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Photon emission by a chargeless Dirac particle with an anomalous magnetic moment is 
considered for the cases of the particle interacting with the following fields: a plane wave field 
with both linear and circular polarization, and a constant crossed field. Closed-form invariant 
expressions for the emission probability and intensity are found. In the approximation linear in 
the wave-energy density, some of the results are shown to coincide with earlier ones obtained by 
cumbersome and noninvariant methods. 

The relativistically invariant methodology for the cal- 
culations of elastic and inelastic interactions between elec- 
trons and a plane electromagnetic wave field has been devel- 
oped mostly by V. I. Ritus and A. I. Nikishov (see the review 
in Ref. 1 ) . Their approach is known to be sufficiently general 
and applicable to processes taking place in arbitrary fields at 
ultrarelativistic particle energies. One of the most important 
applications was the study of photon emission by an electron 
in the field of a plane electromagnetic wave with various 
polarizations and in a crossed field. That study was a sub- 
stantial contribution to the solution of the classical problem 
of the emission of a charge in an external field. 

Of equal importance is the problem of photon emission 
by a neutral Dirac particle with an anomalous magnetic mo- 
ment, such as a neutron, in a plane-wave field. There have 
been some earlier attempts to approach this 
however, it was seemingly impossible to obtain closed-form 
results by using noninvariant solutions of the generalized 
Dirac equations for a neutron in a plane-wave field; for that 
reason, the authors of Ref. 3 have limited their consideration 
to special cases. 

In our paper,4 where the process n + n ( v V )  in a plane- 
wave field was studied, we obtained a compact and invariant 
expression for the wave function; a computational technique 
was developed using as an example the above inelastic pro- 
cess. In the present paper we consider a purely electrody- 
namic interaction between a neutron and a plane-wave field, 
with emission of a photon. Using an invariant technique, we 
obtain general and closed-form expressions for the emission 
probability and intensity in a linearly polarized wave and in a 
crossed field. The general formulas yield the corresponding 
results of Ref. 3 as a particular case. 

1. The relativistically invariant form of the solution of 
the generalized Dirac equation for a chargeless particle with 
an anomalous magnetic moment p in a plane-wave field with 
a potential A = af(p), p = ( k x ) ,  can be written as4 

where u ( p )  is a solution of the Dirac equation in the absence 
of a field, with a density matrix 

for non-polarized particles (here we do not concern our- 
selves with the effects of the polarization of the neutrons and 
of the emitted photon; the appropriate generalization is ob- 
vious). 

The structure of the (nny) vertex is defined by the 
expression: 

and using the transformation formulas from Ref. 4, one can 
readily obtain the following matrix element, which corre- 
sponds to the process n - n y  in the field of a monochromatic 
linearly polarized plane wave A = a sin p: 

OD 

C='/,p (4n) '" (2n) 'V-" (2~o2~0 '2~a)  -', ,. ,. A,. 

M=L/2(k&p+pkd), M'=M (pep ' ) ,  
arg J.=2p(-a')'", q,=p+sk, 

where K and e are the photon momentum and polarization 
vector, p and p' are the momenta of the initial and final neu- 
trons (for simplicity, we will omit the subscript "s" in q, in 
the remainder of this section). The probability of the process 
per unit time, for unpolarized particles, can be written as: 

TAeuen)- 
rvaB - '/& SP{ (p'+m) [o,,-r,, (p', p) 1 

where each term of the series corresponds to capture of s 
photons from the wave, and the operator 3, is defined by 
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the expression: 

Performing straightforward calculations, one can easily ver- 
ify that 

(even)  (odd )  
TPva6 = Tpv58 =Tpva~, (6a) 

m2 up1 
~-g*x~x'T.,~=8[ ( x p )  ( x p ' )  + ( k p )  (kp') F(z- 7) 

k p  k p  

The calculation of 7, [ TI can be carried out by utilizing the 
following relations and some particular cases which stem 
from them: 

note that we have omitted in (7c) two tensor combinations 
that do not contribute to FS [ TI. 

Denoting 

u,=2s (kp) /m: (8  

and performing some transformations with Eqs. (4) and (5)  
taken into account, we obtain the following expression for 
the total probability: 

A plot of the function g(  us ) is shown in Fig. 1. If the result of 

FIG. 1. 
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Ref. 3 is expressed in a simpler form, it follows from ours in 
the lowest order in p. 

2. For more general potentials, including circular polar- 
ization as well, we shall try to find the solution of the gener- 
alized Dirac equation [Eq. ( 1) in Ref. 41 in the following 
form: 

For the function F we obtain after some transformations 
(the derivative is taken with respect to the phase q, = ( k x )  ) . 

B 1 
Fr=- ( w s  z  ---sin z )  - [ B B f ]  

z  2 

[ s i ; z  +( sinz - --- 
zS 

) B ]  F. 
z2  

For potentials A = af(q,), the commutator [BB '1 = 0 and 
we return to the solution ( 1 ) . Applying Eq. ( 11 ) and limit- 
ing ourselves to the accuracy - B  e B ( -p2)  inclusive, we 
obtain: 

1 sin ( 2 z )  
F ' s s  - - [ B B t ] -  4 F 

z 

with the solution: 

1 sin (22)  
F = l - - I  [BBr]----- 

4 z 
do ,  

and with the same accuracy: 

B 
Y = c o s z + - s i n z  

z  

-- sin ( 2 z )  U 
c o s J ~ ~ ~ } - = .  (12) 

4 z  

In a wave with circular polarization 

A=al cos q+a2 sin rp, 
a,2=a22=a2r ( a l a 2 )  =O, ~ = ~ ( - a ~ ) ' "  (13) 

the interference of the first and second terms of ( 12) in the 
matrix element describes the one-photon capture. The exact 
solution of ( 1 I ) ,  with Eq. ( 13) taken into account, would 
also describe multiphoton processes in a circularly polarized 
wave. We shall limit ourselves to the investigation of the 
contribution W, to the total probability. Using the represen- 
tation ( 12), we obtain 

i 
(f ( S 1 i>, = - C sin (22)  6 (q,-~'-x) 

2 
x [ii ( p 1 ) f P y  (p',  P )  U ( P )  I e W ,  (14) 

where in T a - + a ,  - ia,. The corresponding probability is 

x P5,* ( p .  p l )  lg~~xvx", ( 15 

where in T* a -a ,  + ia,. The result of calculation of the 
expression the braces in Eq. ( 15) is 
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FIG. 2. 

where 

It is readily seen (see also Ref. 1 ), that 

The subsequent integration over the phase-space volume in 
( 15),  with the Eqs. (7) and (8)  taken into account, results 
in: 

W I = 1 / 2 ~ o  sin2 (2z)g(u,) .  (17) 

Those terms in Eqs. (9) and ( 17), which are linear in wave 
energy density, do not depend on the state of polarization 
and are, therefore, identical (their seeming discrepancy by 
the factor of 2 is due to the difference in the relation between 
a* and the average energy density, see Ref. 1 ). Apart from 
notation, they describe photon scattering on a magnetic mo- 
ment. 

3. The intensity I, of the "photon 4-momentum emis- 
sion" can be derived from the expressions (4)  and (15) by 
adding the factor x, = q, - p i  to the braces. The integra- 
tion over the phase-space volume is carried out utilizing Eq. 
(7) and an additional expression: 

We omitted those tensor combinations which do not contrib- 
ute to I,. 

For linear polarization we obtain: 
m 

Note that in the nonrelativistic approximation 

Plots of the functionsgi (us  ) and gi (us ) are shown in Fig. 2. 
In the case of circular polarization, when one photon has 
been emitted 

It follows from Eqs. ( 18) and ( 19) that in the approxima- 
tion linear in the wave energy density the intensity likewise 
does not depend on the state of polarization. In the same 
approximation, the asymptotic behavior of functions gi and 
gi yields the same results as in Ref. 3, which were written in 
noninvariant notation. 

4. The limiting case of a constant crossed field Fcan be 
obtained if we remove the summation over s in Eq. (9) and 
introduce the following substitutions (see Ref. 4'') : 

and make in equation ( 18) by the additional substitution 

In particular, in the ultrarelativistic case X> 1 we have: 

If these formulas are applied to a purely magnetic field, then 
in the ultrarelativistic case the asymptotic behavior, evaluat- 
ed in Refs. 5 and Ref. 6, does not coincide with (21a) and 
(21b). In Ref. 5 and Ref. 6 the authors took into account the 
first nonvanishing term of the expansion i n p  for interaction 
not only with the radiation field, but also with the external 
field; this is not justified in the ultrarelativistic asymptotic 
case, where the true expansion parameter is X. The afore- 
mentioned results of Ref. 5 and Ref. 6, correspond in fact, to 
the Eqs. (9),  (9b), and ( 18), ( 18c) for the temporal compo- 
nent of Im,  with (20a) and (20c) taken into account. 

The effect under consideration is quite likely to be ob- 
served in the interaction of a high-power directed laser beam 
with a high-intensity neutron beam; this would allow one to 
draw some conclusions as to the extent of the method's ap- 
plicability. The invariant technique developed here could 
also be used in research into the effects of polarization, by 
introducing the proper density matrix (see Ref. 7 )  and, in 
addition, to calculations of the probability of the crossed 
channels y + nii, nii + y in a plane-wave field. 

The author is grateful to V. G. Bagrov for constructive 
remarks. 

"The statement Jf. - 1/4 in Ref. 4 is inaccurate. 
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