x ,  ( t )  and x,(t) and that the 
condition x ,  ( t )  <x,( t )  is satisfied. Integrating the equation 
for j ( x )  and substituting it into the first equation, we find 
that 

y,'=y,"-PZy+S (x, t )  , 
(12) 

E(x, t) =exp [x-x2(t)] 0 [x-x,(t)] 0 [x,(t) -XI. 

We shall apply the coordinate Fourier transformation to this 
equation. Solving then the differential equation with respect 
to time and returning to the coordinate representation, we 
have to satisfy two conditionsy[x, ( t ) ,  t]  = y[x,(t), t] = yo, 
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FIG. 1 .  Dependences of the dimensionless velocity u ( a )  
and of the dimensionless thickness d (b)  of a nonlinear 

/3 = 10 strong-absorption wave on the pumping rate ( l/y,,), plot- :\ 
ted curve for near different the u( values I/y,,) graph of the for@ parameter = 1 is @. the The solution dashed of 
Eq. (17)  obtained for @ =  1 .  Equation (17) is derived 
ignoring the existence of a trailing front, so that there is no 
threshold pumping and the curve u( l/y,,) does not have a 
minimum. A leading front (if it exists independently, see 
Secs. 3-5) may appear at intensities below the threshold 
value. After the formation of the trailing front the wave 
above the threshold disappears. 

which are integral equations for the function x,, ( t ) .  These 
equations are as follows: 

2nyo = J dk exp[-ikrl,,(t) - (kZ+ pZ)t] [Yo (k) 
-OD 

t 

+ !! E(k,  tl)exp[ (k2+pz)t']dt'], (13) 
0 

where 7, and are the Fourier transforms of the functions 
without a bar. 

The approximate method described below involves the 
replacement of the actual functions x,,, ( t  ') with x,,, ( t ' )  
= x,,, ( t )  + u,,, ( t  ' - t), where the front velocities u ,,, are 

assumed to be a constant calculation of the integral with 
respect to dt '. This method has some features in common 
with the Fokker-Planck approximation in kinetics, but there 
is one important difference. On the one hand, no use is made 
of the second derivatives, i.e., it is assumed that the fronts are 
not accelerated and, on the other hand, no linearization is 
made in respect of the velocities u,,, in the kernel of the 
integral equation. Therefore, the resultant differential equa- 
tions, where the velocities u,,, are regarded now as the de- 
rivatives dx,,,/dt, are now valid for any front velocities but 
fail at high accelerations when we have to assume that 
(du,,,/dt)/u,,, 4f12. 

We shall be interested in time intervals t,fl -2, so that 
the initial distribution Y,(x) is already relaxed and in the 
interval along dt ' we can replace the required limit with 
- m. This yields the following equations 

wherey, =y(x , ( t ) ,  t ) ,y2 =y(x,(t), t), a,,, = 1 + ulS2/2, 
p: = P 2 + u 1 - - u 2 + u ; / 4 ,  p i  =fl2+u;/4,  d = x 2 ( t )  
-x , ( t ) .  Assuming that u, = u,, we obtain a system of 
equations from the review of Raizer. ' We shall now consider 
the solution of this system. Its distinguishing feature is the 
existence of the threshold pumping rate (y; ' ),, (we recall 
that y,a I ,  '), which depends on the parameter 8 .  At 
pumping rates below the threshold the trailing front catches 
up with the leading front and the wave disappears. Above the 

threshold there are two branches of the solution, i.e., one 
pumping rate corresponds to two pairs (u,  d )  or two realiza- 
tions of a wave traveling at a constant velocity: slow (left- 
hand branch) and fast (right-hand branch, see Fig. 1 ). 

This solution depends strongly on the parameterp. We 
can see from Eqs. (8 )-( 10) that this parameter governs the 
attenuation length on y(x) :  h a p - ' .  The absorption 
length of light is equal to unity. At high values of 8) 1 the 
fronts interact weakly and vice versa (we are speaking here 
of the influence of term y; ). 

We shall give a series of asymptotic expressions for a 
wave traveling at a constant velocity u, which we shall re- 
quire later. The threshold values u, (P), d, (p) ,  (y; '),,, are 
as follows: 

For the right-hand branch, far from the threshold (u % u,, 
d)d, ) the wave velocity is governed by the motion of the 
leading front and satisfies the equation 

The width of the wave far from the threshold is governed by 
the fact that the trailing front shifts to such a distance at 
which the intensity of the transmitted light makes possible 
the motion of this front at the same velocity u as the leading 
front. A simple formula for the wave width is obtained when 
the fronts do not interact and d)fl -': d = - In (fly,). 

We can see from Eq. (17) that at high light intensities 
we obtain u2 = 2/yo which agrees with the Zel'dovich 
expression for the propagation of a flame. 

We shall now consider the stability of a traveling wave 
using Eqs. ( 14) and ( 15). We shall assume that the positions 
of the fronts differ little from equilibrium: 

x2-xl=cl+6, U , , ~ - U + W ~ , ~ ,  

where d and u satisfy the system y,  (d, u) = y2(d, u) =yo. 
We shall introduce 

y,=6'yi/auj, y id=dyi /dd;  i, j=l, 2.  

Expanding in terms of small deviations, we obtain 

w1yi1+ w2yi2+6yid=0. 
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Hence, we find that 

wt  YtdY2Z-YZdytZ -=- = const. 
wz !fZdYlt-YiaYzi 

Consequently, the relaxation solution is of the form (x, 
- ut) = const(x, - ut). Using this solution, we obtain the 

stability criterion: 

The left- and right-hand branches of the solutions for a trav- 
eling wave were investigated also for stability using the crite- 
rion of Eq. (18). In those cases when the solution could be 
obtained analytically, the investigation was also analytic. 
Near the minima in Fig. 1 the investigation was numerical. 
The left-hand branch is unstable and the right-hand one is 
stable. The physical meaning of the stability of the left-hand 
branch is that a fluctuation-induced increase in the wave 
width creates a pumping rate higher than that needed to 
compensate for the losses (as demonstrated in Fig. Ib).  In 
those cases when the pumping rate y, is a decreasing func- 
tion of the width of the strong-absorption region, the corre- 
sponding state is always unstable. 

3. LOCALIZATION ATTHE FORWARD BOUNDARY 

If the intensity of light is constant, then a wave traveling 
along the beam reaches the forward boundary and stops. The 
resultant steady state of strong absorption extends over a 
thickness which is related to the pumping rate as follows: 

and this state is stable. It is clear from Eq. ( 19) that there is a 
threshold pumping rate (y; I),,, , dependent on fl, which 
can maintain such a stable state. The width of the strong- 
absorption region d is then minimal. The asymptotic expres- 
sions describing this case are 

2P" PBI  P-'ln(2P), P>1 
(yo-l~min = { d man ={ PI PKl -In p, PK1 ' 

It follows from the condition (6 )  that the boundary of a 
sample can stop (localize) a wave and lower the threshold of 
its existence [cf. Eq. ( 16) 1. 

We shall now consider broadening of a localized wave 
on increase in the pumping rate, in connection with the re- 
sults given in Refs. 2 and 3. We shall be interested in the case 
when fl> 1, so that we can use Eq. ( 14) to describe the mo- 
tion of the trailing front. Far from the threshold we obtain 
the equation of motion 

where j ( t )  is the time dependence of the pumping rate nor- 
malized to its initial value (we recall that in the adopted 
approximation we have a,, = 0, so that the presence of an 
initial wave and pumping is set by the initial condition). It is 
preferable to adopt an unknown function s ( t )  
= exp(-d)jy; ' ,  which is proportional to the intensity of the 

transmitted light. We then obtain 

where the function QD (s )  has the asymptotic forms: 

We can see that Eq. ( 2  1 ) is of the relaxation type. The quasi- 
steady behavior corresponds to vanishing of the expression 
in the square brackets in Eq. (21 ). If the initial value s ( 0 )  is 
greater (smaller) than the quasisteady-state value, then s ( t )  
tends to a quasisteady-state value from above (below). The 
approach itself, based on the application of a differential 
equation, is valid in the case of pumping rates which do not 
increase too rapidly with time. A sufficient condition is the 
approach ofj;/jto zero with time. Then, the far asymptote of 
the quasisteady-state solution is of the forms = 2fl' or 

We shall compare now the broadening of the wave due to the 
motion of the trailing front as a result of the transport pro- 
cesses involving kink p r ~ p a g a t i o n . ~ , ~  We shall do this by 
dropping the term y: responsible for the motion of the 
front, from the system (7 )  and allow for the weakly absorb- 
ing state: ao#O, { = ao/a < 1, where we have a = (a,., a , ,  ), 
depending on the type of wave and kinks. Then, for the states 
of strong and weak absorption, we obtain the following ex- 
pressions instead of Eq. ( 7 )  : 

where jO( t )  is the arbitrarily normalized intensity of light 
incident on the front face of a sample. It is assumed in Refs. 2 
and 3 that the specific dependence j,, a: t applies. We shall 
normalize the intensity so that fl2y0 = 5, jO = t /to, and we 
shall assume that tO>fl -', so that we can then compare the 
results with Eq. (22). 

The motion of a kink occurs as follows. Initially, a sam- 
ple is in a state of weak absorption. At the moment t = to the 
critical intensity is reached and the forward boundary might 
be switched but the critical valuey,, has not been reached: the 
term y; is responsible for a delay with a characteristic time 
fl -2. It means that up to switching at a moment ( t  - to) 
afl -' the intensity exceeds the critical value at a depth 

However, the whole 0 < x < E layer may be switched to the 
upper state since fly,, <jOe " . Switching extends only to a 
depth F,: 

tO+fr2 1 
o--]oe I ,  Zt=ln---- - ln- < Z. P2y -. -' 

tog g 
This is followed by a pause which lasts until the critical 

value yo is reached at a depth E, : fl 'yo = & , , e x ' .  Hence, this 
pause ends at 

ti=to/<. 

Proceding by induction, we then obtain 

io(tn> - 1 
j o  (t,) e-'n= I, z,=n In - 1 

0 - 1  I; ' r; (24) 

or, for the adopted law, 
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Here, En is the depth where a kink appears at a moment t,. 
These semiquantitative conclusions applicable to a 

strong bistability are similar to the estimates obtained in Ref. 
3. Substituting t, from Eq. (25) into Eq. (22), and bearing 
in mind that ,yo = c, we obtain 

We can see that the rates of both processes are of the same 
order of magnitude, as pointed out in Sec. 1. Kinks regarded 
as the broadening mechanism cease to act at low values in 
the rangep < 1, when the whole depth of the switched region 
becomes comparable with the attenuation length P - ', i.e., 
when 

These conclusions are independent of the law describing the 
rate of rise of the pumping j ( t ) ,  provided j;/j-0. 

4. BOUNDARY BETWEEN BISTABLE AND STRONGLY 
ABSORBED REGIONS. SELF-WAVES 

The existence of a threshold pumping rate for a travel- 
ing wave (Sec. 2)  and its reduction near the forward bound- 
ary of a sample (Sec. 3) suggest that the conditions for the 
existence of a wave are easier to satisfy in those regions 
where relaxation is difficult. Therefore, a traveling wave 
formed near such a region may disappear after moving deep- 
er into a bistable region. 

As a first example (see also Sec. 5 )  we shall consider the 
case when behind the rear boundary of a bistable region 
there is a strongly absorbing region and the other parameters 
of the regions are the same (a  variable-gap semiconductor). 

We shall assume that at an initial moment in time the 
absorbing region ( x  <O) is heated near the boundary 
(x  = 0 )  so that the temperature or concentration at the 
boundary is slightly higher than the critical value. Then, the 
leading front of a wave penetrates deeply into the bistable 
region. The trailing front does not exist initially, but it forms 
when the temperature or concentration at the boundary 
drops below the typical value and it catches up with the lead- 
ing front, as it happens in the case of a subthreshold wave in 
the bistable region (Sec. 2).  The wave disappears, the bista- 
ble region becomes bleached, and the process is repeated. 

A calculation of periodic self-waves is made in the case 
when 0 %  1, when we can use the differential approximation. 
Then, in the course of formation of the leading front of width 
f l - I ,  wefindfromEq. (15) that 

We shall select a pumping rate known to be below the thresh- 
old, yo = (1  - E )  [2P(1 + p ) ] - ' ,  && 1. Then, the velocity 
of the leading front is constant and equal to u,  = 2&(0 + 1 ). 
The critical value of y is reached at the boundary at a mo- 
ment when exp [ - x,(t) ] = p *yo, i.e., when x, =: ln 2 and 
px,  ( t )  > 1. This is followed for the formation of the trailing 
front x ,  ( t )  and the motion of this front will be described for 
the case whenpx, ( t )  % 1. The velocity of contraction of the 
strongly absorbing region d = xi ( t )  - xi ( t ) ,  follows from 
Eqs. (14) and (15): 

This equation can be integrated in a region defined by 
In 2 )dRP - '  and the contraction time is t2 = (lnP)/2P. 
Near d a P  - '  the function t ( d )  behaves logarithmically so 
that the duration of motion t2 is accurate to within a constant 
under the logarithm. The period of self-waves is described by 

The stage of formation of the leading front and the stage of 
contraction are separated by short time intervals propor- 
tional t o p  - 2 .  During one ofthese intervals the trailing front 
is formed and during the other both fronts disappear and a 
new leading front is formed. 

We shall now write down the expressions for the time 
dependence of the intensity of light transmitted across the 
boundary between the regions: 

I e x p  [- 2 ~ t  (p + I ) ] .  0 < t  < tl 
= ('12) [ I  + ( B f i ~ t , ) " ~ j ,  t > t,, At, = t-t,<t, 

1 -exp( - -2 f iA t2) ,  t< t ,+t , ,  A t , = t , - t e t , .  

The dependence d ( t )  following from Eq. (27) is implicit, so 
that in Eq. (29) the second stage consists of two asymptotes 
valid at the beginning and end of this state. 

I f P 4  1, the period of self-waves is to a p  -*. 

5. BEHAVIOR NEAR THE REAR FACE 

In a study of the steady state and its stability near the 
rear face it is necessary to allow for the boundary condition 
y: (0, t )  = 0 in the derivation of the differential equations 
( 14) and ( 15). This is done by allowing for the propagation 
of a source 8 (x , t )  in Eq. ( 12) over the whole axis in accor- 
dance with the expression 6 (x)  = 8 ( 1x 1 ) . Instead of the 
system ( 14)-( 15) ,  we now have a more general system 

where d = x, - x , .  We shall consider only the limiting cases 
u, , ,  = 0 and x ,  = 0, and we shall begin with consideration of 
the first of these two cases. 

Under steady-state conditions we shall assume that 
p9 1 and fl& 1 and we shall be interested in the values y ( d )  
andy(0) .  I f d g l ,  we then obtain 

The condition y (d)  <y(O) is now satisfied and this implies 
the absence of the trailing front under the steady-state condi- 
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tions when d  < 1. The function y ( d )  increases in the region 
0  < d  < do, where do = p 'ln ( B  - 1 ) has a maximum at 
d  =do,  y(d),,, = [2P(P + I ) ] - ' P ( P 2  - I ) ' ,  and falls 
then to y ( d )  = [2P(P + 1 ) ] -I. Such a value of y ( d )  is re- 
tained for d  2 1 and represents the threshold for the motion 
of the leading front (Sec. 4 ) .  Therefore, the steady state ap- 
pears if (y;  ' )  > [y(d),,, I - ' ,  but a study of its stability 
shows that this occurs only if d  > do, when an increase in the 
pumping rate is accompanied by an increase in d .  This con- 
tinues as long as d<ln 2  [compare with Eq. ( 2 7 ) ] ,  i.e., as 
long as ( y ,  I )  <2P(B - 1 ). The pumping range 2P(P - 1 ) 
< ytT < ( yo  ' ),,,, , where ( y ,  ) ,,, is the threshold pump- 
ing rate in the interior [described by the asymptotic expres- 
sion in Eq. ( 16) 1 ,  corresponds to the motion of one wave of 
the same kind as a self-wave in Sec. 4. When this wave is lost, 
the sample becomes bleached because in this model we have 
a,, = 0  and only one wave can be created subject to the initial 
condition. We can assume that allowance for a,,# 0  does not 
alter the situation if the beam is not focused. 

At pumping rates in the range ( y ,  I )  > ( y ,  I )  ,,, a trav- 
eling wave becomes detached from the boundary. 

We shall now consider the case when P< 1 ,  which is 
more difficult to study and for which we shall simply give the 
results. As before, there is a distance do = In P, where y ( d )  
is maximal. This corresponds to the threshold pumping rate 
(y;  I )  = B( 1 - /j' In /? + B). At higher pumping rates there 
are two steady states, of which the stable one corresponds to 
an increase in d ( y o ) .  When the pumping rate exceeds the 
value (y,; I )  = P [  1 + (2P)  " ' I ,  the width reaches its maxi- 
mum valued = ( 2 / f l )  ""f the condition y ( d )  = y ( 0 )  is sat- 
isfied, and a trailing front appears at x ,  > 0. The profile of the 
steady state y ( x )  is in the form of a hanging drop. An in- 
crease in the pumping rate reduces the thickness of this drop, 
d-0,  and its distance from the boundary increases; how- 
ever, we can show that the steady state is unstable. If 
(y;  I )  > ( yo  I )  ,,, , a traveling wave becomes detached from 
the boundary. 

It follows that, irrespective of the value ofp,  an increase 
in the pumping gives rise to the following four consecutive 
stages: 1 ) absence of a wave; 2 )  a localized wave; 3 )  detach- 
ment of a wave from a boundary and its disappearance; 4 )  
detachment of a traveling wave. 

All these stages were clearly observed in the report giv- 
en in Ref. 4: the third stage was called "oscillations of a 
localized domain" and the fourth stage was called a "travel- 
ing domain." The appearance of new waves during the third 
stage is associated with ao#O and the presence of a focused 
beam. The loss of a "domain" traveling along an expanding 
beam is due to the fact that P a  r ' and y,, cc r' and this oc- 
curs not in the case when p> 1 characterized by 
( yo  I ) / (y , ;  ' I m , , ,  - ( y ; ' ) / 2 f l 2  = const, but in the case 
when 0< 1, characterized by ( y ,  ' ) / ( y ;  I ) , , , ,  - ( y ,  I ) /  
2Pcc r- I. 

6. BEYOND THE LIMITS OF THE MODEL. FAST AND MIXED 
WAVES 

We shall first consider the competition between TTand 
N T  waves which appears at moderately high pumping rates 
when the effects of the concentration renormalization of E, 
are not yet important. 

We shall seek the solution of the system ( 1  )-(3) in the 

form of a traveling wave and then Eqs. ( 1 ) - ( 3 )  reduce to a 
system of two equations 

j ( r )  =eaTrO ( - r )  0 (D+r) , 

which corresponds to the following eigenvalues: 

Each of the equations of the system ( 3 2 )  should be consid- 
ered in three regions r > 0, 0 > r > - D, - D > r, and we 
then have twelve integration constants which have to satisfy 
eight matching conditions at a point r = 0 ,  r = - D, and 
four conditions of the type given by Eq. ( 5 )  at infinity. We 
can then assume that T ( 0 )  = T (  - D )  = T,, and this yields 
two equations for U  and D. Unfortunately, these equations 
are too cumbersome to quote here so that we shall consider 
only some special cases. We shall introduce two parameters: 

when at low velocities U, we have 

Li,z/AL,z=qiq?. 

and at high velocities we obtain 

Therefore, a thermal wave appears if q , ,  q 2 <  1 and in the 
case when q , ,  q2  $ 1  the wave is of the thermal-concentration 
type. However, if one of the parameters is large and the other 
small compared with unity, the nature of the wave changes 
on increase in the velocity (pumping rate) and it may be- 
come mixed. Pure thermal and pure thermal-concentration 
waves can be dealt with using the model discussed above, but 
we must introduce additional conditions. For a thermal 
wave the condition is U <A /r ,  , whereas for a thermal-con- 
centration wave the condition is U 2  < D / r T .  At high veloc- 
ities we cannot use the quasisteady behavior assumed in the 
model. However, at such velocities the leading edge moves 
independently and determines the wave velocity (Sec. 2 ) .  
We shall now give the resultant equation for the velocity of a 
TT-NT wave 

To At-& Az At 
(L,-L,) (A1-A2)- = --- - ---- - - 

a, T, L, A - L  L,-A~'  

which reduces to Eq. ( 17) for pure T T  and pure NT waves 
when the substitutions given by Eqs. (8 )  and (9) are made. 
At high intensities the velocity rises so much that U >) max 
( A  /T,, , A  / rT ,  D / r T ,  D /T,, ), we obtain a simple expression 

We can now see that the asymptote U a  which appears 
in the model at high pumping rates of Eq. ( 17) ,  is intermedi- 
ate and changes in the case of a TT-NTwave to U  a I A/4 [Eq. 
( 3 3 ) l .  

We shall now consider briefly a generation or NN wave. 
In this case the above model is not subject to limitations on 
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the velocity because this wave is completely independent of 
temperature. Consequently, the final asymptote in the pres- 
ence of an NN wave is U cc I;". 

We shall conclude by noting that the absorption of light 
creates only one particle (wave) in a nonlinear system of the 
type considered here. Light transmitted by the wave is insuf- 
ficient to maintain a second wave. At high pumping rates in 
the case of NN waves when the re-emission and amplifica- 
tion of light becomes important, it is possible to create sys- 
tems with several waves. 

The author is grateful to V. A. Stadnik for drawing at- 
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tention to the problem discussed above. 
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