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The properties of the eigenfunctions of local (surface, if retardation is neglected) oscillations are 
considered for a body of arbitrary shape. The orthogonality conditions are found and a 
completeness relation is formulated for these functions on the surface of the body. The 
assumption that the system of surface eigenfunctions is complete makes it possible to corroborate 
an approach, used earlier by the author [Sov. Phys. JETP, 66,182 ( 1987) 1, to the polarizability 
problem. A general expression for the Green's function of the corresponding electrostatic 
problem is derived by the technique of expansion in a set of surface eigenfunctions. 

INTRODUCTION 

The problem of polarizability of an arbitrary macro- 
scopic body (inclusion) has been solved by the author ear- 
lier' by expanding the potential in terms of the eigenfunc- 
tions of the local oscillations connected with this body. (For 
inclusions of simple shape (sphere, cylinder) such oscilla- 
tions are known as surface modes with retardation neglect- 
ed-see, e.g., Refs. 2 and 3 . )  In Ref. 1 are determined the 
conditions under which these oscillations exist, and light is 
cast on some of the common properties of their eigenfunc- 
tions J,, ( r ) ;  in particular, orthogonality relations are estab- 
lished and it is shown that J,, ( r )  have a multipole asympto- 
tic behavior. It is noted also in Ref. 1 that the system 
{J,, ( r ) )  is not complete, so that an arbitrary function of the 
coordinates cannot be expanded in its terms. According to 
Ref. 1, however, this circumstance is no obstacle in the po- 
larizability problem, for in this case it suffices to satisfy a 
much less stringent constraint on the {@, ( r ) )  system, called 
in Ref. 1 the expandability condition. 

As shown in Ref. 1, satisfaction of the expandability 
condition permits a consistent and incontrovertible solution 
of the problem of polarizability of a body of arbitrary shape. 
At the same time, since the system {@, ( r ) )  is incomplete, 
the approach of Ref. 1 cannot be extended to other cases. 
Thus, for example, an attempt to obtain by a similar method 
the Green's function of the corresponding electrostatic 
problem meets with serious difficulties. To overcome them it 
is necessary to make the method of Ref. 1 regular and consis- 
tent, but this cannot be done without constructing a com- 
plete system of eigenfunctions of the local (surface) oscilla- 
tions. There are grounds for assuming that a system of such 
functions is complete on the surface of an inclusion, so that 
their properties must be studied on the interface. 

The present paper deals with the properties of the eigen- 
functions J,, ( r )  on the surface of a body of arbitrary shape. 
(We refer to them as surface eigenfunctions and designate 
them by Y v  .) We show that surface eigenfunctions are solu- 
tions of an integral equation with a nonsymmetric kernel. 
The equation with the conjugate (transposed) kernel are 
satisfied by quantities '3, (with the meaning of surface- 
charge density), so that the functions { Y ,  ) and {@, ) con- 
stitute mutually orthogonal systems. We show also that it is 
necessary to add to the system 16, ( r ) )  an orthogonal finite 
set of functions {q, ( r ) )  that correspond to states having 
monopole asymptotics and called charge functions. A 
charge function q, ( r )  is a potential produced by a charged 

conducting body and corresponds formally to the value 
E, = m. 

It is assumed here that the set of functions correspond- 
ing to multipole and charge states constitutes a complete 
system on the surface of a body of arbitrary shape (this is 
true, for example, for a sphere and also in some other exactly 
solvable cases). This assumption suffices to provide a regu- 
lar method of solving various electrostatic problem by ex- 
pansion in a system of surface functions. It is thus possible to 
show that the completeness relation leads to the expandabi- 
lity condition and by the same token to all the main results of 
Ref. 1. The method proposed has been used also to find a 
general expression for the Green's function, making it possi- 
ble to solve the problem of a body placed in an arbitrary 
external static field. One can assume that expansion in a set 
of surface eigenfunctions is useful also in other electrostatic 
(magnetostatic, etc.) problems. The advantages of such an 
approach are obvious, for example, when it comes to devel- 
opment of various approximate methods, both analytic and 
numerical. 

2. MULTIPOLE STATES 

In Ref. 1 are discussed some general properties of local 
oscillations connected with macroscopic bodies of finite size. 
We present now results needed below and pertaining to the 
eigenfunctions of these oscillations. To be specific and to 
facilitate the reasoning, we consider the case of a dielectric 
body (or inclusion). Similar problems involving magnetic 
permeability, conductivity, heat conduction, diffusion, etc. 
differ from our case only in notation. 

Let a medium with dielectric constant E"' contain an 
inclusion of arbitrary shape with dielectric constant E'". If 
such a system is placed in a uniform alternating (quasista- 
tionary) electric field of frequency w, then E"' and E"' de- 
pend on w: E'" = E"' (w), E"' = E'" (w). We express the co- 
ordinate-dependent dielectric constant ~ ( r )  in the form 

where 8 ( r )  = 1 inside the body and 8 ( r )  = 0 outside. With 
( 1 ) taken into account, the equation for the electric poten- 
tial V [ ~ ( r ) V p l  = 0 is 

The boundary conditions for p ( r  ) are the usual ones-conti- 
nuity of the potential itself and of the normal component of 
the induction D = - ~(r )Vcp on the surface. 
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According to Ref. 1, for real negative values ofz = z(w)  
Eq. (2 )  has for certain frequencies w = w, nontrivial non- 
singular solutions $, ( r )  even in the absence of an external 
field. The subscript v numbers here various solutions corre- 
sponding to the quantities (eigenvalues) E,, = - z(w, ). 
The equation for $, ( r )  and E, takes thus the form 

Both $, ( r )  and the normal component of the "induction" 

are continuous on the interface. Here n is a unit vector in in 
the direction of the outward normal to the surface, while $?' 
and $:," pertain to the medium and to the inclusion, respec- 
tively. We impose on the solutions of Eq. (3  ) also the condi- 
tion $,, ( r )  -0 as r -  CC. 

The oscillations considered, called local in Ref. 1, can 
manifest themselves in the form of resonances in the polariz- 
ability (see Ref. 1)  at w = w,,, where w is determined from 
the equation z(w,, ) = - E,, . At the same time, the eigenval- 
ues E,. (the spectrum) depend only on the shape of the body ' 
and are not connected with the specific subject of the prob- 
lem (the dielectric constant, conductivity, etc.) Moreover, 
the solutions of Eq. (3 )  are not connected also with the as- 
sumed dependence of z on the frequency w, since they exist 
also in the static problem. Local oscillations have thus in 
electrostatics a formal meaning, so that it is more convenient 
to speak of certain "states" of the field and of corresponding 
eigenfunctions $,, ( r )  and eigenvalues E,. Note that E, are 
positive and real.' Therefore the functions $, ( r )  can be cho- 
sen to be real, as they will hereafter. 

We introduce the Green's function of the Laplace oper- 
ator (see, e.g., Ref. 4):  

I I 

g o  ( r - )  6 ( r - )  go (r-r') = - - - 
4n 1 r-r' 1 . ( 5 )  

Using ( 5), we can then rewrite ( 3 )  in integral form: 

$ ( r ) = - ( I + e v )  S dr' Vr,Qv(rf)  .V , , go (r - r f ) .  (6 )  

with the integration over the volume u of the body. Using as 
r  - oo the expansion 

1 { 1 3(rr')2-r2r'2 
go (r-rf) = - - - + - + 

4n r  2P 
+...}. ( 7 )  

we obtain from (6 )  an asymptotic expression for $, ( r )  (cf. 
Ref. 1 ) :  

According to (8  ), if u,, # 0 (d,. # 0 )  the function $, ( r )  has 
as r -  cc a dipole character. On the other hand, if d, = 0 in 
the state Y ,  the function $, ( r )  has as r -  cc a quadrupole 
(octupole, etc.) form. We refer to such functions, which are 

considered in Ref. 1 and in the present paper, as multipole 
functions. 

As noted in the Introduction, one can expect the eigen- 
functions to form a complete system on the surface of the 
body. It is therefore necessary to study their properties on an 
interface. 

3. SURFACE EIGENFUNCTIONS 

We express the function $, ( r )  in terms of its value \V, 
on the surface of the inclusion. To  this end we transform the 
integrand of (6 )  as follows: 

Taking ( 5 )  into account, we obtain then from (6)  

Here n is the same as in Eq. (4 ) ,  p is the value of the radius 
vector on the inclusion surface, and \V, ( p )  =$, ( p ) ;  the in- 
tegration in ( 1 1 ) is over the surface area S of the body. Ac- 
cording to (11) we have for the function $,(r) outside 
($,'"') and inside ($,"') the inclusion 

From ( 11) and ( 12) we can obtain the function $, ( r )  in all 
of space from its value on the surface of the body. 

From (12),  letting r tend to p both from outside 
( r -  p, ) and inside ( r  - pi ) the inclusion, we obtain two in- 
tegral equations for *,, : 

where 

In view of the singularity at  p = p', the two different meth- 
ods of taking the limit r-  p in ( 14) specify two different 
kernels, so that K, #K,.  For Eqs. ( 13) and ( 13') to be com- 
patible, a definite relation must exist between the kernels K, 
and K,. To  find this relation, we multiply (13') by E ,  and 
add it to (13).  The result is the compatibility condition 

In Eq. (15),  6 ( p  - p') is the surface delta-functions: 

where f( p )  is an arbitrary function specified on the surface S 
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of the body. It is easily seen that Eq. (15) [with allowance 
for the definitions in ( 14) ] is a consequence of Eq. (5 ) for 
the Green's function of the Laplace operator. By virtue of 
( IS), Eqs. ( 13 ) and ( 13') are equivalent, so that only one of 
them need be used, say ( 13 ) . 

Note that the kernels conjugate to K, (p,pl) (with the 
permutation p s p' ) are given by 

We have used here the symmetry of the Green's function: 
go ( r - r' ) = go (r' - I). These expressions can also be writ- 
ten in the form 

K, (p', p) = (nVrgo (r-P') I ,=pi, 

Equation ( 13 ) for Y, (p ) is a Fredholm integral equa- 
tion with a nonsymmetric kernel K, ( p,pl). To formulate the 
orthogonality conditions in this case one must introduce a 
system conjugate to {Y, namely {@, (p)),  where 
@, ( p) satisfies an integral equation similar to ( 13) but with 
conjugate (transposed) kernel K,(pl,p). To clarify the 
physical meaning of the functions @, (p) we proceed as fol- 
lows. We transform the integrand of ( 6 )  by a second meth- 
od: 

Since V2$, ( r )  = 0 inside the body, it follows from ( 6 )  that 

Equation (18) is similar to the standard expression for an 
electrostatic potential in terms of its normal derivative on 
the interface. 

We introduce the notation 

IB, (p) = (n'V$, (r) ) I ,=P e 7  m;'' (p) = (nV$, (r))  I ,=pi. ( 19) 

The relation between @, and @:' is, according to (4),  

We apply the operation V, to both sides of ( 18), multiply by 
the unit outward normal n to the surface S, and take the limit 
as r - pi. As a result, with allowance for ( 17), we get 

where we have used the relation (20). Taking the limit r + p, 
yields for @, ( p )  an equation equivalent to (21 ), in view of 
the equality ( 15). 

Comparison of ( 13) with (2 1 ) shows that the quantity 
conjugate to the potential \y, ( p) is the normal derivative of 
$, ( r )  on the interface, i.e., apart from a coefficient, the sur- 
face density of the polarization charge. From ( 13) and (2 1 ) 
we find in the usual manner that the functions Y, ( p )  and 
@, ( p) are orthogonal, if E, # E ~ .  Choosing correspondingly 

the normalization condition, we write the orthonormaliza- 
tion condition in the form 

Thus, the conjugate systems of surface functions {\V, ( p ) )  
and {a, ( p ) )  are mutually orthogonal. It is easy to verify 
that (22) leads to orthogonality relations for the quantities 
e, ( r )  = V$, (i) determined in Ref. 1. 

Note that 

,f(n'~..g~(r-r')) I.,_pr dSr = I drr V..t(r-r') =€I(.), (23) 
8 v 

from which it follows, with allowance for the definitions 
( 14), that 

JK, (p, p') ~s'=o,  K, (p. pr) d s l = l .  (24) 

Therefore, integrating (2 1 ) over S, we conclude that 

Consequently, the total charge on the surface of a body in the 
multipole state is zero, as is obvious from the asymptotic 
form of the function $,(r), where there is no monopole 
term-see Eq. (8).  If the inclusion consists of individual 
parts, equations ofthe type (23)-(25) hold for each ofthem. 
The charge of each of the parts is therefore zero. 

As r+ m we obtain from ( 12a), taking the expansion 
(7)  for $, ( r )  into account, the asymptotic expression (8) .  
Indeed, the quantity u, in (9)  can be represented also in the 
form 

a. = I n y v  (p) a. (26) 
I 

Expression (10) can be transformed similarly. The same 
asymptotic expansion for $, ( r )  follows also from Eq. ( 18). 
The first (monopole) term in expansion (7)  to the asymp- 
tote $, ( r )  makes no contribution in view of the condition 
(25). The dipole term of the expansion of $,, (r)  coincides 
with (8)  and (9)  since, on the other hand, 

where account is taken of the fact that V2$, ( r )  = 0 inside 
the inclusion. We ascertain in similar fashion that the qua- 
drupole terms of the expansion are also equal. If the quantity 

is introduced, the expressionafor the dipole moment d, and 
for the quadrupole moment Q, take the standard form 

Consequently, the quantity a, ( p )  has the meaning of the 
surface density of the polarization charges in the state v. 

4. CHARGE (MONOPOLE) STATES 

It follows from (25) that the function @ = const is or- 
thogonal to all @, . At the same time, by virtue of the condi- 
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tion (24), @ = const is not a solution of Eqs. ( 13) and ( 13') 
for finite E,, and consequently is not contained in the system 
{Y,). This means that the system of multipole surface func- 
tions is not complete and it is necessary to add to it 
@ = const, and also the conjugate function 6 ( p) . (Thus, for 
the spherical inclusion considered in Sec. 7, none of the func- 
tions {Y, ) is proportional to the zeroth spherical harmonic, 
i.e., @ = const.) From the physical point of view the situa- 
tion with a potential constant on the surface of a body is that 
of a metallic (E(')-+ UJ ) inclusion corresponding to z = UJ 

(or E, = UJ ) . The foregoing arguments show thus that the 
case E, = UJ must be considered separately. 

We shall tag the \V and pertaining to E, = UJ by a 
tilde. Going in ( 13) to the limit as E, - UJ ,  we get 

J K ,  (p, p.1 Y. (PI)  ~ s ' = o .  (28) 
8 

The subscript n numbers here various solutions of Eq. (28). 
By the same method we obtain from (2 1 ) an equation for the 
conjugate functions 

AS follows from (20), 6;) ( p) is equal to zero. 
From (12) and (29), and also from (21) and (28), 

follow orthogonality relations 

which are valid for those states v to which finite E, corre- 
spond. We assume also that the function @, and 6, are 
orthogonalized, with 

The set of functions {@,,6,) is thus orthogonal to {Y,, 
a,) and must be added to the system of multipole surface 
functions. 

Consider a non-sectionalized body consisting of one 
connective part. As already noted, the value E, = UJ 

(Z = co ) corresponds to a metallic inclusion on the surface 
of which the potential is constant (@ = const). In the ab- 
sence of an external electric field, nontrivial (different from 
a constant in all of space) solutions for the potential exist if 
the conductor has a charge q # 0, where 

We call such a state (with q # 0 )  a charge state. The values of 
and q are connected by the relation q = C@, where Cis the 
capacitance of the conductor.' In our case of a non-sectiona- 
lized inclusion there is only one independent solution @ cor- 
responding to a potential *'"(r) -0 as r- UJ, and from the 
normalization condition (3  1 ) it follows that 
\V = (4rC)- 'I2 and q = ( ~ / 4 r ) ' / ' .  

If the inclusion consists of N individual parts (bodies), 
the potential @ (p )  takes on constant (in general, different) 
values f""' (a  = 1, . . . ,N) on the surfaces of these bodies. 
Accordingly, each of the parts carries a charge q'" ' given by 
(32), where the integration is carried out in this case over 
the surface Sa of the ath body. Assume that we known N 

different solutions of the conductor electrostatics equations, 
corresponding to situtions in which one of the bodies has a 
unit charge and the rest are uncharged. In accordance with 
the superposition principle, a linear combination of such so- 
lutions yields a potential also for the case when each of the 
bodies has a charge 9'"'. Consequently, Eqs. (28) and (29) 
should have N linearly independent solutions, so that we 
have N eigenfunctions @, and accordingly N functions 6,. 
where n = 1, . . . . , N. 

The relations between @:) and q:) are' 

h 

Here Cis a matrix made up of coefficients of the capacitance 
and the electrostatic-ind~ction.~ Equation ( 3  1 ) takes in this 
case the form 

h 

Since the matrix Cis symmetric and p~%tiy-$efinite,~ it caz 
be reduced to the diagonal unit matrix UTCU = i, where U 
is the diagonalizing matrix. The orthonormalization rela- 
tion ( 3 1 ) is therefore satisfied if the potentials are chosen to - 
be Y,'"'= ( ~ T ) - ' / ~ u ~ , .  

For the potential *, ( r )  outside the surface of the body 
we get from (18) (with (20) taken into account) by taking 
the limit 

$. (r) = .I' go (r-PO G, (pr) d ~ / .  (33) 
8 

From (33) and (7)  it follows that as r- UJ 

where q, is the total charge of the inclusion and is deter- 
mined by Eqs. (32) with 5 ( p )  replaced by Zr,, ( p ) ,  i.e., 6 by 
6,. (Since (34) contains the term q,/r, the charge states 
can also be named mo%opole states. ) The dipole and quadru- 
pole moments d, and Q, are defined in analogy with (27 ) in 
which a, ( p )  is replaced by 6, (p ) .  For the potential inside 
the inclusion we get from ( 12b) in the limit as E, - UJ 

It follows hence, with (23) taken into account, that $,"'(r) 
= @,(" = const inside the ath body, as it should for a con- 
ductor. Therefore the value of u, determined in analogy 
with (9)  and (26) is zero for charge states. 

The multipole and charge (monopole) states consid- 
ered above seem to account for all the solutions of Eq. (2)  in 
the absence of an electric field. It can therefore be assumed 
that the eigenfunctions of these states on the surface of the 
body constitute a complete system. 

5. COMPLETENESS RELATION 

We make now an assumption fundamental for the de- 
scribed method, that the aggregate of the surface eigenfunc- 
tions corresponding to multipole and charge states form a 
complete system. This means that any function f (p )  speci- 
fied on the surface of a body can be expanded in a series 
either in Y, and @, : 
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or in an analogous series in @, and 6,. The expansion coef- 
ficients in (36)  are determined with the aid of the orthogon- 
ality conditions (22) ,  (30),  and ( 3  1 ). In order for the series 
in the right-hand side of (36)  to converge to the function 
f (p) ,  it is necessary to satisfy the equation 

which is the completeness condition for the system of surface 
eigenfunctions. It is thus assumed that (37)  is met on the 
surface of a body of arbitrary shape. 

It is possible to obtain as a consequence of (37)  various 
useful expansions. We make in (37)  the substitution p -. p", 
multiplyby (n"V,.g0(ri - r"))dSV,wherer" = pU,andin- 
tegrate over S. Next, using ( 12b) and (35 ) ,  we obtain 

Here r = ri denotes that r belongs to an inclusion. For r not 
belonging to an inclusion (r  = re ) we obtain similarly 

We now make in (37)  the substitutions p -+ p' and p' - p", 
multiply by go (r  - p" )dS ", and integrate over S. Using ( 18 ) 
and (33) ,  we obtain then 

where p' belongs to the interface and r is arbitrary. 
Note that the following equation holds by virtue of ( 5 )  : 

From this we have for r = re and r' = rj 

In the derivation of (41 ) it was taken into account that the 
integrand in (40) can be expressed in the form of a total 
derivative, so that the integral over the inclusion volume u is 
transformed into a surface integral. Substitution of ( 38) and 
(39)  in (41 ) leads, with allowance for the orthogonality re- 
lations (22) ,  (30) ,  and (31 ), to the expansion 

go (re-ril) = - $Je) (r) $ii' (r') - ijr) (r)@ii) (rt) , (42)  
Y n 

which is valid for the r and r' indicated in (42 ) .  Similarly, for 
r = ri and r' = r:, we get for go(ri  - r: ) an expression that 
differs from (42)  by permutation of the subscripts i s e .  The 
use of (42)  leads to an expansion for the kernel K, (p ,p l ) :  

An expansion for K, ( p, p' ) can be found similarly. 
Consider the identity 

5 r ' ~ . ~ ' g ~  (r-r') drt=rO (r). 
" 

Using the relation 

we transform the integral into a surface one, so that 

Substitution of (38)  and (39)  leads, with allowance for 
(26 ) ,  (26'), and the definition of d, from (34),  to the rela- 
tion 

re(.) -4n {zip:" (I)& +z i j ~ ~ )  (I)&,}@ (r).  (43)  
n 

Equation (43)  is an expansion in the eigenfunctions of the 
vector r inside the inclusion. 

Differentiation of (43 ) with respect to coordinate leads, 
with allowance for v$:' = 0, to the expandability condition 
- see Eq. ( 18) of Ref. 1. Thus, use of the method proposed in 
the present paper corroborates the approach of Ref. 1 to the 
determination of the polarization of macroscopic bodies. 
Accordingly, all the results of Ref. 1 can be obtained from 
the completeness condition (37) .  

Expansion in terms of the complete set of surface eigen- 
functions provides a systematic method of solving various 
electrostatic problems involving a dielectric body of given 
shape. The general procedure for solving such problems is 
the following. The sought function f(r)  must be expressed in 
terms of its value F(  p )  on the surfaceSof the body. Next, by 
taking the limit r - p, an equation is obtained for F (  p ) .  This 
equation is solved by expansion in a set of surface eigenfunc- 
tions. Finally, the function f(r) is determined from the ob- 
tained expression for F( p ) .  This method can be used to solve 
also other more complicated problems, such as the deter- 
mination of the Green's function of Eq. ( 12). 

6. THE GREEN'S FUNCTION 

The Green's function g(r,rf ) satisfies the equation 

Equation (44)  can be expressed with the aid of ( 5 )  in inte- 
gral form 

, g o  - )  - (1-2) 5 d i 1  ~ . . ,g . ( r -r")  . ~ ~ , . g ( ~ : ' , & l .  
0 (45 

The integrand can be represented as 

so that we obtain from (45)  
I -  ( i -z j  0(r) I g b ,  r') 

By taking the limit r -+ p, we get from (46)  an equation for 
g(p , r l ) :  
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where K, is the same as in ( 13) and ( 14). We solve (47) by 
expandingg(p,rl) in series in {q, (p ) ,  qn (p)}. As a result, 
using (131, (281, and (39) we get 

Finally, substituting (48) in (46) we obtain, with allowance 
for (38), an expression for the Green's function: 

Here r = r, is located outside the body, r = ri belongs to the 
inclusion, and r' is arbitrary. If r' = r, ', expression (49a) can 
be transformed with the aid of the expansion (42) into 

If r = r ,  and r' = r e '  we obtain for g(r ,  , re1) an expression 
that differs from (49c) by the subscript permutation i s e .  

Knowledge of the Green's function yields a solution for 
a body placed in an arbitrary external field E,(r). Let 
Eo( r )  = - Vp,](r), where the potential p,,(r) obeys the 
equation V2p,,(r) = 0. Puttingp(r)  = p,(r)  + $(r)  weob- 
tain then from (2 )  an equation for $(r ) :  

Solving this equation with the aid of the Green's function, we 
get 

Since V2p,,(r) = 0, the expression for $ ( r )  can be trans- 
formed into 

$(r )  =- (I-z) 1 g(r. p') (nrV,cp0(rr)) I t s = ,  dSf. (50) 
S 

For a uniform field we have p,,(r) = - E,.r, so that in this 
case we get from (5 )  and (48Lthe result of Ref. 1 for $ ( r ) .  
For the polarizability tensor A we obtain correspondingly 
the spectral expansion 

obtained in Ref. 1. 
An expansion in a system of eigenfunctions can be used 

~ l s o  to solve the so-called Dirichlet and Neumann bound- 
ery-value problems. Thus, for example, if a normal deriva- 
tive of the potential ( d p  /dn) 1, = Q,(p) ,  is specified on the 
silrface of an inclusion, the potential outside the body (the 

external Neumann problem) can be represented in the form 

A similar treatment is possible for the internal Neumann 
problem and also for the external and internal Dirichlet 
problems. 

The method of expansion in a set of surface eigenfunc- 
tions makes thus possible an analysis of a rather extensive 
group of electrostatic (magnetostatic, etc.) problems. The 
need for solving the Laplace equation arises also in other 
branches of physics, particularly in hydrodynamics. By way 
of example, we consider translational'motion of a solid with 
velocity V in an incompressible ideal liquid (see Ref. 6) .  For 
the velocity potential g7 we have in this case the external 
Neumann problem @( p)  = n-v.  From (52) we get for p ( r )  

We have used here relation (26), the definition (9) ,  and the 
fact that un is zero. In the dipole approximation, as r +  co 
and witkallowance f o ~ ( 8 ) ,  this yields p ( r )  -- - (Ar)/?, 
A = - A(O)V, where A(0)  is thepolarizability tensor (51) 
for z = 0. According to Ref. 6, one can express in terms of 
the vector A the total momentum P of the liquid, viz. 
P = p { 4 ~ A  - vV), where v is the volume of the body. On the 
other hand, the momentum P can be expressed in terms of 
the joined-masses tensor 6i: P = 6iV (Ref. 6) .  As a result, 
ktroducing the dimensionless polarizability tensor a = v- ' 
A we obtain 

Here M = pv is the mass of the liquid displaced by the body. 
In the case of an ellipsoid we have for the principal values of 
the polarizability tensor5 

4ncc'7) (2) =- (1-2) /[I- (1-2) n'r)], 

where y = x ,  y, z and n'Y) are the depolariiation coefficients. 
For the principal values of the joined-mass tensor of an ellip- 
soidal body it follows then from (53) that rn'Y' / M  = n'Y) / 
( 1  - n'Y' ), which agrees with Ref. 7. For a sphere 
(n'Y' = 1/3), in particular, we obtain rn = M /2 (see Refs. 6 
and 7).  

In the two-dimensional ( D  = 2)  case the method pro- 
posed here calls for a somewhat different formulation. The 
charge states and the Green's functions were considered 
here under the conditions (hn ( r )  -0, g,(r - r') -0, and 
g ( r , r f )  -0  as r- CU, which cannot be met for D = 2. In this 
case the problem can be formulated in the following stan- 
dard manner. We require that the eigenfunctions as well as 
the Green's function vanish on the surface of a cylinder of 
radius R ,  with R large enough. This condition sets the values 
of @, : the zeroth Green's function takes the form 
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and remains symmetric:~,(r,rl) = g0(r1,r). In this formula- 
tion, replacement of g,(r - r') by g0(r,r1) makes all the 
main results of the present paper applicable also in the two- 
dimensional case (for the region r(R ). To obtain a solution 
valid in all of space, it is necessary to let R tend to infinity in 
the final equations. 

7. SPHERICAL INCLUSION 

The eigenfunctions q, ( r  ) and 4, ( r  ) and the eigenval- 
ues can be obtained in explicit form for certain bodies with 
simple shapes. We consider by way of example a spherical 
inclusion of radius R. The multipole eigenfunctions were ob- 
tained in Ref. 1 : 

$::; ( r )  = [ (21+1) R ]  - l b  ( r l ~ )  'Y::) (8 ,  cp) , r t R ,  
(54) 

( r )  = [ (21+1) R ]  (RIr) '+'Y::' (€49) , r>R. 

HereO<m<I forA = 1 and l<m<I forA=2andI>l .Cor-  
responding to the functions (54) are eigenvalues 
E* = E,  = (I  + 1 )/I, I = 1,2, . . . which are degenerate in 
A and m. In Eq. (54), Y ::' are real spherical functions (see, 
e.g., Ref. 1 ), for which the following relation holds: 

where n - r/r. 
In this case there is one charge state corresponding to 

the function 

$('' (r) = (4nR) -"2=R-'hYao(n), r<R, 

where Yoo(n) = (477) -'/' is a zero-order spherical harmon- 
ic. This state corresponds to a charge q = (R /4771'/*, and in 
the chosen coordinate frame we have d = 0 and Q = 0. 

Thecompleteness relation (37) is met in this case, since 
it takes, with allowance for (55), the form of the known 
identity 

Lz (21+1)P, (nn') =6 (n-n') . 
4n 1-0 

Also valid are Eqs. (38), (39), and (42). Thus, for example, 
Eq. (42) (for r >  R > r') reduces to the known expansion 

OD 

Finally, substitution of (54) and (56) in Eqs. (49) yields for 
the Green's function g(r,rl)  expressions that coincide with 
the corresponding results of Ref. 8. 

One can consider similarly also certain other cases, 
when the variables in the Laplace equations are separable. 
Particular interest attaches to the classical problem of the 
potential of a point charge (i.e., of the Green's function) in 
the presence of a dielectric wedge, which is solved in Ref. 9 
by rather complicated and unwieldy integral-equations 
method. Yet the use of expansion in a system of surface ei- 
genfunctions solves this rather difficult problem by a rela- 
tively elementary method (and with much fewer calcula- 
tions). The approach proposed here, in constrast to that of 
Ref. 9, encounters no fundamental difficulties when it comes 
to even more complicated problems of this type. 
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