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A calculation is made of the cross section for the stimulated bremsstrahlung effect in the 
scattering of nonrelativistic electrons by atoms. In addition to the usual static part found in the 
approximation of screening of the nucleus of an atom, an allowance is made for the polarization of 
the atom by an external electromagnetic field. An effective potential allowing for the interaction 
of the incident electron with oscillations of the electron cloud of the atom is constructed. The 
interaction of the scattered electron with an external field is allowed for exactly and the effective 
potential is included in the first Born approximation. A relationship is established between the 
dynamic part of the bremsstrahlung effect and nonlinear susceptibilities of an atom. It is shown 
that in a certain range of external field frequencies and polarizations the scattering cross is 
considerably greater than the cross section for the static bremsstrahlung effect. 

1. A multiphoton stimulated bremsstrahlung effect 
(SBE) in a strong optical field has already been investigated 
extensively both theoretically using the static approxima- 
tion for the scattering p~tent ial ' .~  and e~perimentally.~ On 
the other hand, it has been shown in a number of reportsk9 
that in calculations dealing with the one-photon bremsstrah- 
lung effect it is necessary to allow for the virtual excitation of 
a target in the course of the process when collisions of elec- 
trons with atoms and ions are considered. The static approx- 
imation is valid in the case of a weak polarization of the 
target in an external field and also in the limits of high and 
low frequencies. 

The multiphoton SBE in the presence of a one-photon 
resonance of an external field with a two-level system in a 
target was considered in Ref. 10. It has also been shownes9s" 
that the influence of the dynamics of the target in nonreson- 
ant one-photon bremsstrahlung of fast and slow electrons 
can be described by a single atomic characteristic in the form 
of the dynamic polarizability. In the multiphoton SBE we 
have to allow for the nonlinear polarization of a target in an 
external field and the appearance of an alternating dipole 
moment of this target, which oscillates not only at the fre- 
quency of the external field w but also at frequencies nw 
which are multiples of that frequency. 

We shall consider the role of the interaction of an inci- 
dent electron with induced oscillations in the SBE and the 
relationship of the SBE cross section to nonlinear susceptibi- 
lities of the system. 

2. We shall assume that the incident and scattered elec- 
trons are fast, so that we can use the Born approximation and 
ignore the exchange effects. Subject to this condition the po- 
tential of the interaction of the scattered electron with the 
target can be described by the relationship 

where Z is the nuclear charge andp is the electron density. 
The Schrodinger equation for the wave function of an 

electron, scattered by an atom in the laser radiation field, is 
of the form 

1 
" [  z p(r', t )  ,-= -i, --A(,, ] ' t + [ - - + J - d r ~ ] y ,  

a t  ] F-rr 1 

A = - (ce,/w)cos wt is the vector potential corresponding 
to an electric field of amplitude E, and of frequency w; c is the 
velocity of light in vacuum. 

In the absence of an external field the electron density is 
independent of time p(r,t)  = p,(r), whereas Eq. (2)  re- 
duces to the stationary Hartree equation for the electron 
being scattered. 

At low incident electron energies the greatest contribu- 
tion to the amplitude of a transition comes from a region 
which is much larger than the atomic radius r, and in this 
region the Coulomb interaction of the incident electron with 
the targetklectrons can be expanded as a series in terms of a 
small parameter r, / r g  1, retaining only the longest-range 
dipole term ( r  - r'l-' --,r-' + rrl/?. Consequently, the ad- 
ditional transient interaction of an electron with an atom is 
described by the expression 

where 

is the polarization vector with the components P, at fre- 
quencies nw of the harmonics of the external field.I2 The 
asymptotic form of the interaction ( 3 )  may be used in the 
calculation of the SBE of slow electrons scattered by atoms. 
This form was used in Ref. 11 on the assumption that 
In1 = 1. 

We shall now calculate the cross section for the scatter- 
ing of electrons by atoms in the presence of a strong laser 
field. We shall use the first Born approximation. The wave 
function of an electron with a momentum p in a strong opti- 
cal field is 
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The amplitude of the probability of a transition to a state $,, , 
of an electron which at a moment t = 0 is in a state $p is 
given by the expression1 

where 

V ( q l ,  I ) =  j ~ ( r ~ ,  t )e iqr  dr l ,  

q = p - p' is the transferred momentum, and AE 
= (p2 -pf2)/2 is the collision-induced change in the aver- 

age energy. We shall expand the Fourier component V(q,t) 
of the effective potential as a series in terms of the time har- 
monics 

rn 

using also the familiar relationshipI3 for the Bessel functions 

oxp (ih sin wf) = 1. (A) e i p  ( i i r t )  . ( 9 )  

It follows from Eqs. (6), (8) ,  and (9) and from the known 
relationship between the amplitude of a process and its cross 
section that the cross section for the emission (absorption) 
of m photons is 

The amplitude of the SBE probability in Eq. ( 10) is a sum of 
the amplitudes of the processes involving the absorption 
(emission) of Y photons by an electron and m photons by the 
target, so that the total number of absorbed (emitted) pho- 
tons is m = n + Y. 

The time-dependent electron density can be represent- 
ed by a series 

Ca 

p (r, ') = x pn (r) einw'. 

Turning back to Eq. (2) ,  we readily see that the time har- 
monics of the effective potential can be expressed in terms of 
the corresponding harmonics of the electron density, so that 

4n Trn (q) = - (-Z6,,u+Fn (q) 1 ,  (12) 
q L  

where 

I.. (q) = p. (rr) e 'qr drr 

is the form factor of the harmonics of oscillations of the elec- 
tron density. The corresponding differential SBE cross sec- 
tion can be written in the form 

We shall now assume that the laser field is such that the 
parameter a = qe,/w2 is small ( a  4 1 ) and the Bessel func- 
tions can be used in their asymptotic form": J,, (x) = xV/v!. 

In the case of low values of the transferred momentum we 
have exp(iqr) z 1 + iqr and the differential scattering cross 
section becomes 

do'") 4p' -Z+F, (q )  +iqPn ( e0q sign (u) ) ''I I * 
IuI! w Z  

with the target polarization vector at a frequency nw 

In the ground state of an atom the quantities P, differ from 
zero only for odd values n = 1,3, . . . . 

We shall analyze the relative contribution of the polari- 
zations Pn  at different frequencies. In the case of scattering 
by atoms the static part of the form factor is Fo(q)  - Z+ 0 in 
the limit q-0. Therefore, at low transferred momenta the 
main contribution to the SBE comes from scattering by os- 
cillations of the electron cloud. The square of the transferred 
momentum q is p2 +pI2 - 2pp' cos 8, where 8 is the angle 
between the initial momentum p and the final momentum p', 
and the diffetential of the solid angle of scattering is 
dfl,. = qd qd e, /ppl. In the case of the SBE accompanied by 
the absorption (emission) of n photons by an atom, we can 
integrate over the directions of motion of the scattered elec- 
tron and this gives 

where x = (2 lEol ) ' I 2  is the characteristic momentum of the 
valence electrons of energy E,. 

It is knownL2 that a harmonic of the polarization vector 
of P, considered using the perturbation theory framework 
canie  expressed in terms of the nonlinear susceptibility ten- 
sor x'"': 

The nonlinear resonance value ofX'") can be estimated to be 
X(") cc (d'" + ') /AEn , where d is the characteristic size of an 
atom and AE is the characteristic excitation energy; in this 
case we have doc 1/x, AEcc ?c2. Using these results, we can 
readily find the ratio of the SBE cross sections for the cases of 
absorption (emission) of Y and v - 1 photons by an atom: 
B = ( AE / w ~ " * ) ~ .  In the limit of low frequencies this quan- 
tity is considerably greater than unity for any finite v and in 
calculations it is sufficient to consider only the dipole polar- 
izability. This is in agreement with the observation that in 
multiphoton detachment of electrons from negative ions the 
greatest contribution to the process is again made by the 
polarizability of an atom. 143's The dipole polarizability is suf- 
ficient in the region of a one-photon resonance. 

In the opposite case of high frequencies and large 
numbers of photons absorbed (emitted) by an electron, we 
have v>) 1, p< l and the SBE processes involving multipho- 
ton excitation of an atom may be more important. On the 
other hand, since at low angles the differential scattering 
cross section is dominated by the polarization term q 5 x, at 
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high angles the main contribution comes from the amplitude 
of the static SBE.I6 We shall calculate the total cross section 
of the SBE. The SBE cross section allowing for the emission 
of m photons via excitation of an atom diverges logarithmi- 
cally in the limit 9-0. However, the static SBE cross section 
for the scattering by a neutral atom vanishes in the limit 
9-0. On the other hand, if q > x, the contribution of virtual 
excitation of the target in the SBE becomes exponentially 
small because of rapid oscillations of the factor exp(iq-r) in 
the integrand of the expression for the cross sections. In this 
range of the transferred momenta the greatest contribution 
comes from the static scattering, because an increase in the 
transferred momentum gradually lifts the screening of the 
nucleus and the Coulomb SBE cross section decreases logar- 
ithmically on increase in q. Therefore, the static and polar- 
ization amplitudes interfere weakly and the total cross sec- 
tion a'"' can be represented by a sum of the direct static 
a;"' and polarization a::) cross sections: 

In the case under discussion we have 

where y is the angle between the vectors p and P, . A similar 
result is obtained in Ref. 11 for the one-photon bremsstrah- 
lung effect (m = f 1 ). We can see that if m > 1 and the 
condition fl-4 1 is satisfied, the polarization SBE cross sec- 
tion can be expressed in terms of a single atomic cha~cteris- 
tic which is the nonlinear susceptibility of an atom x'"). 

3. In the calculation of the static part of the cross section 
we have to find Vo (q) .  We shall consider only an external 
field which varies slowly with the potential and in the case of 
heavy atoms we shall employ the Titus approximation'7 for 
the potential of an atom in the Thomas-Fermi model: 

The Fourier transform of the potential ( 19) can be ex- 
pressed in terms of the function" 

cos t dt  
u>O 

in the form 

Bearing this point in mind, we find that 

A calculation of the dynamic part of the cross section a!:) is 
very difficult in the general case of arbitrary intensities of the 
external field. We shall confine ourselves to the case of mod- 
erately strong fields when we can still use perturbation theo- 
ry to describe the interaction of an atom with the external 
field (d&,/AE< 1 ). We shall regard the interaction as dipo- 
lar, i.e., we shall assume that the wavelength of the external 
field is much greater than the dimensions of an atom: 

In the first order of perturbation theory,I9 we obtain 

The value of the quantity p,  (q)  makes it possible to calcu- 
late the SBE cross section forp) 1, and also for any one- and 
two-photon SBE. A method for calculating this quantity for 
the ground state of a hydrogen-like system is given in Ref. 5. 
Since in the present investigation the SBE is considered 
without allowance for the change in the state of an atom, the 
selection rules and the angular coefficient are identical with 
those for the dipole polarizabilityZ0 and in the case of 
exp(iq-r) in the matrix element only the dipole term of the 
expansion remains in a series in terms of spherical harmon- 
ics: 47rij1 (qr) Y 1p (q/q). The Z axis is selected along the di- 
rection of an external electric field E,. Therefore, the de- 
pendence of the amplitude p,  (q) on the direction of the 
transferred momentum is characterized by a function 
Y ,, (q/q), in agreement with the results of a more specific 
analysis.' 

In the optical range of frequencies the greatest contri- 
bution to the change in the electron density comes from ex- 
ternal optical electrons. A calculation of the radial matrix 
element for this case is given in the Appendix. 

By way of example we calculated, using the Born ap- 
proximation, the cross section for two-photon emission as a 
result of scattering of electrons of energy 100 eV by an atom 
of xenon in the range of laser radiation field intensities 
&,<02/x, where the dependence of the cross section on the 
field intensity is described by a power law. The field polar- 
ization is assumed to be orthogonal to the direction of the 
momentum of the incident electrons. The results of the cal- 
culation are presented in Fig. l in the form of the dependence 
of ln (a  2 / ~ :  ) on the frequency w. The range of variation of 
the frequency of the external field is selected to be close to 
the 5p6'So - 6p[3/2], resonance. It is clear from Fig. 1 that 

FIG. 1 .  Dependence of the logarithm of the cross section for two-photon 
bremsstrahlung emission of radiation by electrons l n ( ~ ' ~ ' / ~ ;  ) on the fre- 
quency near a resonance transition in a xenon atom. Curve 1 is plotted 
allowing for the polarization of an atom by an external field and curve 2 
represents calculations of cross sections in the static approximation. 
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the polarization contribution is greatest near the resonance 
and it decreases rapidly away from it. 

4. Our calculations of the SBE cross section demon- 
strate the importance of an allowance for the target polariza- 
tion. The results obtained apply to the case of when an atom 
is not excited in its final state. The approach developed here 
can be generalized also to the case when the final state of an 
atom is not identical with the initial state. This can be done 
conveniently using the formalism of quasienergy states.20 
This problem was solved in Ref. 2 1 using perturbation theo- 
ry for the external field. The SBE amplitude then reduces to 
radial matrix elements and the calculation of these elements 
in the method of the model potential is equivalent to a nu- 
merical summation of the series. In the case of the one-pho- 
ton SBE the amplitude of the process accompanied by vir- 
tual excitation of an atom is identical with the matrix 
element p,  (q),  the radial part of which is given in the Ap- 
pendix. The matrix elements corresponding to the emission 
(absorption) of a large number of photons are calculated 
very similarly, but their explicit form will not be given be- 
cause the expressions obtained are cumbersome. 

In the case of an exact resonance our perturbation theo- 
ry formulas are no longer valid. An analysis of SBE in the 
case of a one-photon resonance carried out in Ref. 10 gives, 
by analogy with Eq. ( 13), an expansion of the differential 
cross section in terms of Bessel functions with v = m * 1. 
The coefficient of this expansion can be expressed in terms of 
the matrix elements of transitions between the resonating 
levels. 

The relativistic generalization of the problem of the 
one-photon SBE allowing for the target polarization can be 
found in Refs. 22 and 23. The multiphoton SBE can be ana- 
lyzed by a method described above if the wave function of the 
incident electron is described by the Volkov solutions.24 

The author is grateful to B.A. Zon for his interest in this 
problem. 

APPENDIX 

The radial matrix element (01 j, (qr)q, (r,r',E)rl(0) in 
the expression for p ,  (q)  can be calculated for the optical 
range of frequencies using the Sturm expansion of the Green 
function for the model potential25: 

h 

The operator PI projects the wave function onto a state with 
a given orbital quantum number I; z is the effective charge of 
an optical electron. The Sturm expansion for a Green func- 
tion is 

m 

where 

F,,(x)= (k!/r( k+2h+2) ) "'X%-"'~L,~"+' (x) (A.3) 

and 

a=2z /~ ,  V =  (-2E)'", h=z/(-El)'"-I. 

The radial wave functions can be expressed in terms of func- 
tions F,, ( x )  with v,, = z/( - 2Ekolo ) ' I 2 :  
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The results of a calculation of the radial matrix element 
can be expressed in terms of a sum of products of hypergeo- 
metric functions. We can however, obtain simpler and in 
practice a more convenient expression employing the explic- 
it equation for the Laguerre  polynomial^'^ 

and for a Bessel function 

s ins  cosx 
j + ' ( ~ ) = ~ - - .  x 

Integrating with respect to the radial variable, we ob- 
tain 

Ifj z ' k0! 
(0 1ji ( q r )  gl  (r, r ' , ~ )  rf  I o)=-(;) (k0+2hO+2) v 

The quantity A appears as a result of integration of the ma- 
trix element of the Bessel function26 

ho,!' 

= ~ ( l ) m o + "  ( k o + 2 a + 1 ) (  

m,,m=Il ko-mo k-m m,! m! 

The quantity B is the radial matrix element of the dipole 
moment and, as A, can be expressed in terms of a double 
series: 

B (Lo, a, ko, k) 

%k 
k+2h+ 1 a?" ax+" 

= C (-l)mo+m(k~+2h~+1)( ) 
mo,m=o ko-no k-m mo!m! 

.r (p,+2) g-(@lf2'. (A.7) 

Equations (A.6) and (A.7) are obtained in the case 
when E < 0. If E >  0, the matrix elements can be found by 
analytic continuation of the results obtained at negative en- 
ergies. 
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