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Restructuring of the atomic spectrum (the Zel'dovich effect) can occur in systems coupled by a 
Coulomb interaction that is distorted at short distances. The features of this phenomenon are 
discussed for states with arbitrary angular momentum I. The analytic properties of the solution of 
the basic equation for this effect in the case hadronic-atom spectra are investigated in the presence 
of absorption. The conditions under which the spectrum restructuring is replaced by an 
oscillatory regime are obtained. Some manifestations of the Zel'dovich effect in the physics of 
hadronic atoms and mesic molecules are considered. 

1. Hadronic-atom levels are shifted and broadened by 
strong interactions at short distances. Measurement of these 
quantities (AE, , , r , , )  can yield valuable information on 
strong-interaction parameters. 

Experimental data indicate that atomic-level nuclear 
shifts are anomalously large in some cases. This is usually 
due to the presence of a near-zero level in a strong short- 
range potential V, (r). This results in a phenomenon called 
restructuring of the atomic spectrum. It was first observed 
by Zel'dovich' in an investigation of the spectrum the s levels 
of a valence electron in a doped semiconductor. The possibil- 
ity of the onset of this effect in hadronic atoms was indicated 
in Refs. 2 and 3. In Refs. 4-6 the spectra of hadronic atoms 
were analyzed using the equation 

which does not depend on the model of the strong potential 
V, and relates the widths and shifts of atomic I-levels with 
low-energy scattering parameters, viz., nuclear Coulomb 
scatterng length ajCs' and effective radius a;"'. Here1' 

E is the nl-level energy (n = I + 1, 1 + 2, ...), E $" 
= - c 2/2n2, c = - ZlZ2 > 0,l)  is the orbital momentum, 

and $(z) = I"(z)/l?(z). The parameter Y is the analog of 
the principal quantum number n ( Y  = n for unshifted Cou- 
lomb levels). 

Spectrum restructuring in the case of s levels was inves- 
tigated in full detail1-' and its following properties were elu- 
cidated: 

a )  the nuclear s level that perturbs the Coulomb spec- 
trum is always pushed out of the atomic region; 

b) the width of the spectrum-restructuring region is 
 mall,^' of order r,/a,, and in this region all the atomic ns 
levels are strongly displaced relative to the unperturbed 
Coulomb values E E'; 

C )  for Y 2 1 (the region of the atomic spectrum) the 
term in ( 1) with the effective radius is a small correction. 

The present paper deals with the restructuring of an 
atomic spectrum for states with I #O and also for s states in 

the presence of a Coulomb barrier. Qualitative differences 
from the picture described above appear in these cases and 
can be manifested in experiment: simultaneous restructur- 
ing of the entire atomic spectrum gives way to successive 
collisions of the nuclear I level with the atomic nl levels. Let 
us describe briefly the content of the paper. In Sec. 2 are 
presented simple equations for the level shifts, which are 
valid everywhere including the term crossing region; we dis- 
cuss also the width of the restructuring region for I #O. Sec- 
tion 3 is devoted to the application of the WKB method to 
the Coulomb problem with short-range interaction. In Sec. 4 
is considered the spectrum restructuring in the presence of 
absorption in a system, a situation typical of hadronic atoms. 
The applications of the theory are considered in Secs. 5-7. In 
Sec. 5 we discuss new experimental data on the pp and pd 
hadronic atoms, in which rather large atomic-level widths 
were recently observed. In Sec. 6 we calculate, without the 
use of a model, the nuclear shifts and widths of the levels in 
mesic molecules, and present a quasiclassical estimate of 
these quantities. In Sec. 7 we consider the sticking coefficient 
of a muon to an a particle and the nuclear-fusion reaction 
dt - na. 

The results of the present paper were reported in part in 
Refs. 8-1 1. Following Refs. 7-9, we shall refer to the restruc- 
turing of the atomic spectrum (for states with arbitrary I) as 
the Zel'dovich effect. 

2. Zel 'dovich efect for states with I #O. Equation ( 1 ) is 
valid for all I = 0, 1, 2, ... under the condition ( - E) "*r0 
( 1.. The effective radia rg' and r p '  for s levels are of the 
order of the radius ro of the forces; if, however, I #O, we 
havelZ9" at the instant when a level is produced in the poten- 
tial V, 

For I> 1, the term with the effective radius is therefore signif- 
icant in the right-hand side of Eq. ( I ) ,  so that this equation 
becomes a steep function of the parameter Y. Taking this into 
account, it is clear that the system contains only a nuclear 
Y = vN and a Coulomb nl level, which are (in their own 
scales) weakly displaced (see Fig. 1 1 

where v, = ( - 6 2ajcs'rjcs)/2) 'I2, while a,, is a dimension- 
less parameter that decreases rapidly with increase of 1: 
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Note that a,, - (r,la, )I- "', i.e., a,, is a small parameter if 
121. 

Equation ( 3 )  no longer holds when y, approaches an 
integer n> l  + 1. The nuclear and atomic levels interact in 
the narrow region IY, - nl - ( C r , ) '  "', and their energies 
are 

where SE,, is the "detuning from resonance" frequently 
used in atomic physics: 

( C * )  ( C a )  6E,ll=1/2~Z(n-2-vN-2) = [a, r, ]-'-E:' . 

Thus, the well known "term quasicrossing" l 4  takes place, 
see Fig. 1. 

The physical cause of this phenomenon is that for states 
with I # O  there are two attraction regions separated by a 
centrifugal barrier I ( / +  1)/2?. One of the wells is within 
the action range of the nuclear forces, and the other is at 
r < r < r,, where 

are the quasiclassical turning points. The barrier penetrabi- 
lity is here Dl - ((rO)*If ' g 1. The two levels interact when 
the energy of the nuclear state (localized at r 5  r,) ap- 
proaches the energy of the atomic nl  level localized in the 
region r 5 r 5 r,. At exact resonance (Y, = n),  in both 
states, which are almost degenerate in energy, the particle 
can be located, with equal probability at r-r, and in the 
region of atomic distances r 5 n2a,. The wave functions cor- 
responding to these states, while equal in the atomic region, 
differ in sign in the nuclear region r-r, (this ensures their 
orthogonality). Note that even in this case the shifts of all 
the I levels are small: AE,, -5 'an, . 

Thus, in contrast to the s states, The Zel'dovich effect 
for 1 #O comprises the following: a nuclear I level, which 

FIG. 1 .  Restructuring of atomic spectrum for s states and at 
I> 1. The dimensionless coupling constant is g a I V, lr,,', 
where V, and r, are the depth and radius of the strong poten- 
tial; EL:' = - C 2 / 2 n 2 .  At g<g, the nuclear level v = v,  is 
on the unphysical sheet. 

drops as the potential V, ( r )  becomes deeper, collides in 
succession with each of the atomic nl  levels. The atomic lev- 
els are then shifted upward if n > y, and downward if n < y,. 

The nuclear can manifest itself in this case as a resonance in 
the scattering. 

Let us estimate the width of the spectrum restructuring 
region. Let V, ( r )  = - (g/2r:)u(r/r,), where g is the di- 
mensionless coupling constant. The energy of the weakly 
coupled nuclear level can be estimated from the equations 

(we neglect here the influence of the Coulomb interaction, 
so that the quantities a ,  and r, refer here to the potential V ,  
with the Coulomb interaction "turned off "). In order of 
magnitude we have a ,  -r,;'+ ' / (g  - g, ), where g ,  are the 
coupling-constant values corresponding to the instant of the 
appearance of the bound state. The nuclear level with angu- 
lar momentum 1 passes through the atomic-spectrum region 
at I + 1 < Y, < CO, yielding in terms of the scattering length 

This leads to 

where Ag, = g,, ,,, - g, (see Fig. 1) .  We emphasize that 
this estimate is valid for an arbitrary potential V ,  ( r ) .  It was 
obtained for I = 0 by Zel'dovich,' and for I # O  by Band and 
F o m i ~ h e v ' ~  with a square well as the example. The term- 
crossing region is of the order of 

i.e., much narrower. The estimates (7 )  and (8 )  can be im- 
proved by providing them with a quantitative meaning, as 
detailed in Appendix A. 

3. The WKB approximation. We have started above 
from Eq. ( 1 ). It is of interest to note that practically all the 
results can be easily derived by a semiclassical approxima- 
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tion. Application of the WKB method to a Coulomb field venient to investigate the level lines of the function 
distorted over small (r-ro(aB ) distances leads to the [ajcs' (v) ] -' defined by Eq. ( 1 ). In fact, the onset of a level 
quantization rule in the system produces a smooth change of the quantity 

r +  Im[ l/ajCs' ] 

wherego:Re( - V,)r$. 
2n + arctg { ( r l ) z a . ; + i  [i - '1 ""E] -0, (9) The results of the calculations for the case 1 = 0 (for 

I = 1) are shown in Fig. 2. One can see distinctly the saddle 

wherep(r) = [2E + 2f /r - (I  + 1/2)2/?]112 is the quasi- 
classical momentum and n, = 0, 1, 2, ... is the radial quan- 
tum number (see Appendix B). In the absence of short- 
range action we have a:'" = 0 and this equation becomes the 
usual Bohr-Sommerfeld quantization rule. '4,'6 In the case of 
a Coulomb field the radial integral in (9)  can be easily calcu- 
lated in the form 

This equation determines the spectrum of the highly 
excited states. For s levels, in particular, recognizing that 
Irp)I -rO(a,, we have 

1 
V n ~ = n  f - arctg (2na,,/aB), 

n (10') 

where a, =ap ' .  We see hence that even at la, I -a, /2a all 
the levels are greatly shifted, i.e., we are in the atomic-spec- 
trum restructuring region. Owing to the large numerical fac- 
tor 27r, the spectrum restructuring sets in already at lacs I 
4 a ~ .  

4. Equation ( 1 ) in the presence of absorption. Equation 
( 1 ) remains valid also for complex values of the scattering 
length, indicating that the problem involves also open chan- 
nels (e.g., the processes $p - 277, 3a, etc., for the pp atom). 
The atomic levels are not only shifted but also acquire a 
width on account of the strong interaction at short distances. 

Let us examine in greater detail the properties of Eq. 
( 1 ) in the complex v = f (  - 2E) - 'I2 plane. It is more con- 

points S,, S,, ..., of the function l / ap ) (v ) ,  as well as the 
periodicity of the entire pattern in the atomic region (Re 
v 2 1 ) . It is easy to track with the aid of this figure the motion 
of the S-matrix poles corresponding to bound states of the 
system with change of the coupling constant g. For real a,,, 
the poles move along the real axis. In the case of low absorp- 
tion the pole trajectories shift to the lower complex Y half- 
plane, but the character of the trajectories remains qualita- 
tively unchanged (see the trajectory with value lm 1/ 
a, - 26-0 .1  on Fig. 2). 

Further increase of the absorption, i.e., growth of Im 
a,,', leads to a qualitative change of the pole-motion pat- 
tern. It is convenient to describe the absorption in a hadronic 
atom by the parameter 

For 3'{ = the trajectories of the poles located for small g 
near v = 1 and v = 2 intersect at the saddle point S, . After 
the intersection one of these poles returns to the point v = 1, 
and the second moves to Y = 0, i.e., it leaves the Coulomb 
region of the spectrum and becomes a nuclear level. At f > f ,  
the trajecotries of the poles from v = 1 are closed, i.e., the 
restructuring regime is replaced by a regime of oscillations 
about the position of the unperturbed pole v = 1. 

The poles whose trajectories intersect at the saddle 
points S,, behave similarly. For f, < f < f, + , , the levels Is, 
2s, ... , ns move in the oscillation regime, and the levels 
(n + 1 )s, (n + 2)s, ... in the restructuring regime. This illus- 
trates the important role of the saddle points: level lines pass- 

FIG. 2. Im a; ' ( v )  level lines in the comprex v plane in the 
case I = 0. The curves are marked by the values of the param- 
eter 2 4 5  - 1 ) .  The motion of the poles, indicated by the 
arrows, corresponds to an increase of the coupling constant 
g. 
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ing through them separate these two regimes. The saddle 
points S, correspond to values 6 = 6, close to unity: 

We conclude hence that the intermediate region of the tran- 
sition from the restructuring regime to oscillations is very 
narrow in the case 1 = 0. As to the nuclear level, for 6 < 1 it 
stems from Coulomb levels and for 6 < 1 it comes to the re- 
gion Y =:O from the second sheet of the complex energy vari- 
able plane; see Ref. 10 for details. 

The results indicated were obtained from the funda- 
mental equation ( 1 ) for 1 = 0 at r,, = 0 (note that if I = 0 all 
the curves of Fig. 2 are practically independent of r,,). 

We proceed now the case of I f 0. The level trajectories 
and the saddle-point trajectories depend here substantially 
on the effective radius rjcs'. It is therefore convenient to iden- 
tify the number n of the saddle point S with the principal 
quantum number n. We introduce in analogy with ( 11 ) the 
quantity 

which is indicative of the absorption in the system. We de- 
note by 6 L'' the value of the variable 6") corresponding to 
the saddle point SL1'. It follows from Eq. (1)  that 

lim 6 I,') = 6:;' = 1 (just as for I = O), but this asymptote is 
P I -  CC 

reached only at large n $ (a, /ro)'2'p I ) "  $1. A numerical 
calculation using Eq. ( 1 ) shows' ' that at n -1 + 1 the values 
of 6 A') differ substantially from 6:;' = 1. Here 6 L') exceeds 
unity and, in contrast to thes-wave case, thesequence {6 :I)} 

decreases with increase of n.  
The pattern of the pole collision in the case I> 1 differs 

from that described above for I = 0. Now an atomic level 
coming from the point Y = n collides at the saddle point with 
a nuclear level coming from the second sheet of the energy 
plane. After the collision, one of the poles moves to the point 
Y = n - 1, and the other returns to the point Y = n (this 
pertains to a specified absorption value 6 'I' = 6 A ' ) ) .  All the 
levels that emerge from the points Y = I + 1, I + 2, ..., n - 1 
are then in the restructuring regime, and those from the 
points Y = n + 1,n + 2, ..., are in the oscillation regime. Just 

as for I = 0, the level lines corresponding to ((I' = 6 A') are 
separatrices in the vicinity of the saddle points S :'I, i.e., they 
separate the spectrum-restructuring region from the oscilla- 
tion region. To obtain the complete pattern of the level mo- 
tion one must investigate the level lines Im [ l / a j c s ' ( ~ )  ] for 
arbitrary absorption [ (see Fig. 3, which pertains to the case 
1 = 1 , c  = 1 and I rics) I = 1 6 ~ ,  and corresponding for a mod- 
el of V, ( r )  in the form of a &function potential, to the ratio 
r,/aB = 3/20~=:0.05 typical of hadronic atoms]. Note that 
whereas the pattern shown in Fig. 2 is practically indepen- 
dent of the effective radius, this is not the case for Fig. 3. 

Note that the possibility of an oscillating motion of the 
levels in strong absorption was observed in Refs. 17 and 18. 
Koki9 investigated the model "Coulomb field plus separable 
potential" problem (I  = 0 )  and pointed out the important 
role of the saddle points on going from restructuring of the 
atomic spectrum to the oscillation regime. The motion of the 
poles and the positions of the saddle points in the presence of 
absorption were investigated in Ref. 20 using the "Coulomb 
field plus S potential" model and in Refs. 10 and 11 on the 
basis of the model-independent equation ( 1 ) . 

5. Application to hadronic atoms. Equation ( 1 ) was ap- 
pliedk6 for certain hadronic systems, such as Fp, 2-p, 
K -4He. Let us discuss the new experimental data. 

a )  the pp atom (a, = 57.6 Fm, E, = 25.0 keV) was 
c o n ~ i d e r e d ~ ~ ' ~  in connection with the published2' indication 
of a large shift of the ground level ( AE ,, =: 3 keV compared 
with E::'E i:' = 9.4 keV). A contemporary LEAR experi- 
ment gives 

AE,,= (0.5h0.3) keV, r,, 5 lkeV(Ref. 22); 
AE,,= (0.73+0.15) keV, I?,,= (0.85t0.39) keV (Ref. 2 3 ) ;  

AEiS= (0.657k0.126) keV, r,,= (1.125*0.228)kev (Ref. 24); 

For these values of AE,, and TI, the level shifts are deter- 
mined by perturbation theory in the scattering length,25 and 
in the s state thepp system is far from reconstruction. 

A recently refined width of the 2p level of thepp atom 26 

is r,, = (38.8 f 10.7). lop3  eV (no 2f-level shift is given in 
Ref. 26). Assuming AE,, - r2, , we have 

Varying the strong-interaction radius in the range r, = 1.2- 
1.4 Fm we obtain from Eq. ( 11 ) of Ref. 27 
8::' = 1/2(ro/aB )'z (4-7). Thus, S2! -6;;)) mean- 
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ing that the nuclear level (if it exists) is quite far from the 
region of the atomic spectrum. Its location cannot be pre- 
dicted on the basis of the model-independent equation ( 1 ); a 
rough estimate in accordance with (6)  yields (EN 1 2 15 
MeV. The situation calls for a more detailed study of the 
shifts and widths of the 2p levels of the proton-antiproton 
atom (at low energies, the contribution of thep wave is sig- 
nificant in thepp system 28). 

b) pd atom (a, = 43.2 Fm, E, = 33.35 keV). Observa- 
tion of strong absorption from the 3d state, T3, z 5. low5 eV, 
was reported at the Villar ~on fe r ence .~~  This exceeds by an 
order of magnitude the theoretical T3, = 6. eV, ob- 
tained by solving the three-body problem using standard po- 
tential models for the NNin t e r a~ t ion .~~  In analogy with the 
foregoing, we have 8::' = (4/729) (ro/a, )5 z ( 1-3). lop9 
for ro = 2-2.5 Fm (the mean squared deuteron radius is 
(3)"' = 1.966 Fm, Ref. 30). The experimental value 
S,, R 3. lo-' is at the same time considerably higher than 
82:'. This seems to attest to the existence of a weakly bound 
nuclear level in the pd system. A final conclusion calls for 
higher experimental accuracy with measurement, in partic- 
ular, of not only the width but also the shift of the 3d level. 

C )  Equation ( 1 ) was used also to analyze other ha- 
dronic atoms, 8 -p  (Refs. 5 and 10) and K - 4He (Refs. 6 
and 27). The most definite is the situation with the K - He 
system, for which the experimental values3' 
AE,, = (43 + 8) eV and T,, = (55 + 34) eV predicted the 
existence of a weakly bound nuclear leve with binding ener- 
gy E and width y of the order of 1 MeV. 

6. Nuclear shifts of mesic-molecular levels. Let us exam- 
ine the application of the approach described above to the 
question ofp-catalysis of nuclear fusion reactions.32x 33 Pon- 
omarev and coworkers34, 35 obtained by laborious computa- 
tions the molecular-level energies in the ddp and dtp sys- 
tems. The most important results of these calculations can be 
taken to be the predicted existence of weakly bound mesic- 
molecular levels (thus, in the dtp molecule, E ~ ,  = 34.9 eV 
and E, = 0.64 eV., where E,, is the level binding energy and 
J and v the rotational and vibrational quantum numbers. 

To obtain the velocities A ?  of the fusion reaction 
d + t-4He + n from various states of a mesic molecule, and 
the nuclear shifts of mesic-molecular levels, calculations 
were preformed 36,37 in which the potential V, ( r )  were cho- 
sen to be model optical potentials whose parameters were 
fitted to the experimental data on elastic d t  scattering and of 
the reaction d + t-4He + n near E 5 200 keV (a, = 24.0 
Fm, E, = 59.9 keV, and c = - 1 for the dt system). It has 
been found36 for the states with J = 0 that the reaction rate is 
A T  = 1.0. 10" s ,  the nuclear shift is 
AEoo = - 0.70 eV (the binding energy of the unper- 
turbed level is E, = 319.2 eV), and A;' = 0.80.10'2 s-l, 
AE,, = - 0.60,10-3 eV (E,, = 34.9 eV). The essential re- 
sult of these calculation is the smallness of the molecular- 
level shift due to the nuclear dt interaction (this agrees with 
 calculation^^^ using another strong-potential model). 

On the other hand, it is stated in Refs. 38 that the pres- 
ence of the 3/2 + quasistationary level (s-wave resonance 
with E, = 64 keV and r , /2  = 70 keV) in the dt system ex- 
erts a substantial influence on the locations of the intermole- 
cular levels, owing to the spectrum-restructuring effect. 

This question can be considered without a model on the 

basis of Eq. (B.6) of Appendix B. Putting in this equation 
l = O a n d c =  - 1 wehave 

where E $:' and Q,, are the level energy and the normalized 
wave function at zero [see Eq. (B.9) 1,  calculated without 
allowance for the strong interaction. The dimensionless fac- 
tor Q,, is proportional to the penetrability of the Coulomb 
barrier at the energy 

where Z , = 2 ,  Z 2 =  1, m,=m,,m,/(m,, +m,) ,  
m, = m,m,/(m, + m,), so that E z 8 . 3  keV for states with 
J = 0. Note that ( 14) is the energy of the relative motion of 
the dt system over short distances, where the effective poten- 
tial in the dtp mesic molecule is of the form V =  V, + 1/ 
r + ~ ( r ) .  The penetrability of the Coulomb barrier is here 
exp( - 2r/ka, ) 5. lop6. Substituting in ( 13) the values 
of the low-energy scattering parameters 

extracted from the experimenal data on the cross section of 
the reaction d( ta )n  in the triton energy interval E, = 12.5- 
117 keV (Ref. 39), and the values Q,, = 1.02. lop4, 
Qol = 0.927.1OP4 obtained from calculations of the wave 
functions of the mesic molecule, 35-37 we get4' 

These values agree with the numerical calculations of Refs. 
36 and 37. This is not surprising, since the mesic-molecular 
level shifts and widths due to the nuclear dt interaction are 
determined, as seen from (13), by the low-energy param- 
eters a, and r,,, and are independent of the specific form of 
the strong potential Vs ( r ) .  

Note that even if the nuclear level were to land in the 
region of the molecular levels, so that the expression in the 
curly brackets of ( 13) were close to zero at E = E g ' ,  the 
shifts would remain small even in this case. This is easily 
verified by solving Eq. ( 13) for the shift AQ,, = E - E g':  

Here SE = EAN' - E$:) is the detuning from resonance, 
with E AN' z - 3a,, (a, - 3r,, ) the position of the nuclear 
level. This equation is similar to expression (5)  that de- 
scribes the Zel'dovich effect for states with angular momen- 
tum I #O. The smallness of the shift is ensured here by the 
small penetrability of the Coulomb barrier 

that separates the regions of the molecular and nuclear at- 
tractions. Moreover, an estimate using the semiclassical 
equation (B.7), recognizing that fio = E,, - ~,,--0.3 keV 
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yields Q z 3 . 5 .  which agrees4' with the cited result of 
the numerical calculation. 35-37 

We arrive at the conclusion that in our problem 
allowance for the nuclear interaction at small distances can- 
not cause a significant change in the molecular-level energies 
calculated with the strong interaction neglected. The situa- 
tion for arbitrary values of a, is here far from the situation 
with spectrum restructuring, differing qualitatively from the 
problem considered in Refs. 1-4, of the influence of a shal- 
lows level on the atomic spectrum. We emphasize once more 
that the cause of this difference is the existence of Coulomb 
potential of low penetrability. Our conclusion are thus in full 
agreement with the results of the model  calculation^.^^^^^ 

7. Finally, we apply the model-free approach developed 
above to the question of the influence of nuclear interaction 
on the sticking probability of a muon to an a particle in the 
dtp - nt + ap (pW4He) reaction that proceeds from the Jv 
state of the dtp mesic molecule. 

The sticking coefficient w: was calculated in Ref. 41 
with neglect of the influence of tlie nuclear interaction on the 
wave function YJ" of the mesic molecule. The equation used 
for the amplitude of the pickup to the nl state of the mesic 
atom was 

where r = Ir, - r, 1-0, p is the muon radius vector in the 
c.m.s., Y,, ( p) is the normalized wave function of the 4Hep- 
mesic atom, 

V is the velocity of the mesic atom in the c.m.s. m,, and 
m,,,,';. are the reduced masses of the mesic atom and of the 
n ( , u - ~ H ~ )  system, A = 17.6 MeV is the energy released in 
the fusion reaction, E,, and E ~ ,  are the binding energies of the 
mesic atom and the mesic molecule, and finally YJyP,r)  is 
the wave function of the mesic molecule with the nuclear 
interaction between the deuteron and the triton turned off. 
The Schrodinger-equation variables are separable in the re- 
gion r(a, = fi2/m, e2, and YJ" takes the form (we assume 
for the sake of argument MJ = 0)  

The summation (integration over the continuum) is carried 
out here over the complete system of orthonormalized states 
K E  (NLm) of the 3He mesic atom EN = - 21iz,/N2, mp 
= m, (m, + m, )/(m, + m, + m, ) z m ,  for the discrete 

spectrum), and the functions 

where k $= [2(EJ" - E N )  ] 'I2, EJ, is the mesic-molecule 
energy. 

From ( 18)-(21) it follows that the probability of muon 
pickup into the nl state of the mesic atom4' is 

where 

The first term ( N  = 1)  in (22) corresponds to the Born- 
Oppenheimer approximation, and the remaining terms con- 
stitute a correction for the non-adiabaticity, which amounts 
to ~ 3 0 % .  Ultimatel~,~'  w: = 8.48.10W3. In addition, it is 
necessary to introduce many corrections for the calculation 
of w: (for the finite ratio m,/m,, , for the nuclear sizes, for 
the polarization of the vacuum, etc. ), but these change w ,  by 
less than 1% (Ref. 41 ). 

Let us examine the influence of the resonant dt interac- 
tion on the probability w: (it is stated in Ref. 42) that this 
effect can change w, by 2-3 times). Taking into account the 
nuclear interaction we have 

where 

and E, = - [a, (aB/3 - r,, ) ] - ' is the position of the res- 
onance [note that Eq. (24) is obtained from (21) by replac- 
ing the Coulomb function F, ( I  = 0)  that is regular at zero 
by F,(r) + tan 6, Go( r )  1. It can be shown that the normal- 
izing factor in (24) remains unchanged to within terms of 
order (ro/aB ) 3. 

To estimate the influence of the resonant dt interaction 
on wy we retain in (24) only the singular term and assume 
that it determines the behavior ofx$, ( r )  also for r S r,c. We 
obtain for the sticking coefficient 

This shows that in the adiabatic approximation 
(QN = Q16,,, ) the nuclear interaction does not influence 
w: at all, it accounts only for the corrections for nonadiabati- 
city, and has an additional smallness - IE,/E, I = 6. For the 
dt system we have S- 8 keV/64 keV = 1/8 and we obtain an 
estimate ~ 4 %  for the correction to the sticking coefficient. 
This agrees with the -3% obtained for this correction in 
Ref. 41. 

A statement made in Ref. 42, that the resonant dt inter- 
action which distorts strongly the wave function YJ"can al- 
ter w: substantially, is in error, in view of an implicit assump- 
tion that the dt-na reaction is possible also at distances 
r- a, $ r, . The model-independent estimate (25 ) confirms 
the conclusion of Ref. 41 that the corrections to the sticking 
coefficient w: = 8.48. loW2 are of the order of several per- 
cent. 

8. A few concluding remarks. The atomic-spectrum res- 
tructuring, or the Zel'dovich effect, is of general quantum- 
mechanical character and can manifest itself in any system 
for which the potential interaction breaks up into two parts 
with greatly differing radii. We have investigated above the 
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characteristic features of this effect in the case when two 
attraction region in the potential V(r) are divided by low- 
penetrability barrier (centrifugal if I = 0 or Coulomb for ar- 
bitrary I). In this case the nuclear level shifts are always 
small, even in the term quasicrossing region. This is precisely 
why in the examples considered in Secs. 6 and 7 the resonant 
nuclear interaction, which distorts the wave functions at 
short distances, does not lead to a noticeable level shift (and 
also leaves in fact unchanged the wave function at large dis- 
tances). 

The authors are grateful to V. B. Belyaev, L. N. Bog- 
danova, V. E. Markushin, L. I. Ponomarev, and V. I. Fomi- 
chev for discussions during various stages of this study. We 
are particularly grateful to L. B. Okun' for critical remarks 
concerning the text of the article. 

APPENDIX A 

Let g, be that value of the coupling constant g for which 
there appears in the potential 

a bound state with angular momentum I, and letx, ( r )  be the 
corresponding wave function. This function is normalizable 
at I> 1 and its asymptotic value i sx ,  = A,x - + ... as x = r/ 
r,- W .  Using perturbation theory in Ag, we arrive at the 
equation 

where 
co m 

as n - w (the definitions of g,, and g, are clear from Fig. 1 ). 
In a number of cases the values ofg, and c, can be calculated 
analytically. Thus, for a 6-like potential [v(x)  = S(x  - 1) ] 
we have 

and for a rectangular well [v(x) = 0 (  1 - x ) ]  

where fP,. is the pth positive zero of the Bessel function 
J ,  ( f )  andp  = 0, 1,2,  ... . From (A.2) we have for 1% 1 

Using thk l/n expansion 43 we can readily show that for an 
arbitrary smooth potential we have g, - I2 and c, - 1 -' as 
I -+ co . Hence 

Ag,,l lgl-l-2( rolnaB) ' ,  

which yields for n = I + 1 the estimate (7 ) .  
Using Eq. (5 )  and the connection between the effective 

radius r, and the asymptotic coefficient A, (Ref. 12), we get 

where 

This yields directly the estimate (8).  The derivation of the 
equations above, and also the generalization of Eq. (5 )  to 
include potentials with power-law "tails" at infinity, will be 
published elsewhere. 

APPENDIX B 

Semiclassical approximation in a Coulomb potential with 
short-range action 

The semiclassical approximation, or the WKB method, 
is one of the most powerful approximation methods of quan- 
tum mechanics, and for physically reasonable potentials the 
region of its validity extends way down to low quantum 
numbers (see, e.g., Refs. 16,44, and 45).  It is therefore natu- 
ral to use it in the Coulomb problem with short-range action. 

For distances r 5 (1 + 1/2)'a,, the semiclassical wave 
function is 

where 

p ( r )  = [k2+2%/r-  (Z+1 /2 )Z / r2 ]  '' 

is the semiclassical momentum, and the phase 0, takes into 
account the contribution of the potential V, ( r )  at short dis- 
tances. Comparing (B. 1 ) with the asymptote of the Cou- 
lomb wave function as r- W ,  we get 0, = 6jc"'(k), where 
6;"' is the nucleus-Coulomb scattering phase.46 Analytic 
continuation into the discrete-spectrum region, k = iA, 
yields the quantization condition 

r. 

1 p dr=n (n,-t1lZ) -a?' (ih) 
I- 

where the energy is E = k */2 = - A */2. To continue ana- 
lytically the phases 6:'" ( k )  it is convenient to use the effec- 
tive-radius expansion 46,47: 

K : ~ "  ( k 2 )  E kZLii ~ ( l + q 2 / j z )  [CO. ( q )  ct8 6ilC'tC2qh(q) I 

Here 7 = - f /k is the Sommerfeld parameter, 
C ;  = 2n-r](eZV7 - I ) - ' ,  
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and C = 0.5772 ... . This yields in the case of Coulomb attrac- 
tion ( k a ,  1) 

and in the case of Coulomb repulsion 

Equation (9)  follows directly from (B.2) and (B.3). 
In a number of physical problems the potential reduces 

to Coulomb repulsion at short distances: V(r) = -< / 
r + Vo + O ( r ) ,  [ < 0, while an attraction region exists for 
large values of r (for example, in the case of mesic molecules 
such as ddp, dtp, and others). In such a potential there can 
exist bound states whose spectrum is determined from the 
quantization condition 

where now 

p ( r ) = [ 2 ( E - V ( r ) ) - ( 1 + ' / 2 ) 2 / r 2 ] ' "  

and k = 2 ( E  - Vo) > 0 (which is usually realized in mesic 
molecules). The exponential factor corresponds to the pene- 
trability of the Coulomb barrier. The nuclear level shifts for 
states with arbitrary angular momentum, including I = 0, 
are unusually small if ka, 1. With this taken into account, 
Eq. (B.5) takes the simpler form 

with 

where 

is the frequency of the classical radial motion in a long-range 
well. It can be shown4' that relation (B.6) is valid not only in 
the semiclassical approximation. It is a generalization of a 
perturbation-theory equation in terms of the scattering 
lengthZ5 

Here Q,, is a dimensionless coefficient that determines the - .. 

behavior of the normalized wave function p,, (unperturbed 
by the short-range potential V,) a zero: 

Thus, in a pure Coulomb attraction potential ( V = - [ /r)  
we have14 

*Moscow Engineering-Physics Institute. 
I )  We use the atomic units e = fi = m = I, where m is the reduced mass of 
the system; the energy unit is E, = me4/fi2. 
''Here r, is the effective radius of the nuclear forces and a , = / ' is the 
Bohr radius. It is assumed henceforth that r, <a, .  
" The value 4, = 1 - 0.058/2.rr = 0.9908 corresponds to the sadle point 
S, , see Fig. 2. 
4'The cause of difference between the semiclassical estimate of the wave 
function at zero and the exact value is that the mesic-molecular potential 
near the turning point is not a Coulomb potential. 
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