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A theory is developed to describe nonlinear low-temperature phenomena in two-dimensional 
amorphous dielectrics. Nonlinear resonant absorption of microwaves or surface sound, and hole- 
burning in the spectrum of a weak signal due to the presence of a strong signal at a slightly 
different frequency are considered. Both of these phenomena are caused by the interaction of an 
external signal with two-level systems present in amorphous materials. The interaction among 
the two-level systems results in spectral diffusion and its influence on the absorption is analyzed. 
A two-dimensional problem is considered for a thin amorphous film on a crystal substrate and for 
a crystal surface with a high degree of disorder. Techniques developed previously for the three- 
dimensional case are applied to the two-dimensional situation to derive general expressions for 
the critical intensity for nonlinear absorption, and for the shape of the burnt hole. Analytic 
expressions are derived for several limiting cases. 

1. INTRODUCTION AND STATEMENTOFTHE PROBLEM 

Like microwave absorption, low-temperature absorp- 
tion of sound in amorphous dielectrics is known to be due to 
the interaction of the absorbed signal with two-level systems 
present in the material''2 (see also the review in Ref. 3) .  The 
two-level systems consist of an atom or group of atoms capa- 
ble of tunneling between two equilibrium positions. 

The purpose of the present paper is to develop a two- 
dimensional theory of resonant absorption which treats the 
spectral diffusion. The importance of the latter in numerous 
physical systems was first pointed out by Klauder and An- 
derson4 in their study of magnetic resonance. Its role in the 
physics of glasses was discussed by Joffrin and Levelut5 and 
by Hunklinger and Arnold.' A quantitative theory of non- 
linear phenomena in the three-dimensional case has been 
developed by Gal'perin, Parshin, and the author.'s7 

Nevertheless, numerous two-dimensional nonlinear ef- 
fects are encountered in current experimental work. Two 
cases are of particular interest to us. a )  The case of a perfect 
crystal whose surface, however, is highly disordered, due 
both to imperfections in the surface itself and to adsorption 
of foreign atoms. The surface influences the absorption of 
surface acoustic waves, the nonlinear losses upon reflection 
of a volume acoustic wave, and the absorption of 
microwaves. The latter absorption is most easily observed in 
systems with a large surface area, such as crystal powders.'' 
b)  The case of a thin amorphous film on a crystal substrate. 
Because the methods applied here are the same as in Refs. 6 
and 7, we will describe them rather briefly, emphasizing 
those features special to the two-dimensional case. 

Spectral diffusion can be described as follows. Consider 
a resonant two-level system with levels separated by h, 
where w is the frequency of the ultrasound or microwave 
radiation. The resonant two-level system interacts with 
neighboring thermal centers, whose energy levels are spaced 
by an amount comparable to the temperature Texpressed in 
energy units. This interaction is due to the elastic stresses 
and electric fields generated by the thermal two-level 
centers. In our application the dynamic part of the interac- 

tion, i.e., the component that depends on whether the ther- 
mal two-level system is in the ground or an excited state, is 
important. For these thermal two-level systems, quantum 
transitions (hops) modulate the distance between the levels 
of the resonant two-level system, thereby broadening the res- 
onance. 

In this paper we consider two nonlinear phenomena in 
which spectral diffusion can play a dominant role: nonlinear 
absorption (characterized by the critical intensity Fc ), and 
hole burning. We will consider the stationary case, although 
the techniques developed also apply in principle to the time- 
dependent case. Moreover, we assume that the phonon sys- 
tem relaxes fast enough so that the phonons may be assumed 
to be in equilibrium. Nonlinear absorption of resonant radi- 
ation in three-dimensional amorphous dielectrics was ana- 
lyzed in Refs. 8-10 for the case when the departure of the 
phonon system from equilibrium is significant. It was shown 
there that phonon nonequilibrium can change the qualita- 
tive behavior. Nevertheless, in the two-dimensional case one 
can usually choose the experimental conditions so as to 
eliminate this factor by ensuring that the phonons rapidly 
leave the two-dimensional region in which they are excited. 

The governing parameters are as follows. The interac- 
tion between the external ac field and the resonant two-level 
system is characterized by the matrix element for the transi- 
tion, W/2. The explicit expression for F will of course de- 
pend on whether the system is excited by a sound wave or by 
a microwave field. The quantity F i s  just the Rabi frequency 
for the resonant two-level system, i.e., the frequency of the 
coherent oscillations in the populations of the upper and 
lower levels during the resonant excitation. 

If the interaction among the two-level systems (i.e., the 
spectral diffusion) can be neglected, the resonant absorption 
coefficient can be expressed in terms of F and the damping 
coefficient y of the resonant two-level systems (here y is the 
intrinsic damping due to the interaction with the phonons). 
The absorption coefficient is proportional to the population 
difference for the upper and lower levels, multiplied by the 
spectral width of the absorption line. For F 4  y, the popula- 
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tion difference is equal to its equilibrium value and indepen- 
dent of F  to lowest order. The absorption line is Lorentzian 
with width y. The absorption coefficient is described by the 
linear theory in this approximation. To  next higher order, 
one finds a negative correction to the absorption coefficient 
which for F< y is of relative order (F/y)'.  

For FS y the population difference falls off as F  - 2 ,  i.e., 
it is inversely proportional to the intensity. On the other 
hand, because of the Rabi oscillations the width of the reso- 
nant region is directly proportional to I;: The absorption co- 
efficient is thus proportional to F - I ,  and the critical ampli- 
tude F, determining the magnitude of the nonlinear effects is 
equal to y. I t  is also clear from this discussion that the width 
of the burnt hole is - y for F< F, and - F for FS F, . 

The above picture changes radically when spectral dif- 
fusion is present. Hopping of neighboring two-level systems 
in this case causes the energy (the spacing between the lev- 
els) of a resonant two-level system to vary randomly with 
time. The scale of these fluctuations, denoted by Ci/rd, is 
proportional to the interaction energy for two adjacent ther- 
mal two-level systems, i.e., it is determined by 7, the average 
distance between them. 

The distance 7 is given by a simple expression in each of 
the cases mentioned above. In  case b),  we have the order-of- 
magnitude estimate 

where a is the width of the amorphous layer and the constant 
P characterizes the volume density of the states in the two- 
level system. Expression ( 1.1 ) is valid as long as 7%a, i.e., 
T< 1/Pa3; this is precisely the condition under which the 
problem may be regarded as two-dimensional. 

In case a ) ,  7 depends significantly on the energy depen- 
dence of the density Q of surface states for the two-level 
system. As systematic experimental data are lacking, we will 
assume for simplicity that Q is constant. In this case, 7=: 1/ 
( QT) ' I 2 .  

The interaction energy for two two-level systems in an 
unbounded continuous medium can be expressed in the form 
A /?, where the angle-dependent quantity A determines the 
relative "orientation" of the two-level systems, i.e., the 
alignment of the dipole moments characterizing their elec- 
trical interaction, and also the orientation of the principal 
axes of the deformation potential tensors, characterizing the 
elastic interaction (see Ref. 1 1 ). We are interested in bound- 
ed continuous media; in this case, the interaction depends in 
a more complicated way on the spatial coordinates because 
of the additional terms needed to treat the image forces. 
However, as already noted we are interested in the case when 
the mean distance between the two-level systems is much 
greater than the width of the amorphous region. The decay 
in the interaction strength with distance is then the same as 
for an unbounded continuous medium. Only the explicit 
expression for A changes; we will not write it out, since it will 
not be required below. However, we will need the order-of- 
magnitude estimate 

for the case of an elastic interaction; here D  is the deforma- 
tion potential, p is the density, and w is a suitably defined 
average speed of sound.'' Bearing in mind that D  is typically 

of the order of 1 eV, we see that this numerical estimate also 
holds for the electrical interaction of the two-level systems. 
We will therefore treat only the elastic interaction below, 
with the understanding that the electrical interaction of the 
two-level systems in glasses leaves the order of magnitude of 
the estimates unchanged. 

In  view of the foregoing, for case a )  we obtain the fol- 
lowing estimate for the interaction energy of two-level sys- 
tems separated by the mean distance i? 

f i / ~ , - A  (QT)". (1.3) 

For case b) ,  we must replace Q here by Pa. Thus in contrast 
to the three-dimensional case for which 1/rd - T, here we 
have l /rd cc T 3 / * .  This is because the dependence of the in- 
teraction energy on 7 is of the same type as in the three- 
dimensional case, but the mean distance between the ther- 
mally excited two-level systems is proportional to T- ' I2  
rather than to T  - ' I 3 .  

Even in the two-dimensional case, however, there are 
many situations of interest in which l / rd  turns out to be 
larger than y and F. This indicates that broadening of the 
resonant spectral interval by spectral diffusion may be im- 
portant. On the other hand, it is clear that the parameter 1/ 
rd cannot describe the spectral diffusion completely, be- 
cause it measures only the static interaction among the two- 
level systems. An additional parameter r giving thk hopping 
frequency for the thermal two-level systems is also needed to 
describe the dynamics. 

These hops are a consequence of one-phonon processes, 
and the characteristic hopping frequency T,, can be estimat- 
ed as follows': 

Here E, =: (pB'w5) '120- 10-30 K is the characteristic ener- 
gy introduced in Ref. 12. 

The product Tor, plays a very important role in deter- 
mining the qualitative nature of the spectral diffusion. This 
may be seen as follows. Consider a disk of radius r, with a 
resonant two-level system at  its center. The disk contains 
QTr,' thermal two-level systems. Since the characteristic 
hopping frequency is To, the condition for at least one two- 
level system in the disk to undergo a transition during the 
time t is 

The corresponding characteristic change in the dis- 
tance between the levels of a resonant two-level system is 

The energy dependence here differs completely from the re- 
lation A /< = t found in the three-dimensional case. This 
also accounts for the different expression derived below for 
the phase relaxation time. Formula ( 1.6) holds if the num- 
ber of thermal two-level systems in the disk is large but the 
transition probability for any one of them is small, so that 
Tot< 1. 

The random jumps in the energy of a resonant two-level 
system give rise to relaxation of the phase of the wave func- 
tion for the system (more precisely, of the off-diagonal ele- 
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ments of the density matrix). The characteristic phase relax- 
ation time T ,  is given by 

so that 

This expression is valid if the t 3'2 law still holds for times on 
the order of T ,  , i.e., if 7,  l?, < 1. Since 7 ,  I?, = (rd  l?O)2'5, the 
first possible limiting case corresponds to the inequality 

Using ( 1.3) and ( 1.4), we can rewrite this as 

where the characteristic temperature Td satisfies the follow- 
ing simple estimate: 

i.e., in the two-dimensional case Td is proportional to the 
surface density of states for the two-level systems. 

In the opposite limit rdI?,> 1 ,  the phase does not 
change significantly over times shorter than I?; I .  In other 
words, we have rg, ) r, '. On the other hand, for large times 
t )  I?; ' the characteristic deviation of the energy for a reso- 
nant two-level system becomes independent of time because 
it cannot exceed Nrd in order of magnitude. The energy 
spacing of the levels in this case thus varies randomly over an 
interval of width f i / ~ ,  . The spectral width of this interval 
determines the phase relaxation time, which is equal to 7, .  

Studies of nonlinear resonant absorption in two-dimen- 
sional amorphous systems are of interest primarily for the 
light they can shed on the two-dimensional density of the 
two-level systems and hence, for example, on the density of 
surface defects on a crystal. Experimental data on spectral 
diffusion in this case would yield information on the nature 
of the interaction among the two-level systems and on their 
spatial correlation. 

2. ESTIMATES; QUALITATIVE ANALYSIS 

Before giving a quantitative description, we will use 
simple physical arguments to estimate the critical amplitude 
F, and the width Av of the burnt hole. 

We begin with the case of high temperatures T$ T, , for 
which Tord $1. Spectral diffusion determines the nonlinear 
absorption if 

which we will assume. In this case, all the two-level systems 
in a spectral interval of width l / r d  about the resonant ener- 
gy will undergo transitions induced by the external field and 
the populations will not be in equilibrium. The field-induced 
rate of population increase is F 2 r d ,  and the relaxation rate 
due to interactions with thermal phonons is y. Comparison 
of these quantities leads to the estimate 

The width of the burnt hole in this case is clearly - l / r d ,  i.e., 
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it is much greater than Fc . Equation (2.2) has the same form 
as in the three-dimensional case; however, one should bear in 
mind that the expression for rd is different. 

In the opposite limit T <  Td we must distinguish two 
limiting cases in which spectral diffusion plays a role, name- 
ly 

r,<<y<<l/z, (2.3) 

and 

In the first case the critical intensity can be found from the 
condition that the energy of a resonant two-level system 
fluctuates randomly by W during a time F  - '  equal to the 
Rabi oscillation period. We thus obtain 

The width of the burnt hole in this case may be estimat- 
ed as follows. For F 2  Fc , a resonant two-level system pass- 
ing through the resonance interval during the time T ,  will be 
excited with a probability close to 1 .  It remains excited for a 
much longer time=: y- ' before emitting a phonon. Inserting 
this time into ( 1.6), we get 

(In the three-dimensional case the expression for Av con- 
tains the ratio r , / y  to the first power.) 

The estimate for F, in the case (2.4) is based on the 
following qualitative  argument^.^ As in the previous case, 
the magnitude fi/rd of the random fluctuations in the energy 
of the resonant two-level systems greatly exceeds the width 
fi/r, of the resonance itself. During the "lifetime" y- ' $ T ,  

the energy of a resonant two-level system returns to the reso- 
nance interval many times, the population each time increas- 
ing by F 2 r i  < 1, i.e., while in the resonance interval the pop- 
ulation grows at the rate F2r, .  However, the energy of the 
resonant two-level system lies within the resonance interval 
only during a time proportional to the width of the interval, 
so that 

The average population growth rate is thus 

The critical intensity is found by equating this rate to the 
relaxation rate associated with phonon emission; one finds 
that 

The width of the burnt hole in this case is clearly equal to 7 , .  

3. BASIC EQUATIONS. AVERAGING PROCEDURE 

In the rest of this paper we present our quantitative 
theory for nonlinear absorption and hole burning with 
allowance for spectral diffusion. The treatment will be con- 
fined to lowest order in the intensity F  2. 

The contribution to the absorption coefficient from a 
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single resonant two-level system with level spacing e=;fiw is 
determined by the density matrix 

n - i f e i O t  

( i l * e - i ~ t  1 - n (3.1) 

In  the resonance approximation to which we limit ourselves, 
the matrix elements obey the system of equations 

where no = [exp(e/T) + 11 - '  is the equilibrium popula- 
tion of the upper level of the resonant two-level system, and 

S=o-e/h-Aw (t) =z-Ao ( t ) ,  

Here fiJ, = IA (/r: is the interaction energy for the resonant 
and the I th thermal two-level systems, separated by the dis- 
tance r,; the random time variables {, ( t )  determine a "teleg- 
rapher's" stochastic process (Ref. 13). They switch back 
and forth between the values 1 and - 1 at  random instants 
with an average frequency equal to TI.  The various functions 
6, ( t )  are assumed to be uncorrelated. The resonance ap- 
proximation is valid when wr, >) 1. 

The resonant absorption is proportional to the imagi- 
nary part of the susceptibility, for which the following 
expression can be derived: 

m 

Here (...)g denotes expectation with respect to the telegra- 
pher's process, while (...), denotes a configuration average 
over the spatial distribution of the thermal two-level sys- 
tems. 

The configuration averaging is necessary because 
Im X ( W )  is a sum of contributions from various resonant 
two-level systems, each with a unique thermal environment. 
Summation over the resonant two-level systems is thus 
equivalent to averaging of the thermal environments, which 
we denote by (...),. 

Strictly speaking, the expression for Im ~ ( o )  should 
involve a further averaging over the tunneling parameter for 
the resonant two-level systems, which depends on F and y. 
However, we have omitted it for simplicity since it does not 
significantly change the expression for I m  X. 

Rewriting the differential equation (3.2) as an integral 
equation, substituting into (3.3), and integrating as in Ref. 
7, we obtain the following result for I m x  (including the first 
nonlinear correction) : 

where we have 

for the critical amplitude F, ,  and 

Since the functions g, ( t )  are uncorrelated, we may 
average over them independently to get 

1 

According to Refs. 6 and 7, the functions k, ( r , r f )  are given 
by 

This expression is valid both for T > J and for r <4 in the 
latter case the hyperbolic functions are to be replaced by 
trigonometric ones. 

I t  remains to average K ( r , r l )  over the parameters of the 
thermal two-level systems. K( r , r1 )  is a product of many ex- 
pectations with respect to the telegrapher's process (3.12). 
Each of these expectations k, depends on the distance r, and 
the transition frequency T, . We assume that there is no cor- 
relation among these parameters for distinct thermal two- 
level systems. This allows us to carry out the averaging inde- 
pendently for each thermal two-level system. If the total 
number of the latter is equal to N, the result is ( k  ):. 

Although for most values of r and J ,  ( k  ), is close to 
unity, (k ) may differ greatly from 1 because N is large. We 
may use the Holtsmark method (see, e.g., Ref. 14) to evalu- 
ate ( k  )? in essence, this reduces to the following approxi- 
mation: 

K=(k)cN=exp N ln(k)c 

In evaluating ( k  ), we will assume that each thermal two- 
level system is completely characterized by two parameters: 
its distance r from a resonant two-level system, and its tun- 
neling parameter A. Averaging over the characteristics of 
the thermal two-level systems thus amounts to averaging 
over r a n d  A. In averaging over r, we assume that all spatial 
configurations of the two-level systems are equally probable. 
The average over the tunneling parameter will be carried out 
by integrating with respect to T a A 2  rather than A. The 
corresponding distribution function isI5 

where To is the maximum hopping frequency for the thermal 
two-level systems. We may approximate the square root by 
unity; this simplifies the formulas somewhat without greatly 
affecting the results. 

The method used to derive the expression for F ,  by 
integrating (3.8) with respect to the times T and r' suggests a 
natural physical interpretation for the latter. The T depen- 
dence characterizes the time evolution of the off-diagonal 
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components of the density matrix for a resonant two-level 
system, while the r' dependence gives the evolution of the 
diagonal components. 

Using (3.13) we obtain 

r. 

Here we have approximated the slowly (logarithmically) 
varying factor s(P)  in the argument of the first exponential 
by its value at P = l /yr  and taken it outside the integral. 
The integration over r can be performed using the same ap- 
proximation to obtain the result 

where 
Using the fact that d ' r  = rdrdp and making the change of 
variable r-.  J = IA I / ?  in the integral, we can rewrite (3.14) 
in the form 

The condition for (4.5) to be valid is that 

where 
m r. which is a refinement of relation (2.1 ) . 

At low temperatures T< Td we have ro < l /rd and the 
function (3.15) decays with a characteristic time of the or- 
der of T,, and for these times we have yo = Tor,. The func- 
tions for this case is calculated in the Appendix and found to 
be 

I. Although not indicated explicitly by our notation, the 
quantity IA / in the last formula is actually an average over all 
angles. Up to a numerical factor - 1, expression (3.17) coin- 
cides with the result obtained above from order-of-magni- 
tude estimates. 

Expression (4.2) now depends on the three characteristic 
frequencies y, ro ,  and T, '; the latter is more conveniently 
replaced by the combination T, 2'5TF5 = 1 / ~ ,  % rO .  There 
are thus three limiting cases. If y$l/r,, most of the contri- 
bution to the integral (4.2) is from T, 7'- l/y, and F, = y. 
There is little spectral diffusion in this case. 

If 

4. NONLINEAR ABSORPTION; ANALYSIS OF SOME LIMITING 
CASES 

In terms of the new variables of integration x = J/r 
and y = TT, (3.16) becomes 

the integral is readily found by expanding the first exponen- 
tial; to within a factor of the order of unity this gives the 
estimate (2.5) F, = l/r,. If however 

where yo = rOr. At high temperatures T S  T,, we have 
rOrd % 1 and the integration over T in (4.1 ) can be extended 
to W .  We conclude that the function s depends only on the 
ratio fi = rl/r .  

Recalling (3.15 ) , we have 
then in our approximation 

We are interested in the case when the "intrinsic damping" 
of the resonant two-level system is small: 

and 

One expects that the regions TZT, and T'Z 1/y will be 
significant in the integral in (4.2). That is, fl values of the 
order of 1/yrd, 1 should be important in the integration 
over B (this estimate will be made more precise below). It is 
shown in the Appendix that for p> 1 

Here the argument of the logarithm differs from that in 
(4.5). 

5. THEORY OF HOLE BURNING 

We consider the situation when a signal of amplitude F 
and frequency w propagates in glass and it is desired to mea- 
sure the absorption of a second, weak signal of amplitude 
F, F and frequency w ,, where v = w , - w satisfies the in- 
equality lvl <w. To first order in F2, we obtain the following 
expression for the power attenuation of the weak signal per 
unit volume due to absorption6.': 

Substitution in (4.2) and integration over P yields 
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-&=B dr' e-'" dr e-1"2cos VT<L(T, i) )C, (5.1) 

where 

The same method used above to evaluate (3 .9)  can be 
used to calculate the function (5.3 ). We omit the details and 
state the result: 

re 

Switching to J as the variable of integration, we can 
rewrite (5.4) in the form 

where 
V o  - 

The rest of the analysis is essentially as in Sec. 3, but 
slightly more complicated because the function to be deter- 
mined now depends on the frequency v. 

We begin once again with the high-temperature case, 
TB Td . Using the integration variable p = rl/r in (5.1 ), we 
see that for p$1  we have 

in complete analogy with the function ~(0). The values 
8- l /yr  give the primary contribution to the integral over 
0 .  On the other hand for small v, r is typically - rd and these 
values can only increase with v; the representative values of 
pare  thus indeed much greater than unity. In evaluating the 
integral (5.1) we may therefore replace the v(p) by its 
asymptotic expression (5.8). 

To within our approximation we then obtain 

where r, = rd ln(v/y). The hole width is thus found to be 
- rd (up to a logarithmic factor), in agreement with the 
order-of-magnitude estimates in Sec. 2. 

The asymptotic relation - Aq cc vP5l3 can be deduced 
on simple physical grounds. The profile near the edges of the 
hole is determined by the contribution from a relatively 
small number of the resonant two-level systems, those whose 
distance r from the thermal systems is less than the average 
value. Specifically, the shape of the edge at the frequency v is 
determined by the two-level systems with J =  v, i.e., for 
which r E v-'I3. Their number is proportional to 

This result is completely general and independent of the rel- 
ative magnitudes of the parameters y, To, and 1 / ~ , .  Thus in 
the two-dimensional case, unlike the case of three dimen- 
sions, the hole cannot be Lorentzian. 

For T g  Td , a method similar to that described in the 
Appendix leads to the expression 

--8q=B j dp j dr  ro-7'("*") cos v't enp[- (r/rd) %I ,  (5.1 1 ) 
0 0 

where 

There are two limiting cases. For 

l / ~ ~ B y B r , ,  where $=;! I';''. 

the shape of the hole is given by the expression 
m 

cos v't& 
A(=-BrZp;  p = i d ~  e-eVa. (5.14) 

YT'pl-2Y1' 

Up to coefficients of order 1, the following limiting ex- 
pressions for the integral 9 are valid: 

V T ~  < 1 
1 < vr, < ( y ~ ~ ) - ~ " .  (5.15) 

VTp > ( ~ t ( p ) - " ~  

In this case the shape of the "hole" is quite complicated and 
it is thus necessary to agree on what is meant by its width Av. 
It  is natural to take Av to be the interval of v values for which 
(5.14) is appreciable when the latter is integrated over v. It 
turns out that these values coincide with the estimate (2.6), 
and also with the region of transitional v for which the sec- 
ond asymptotic expression in (5.15) is replaced by the third. 

If - 
B 1 l / r , ~ r , ~ y  (5.16) 

-Aq =-I d r c o s v r e x p [ - ( ~ ) y '  bln-] (5.9) 
1 0  ' t d  Y ' t  

we evaluate the integral (5.12) using the following approxi- 
for the shape of the hole. To the same accuracy, we have the mation: 
asymptotic expressions r. 

v <  11% 
f d r  I -(I-e-2rz') = In- 

, (5.10) 
r 2rOrf ' 

The profile of the "hole" is given by 
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B 'h 
-Ag = - J d r  eos vr exp 

1 

7 !3 [ -  b1nG]. (5.17) 

This expression differs from (5.9) in that y in the logarithm 
is replaced by To; the asymptotic expressions (5.10) must 
clearly be modified in the same way. 

6. THE NONLINEAR LIMIT 

We will content ourselves with a qualitative description 
of the strong nonlinearity at high intensities FSF, .  The 
power absorbed per unit volume is given by (cf. Refs. 6, 7 )  

w 

where (...), denotes a time average. 
We consider the case of large spectral diffusion (the 

opposite limit of negligible spectral diffusion has been ana- 
lyzed in detail using the Bloch equations; see Ref. 3). The 
qualitative analysis is quite similar to the treatment in Refs. 
6,  7. 

The nonlinear behavior of q is determined by the length 
of the interval of e values over which the integration is per- 
formed (it is equal to the width of the burnt hole) and by the 
value ( n  - no) ,  averaged over this interval. The above heu- 
ristic arguments regarding the width of the hole are easily 
seen to hold for arbitrary intensities. In other words, the hole 
width (although not, in general, its shape) is independent of 
the intensity whenever spectral diffusion is important. In 
fact, this result remains valid as long as the Rabi oscillation 
frequency F is  less than the value Av calculated in the linear 
theory.16-l8 

Furthermore, the difference ( n  - no) ,  for e in the inter- 
val corresponding to the burnt hole must also be indepen- 
dent of the intensity at high intensities. For y<  T o  < 1/r, we 
have 

for both high ( T S  T, ) and low temperatures ( T <  Td ). By 
contrast, for To< y < 1/rP the population of a resonant two- 
level system within a resonance band of width fi/r, changes 
during a time of the order of 7,. The system remains excited 
for a time y- ' ) r, and then emits a phonon. The resonant 
two-level system spends the remainder of the time in a region 
of width fi/rd, but its population is equal to no. The system 
returns to the resonance interval after a time of the order of 
I", y-'. The fraction of the time during which the reso- 
nant two-level system is excited (i.e., n = 1/2) is thus of the 
order of To/y < 1. We therefore have 

in the present case. In all cases ( n  - no) ,  is thus found to be 
independent of the intensity, and the same is therefore true 
of the absorbed power (6.1). This in turn implies that the 
absorption coefficient is inversely proportional to the inten- 
sity at high intensities: 

This conclusion holds universally, provided one uses the 
expression for F, appropriate to any given limiting case. 

On the other hand, if spectral diffusion is negligible it 
follows immediately from an analysis of the equations for the 
density matrix3 that the hole width is proportional to the 
amplitude, while the absorption coefficient is inversely pro- 
portional to it. 

We stress once again that all the conclusions reached 
above are valid only if the phonon distribution function at 
the resonance frequency can be approximated by an equilib- 
rium distribution. We have already pointed out that this 
condition is nearly always satisfied for the cases mentioned 
in the Introduction, because most of the phonons must leave 
the two-dimensional region in which they are generated. An 
exception may occur for free-standing  film^,'^ for which 
there is no place for the phonons to escape. The theory for 
such films requires modification in any event, because the 
interaction among the two-level systems must differ in the 
purely two-dimensional case. 

I would like to thank Yu. M. Gal'perin and D. A. Par- 
shin for a discussion of this work and for valuable critical 
comments. 

APPENDIX 

The integral for the function s(y,, 8) can be recast in a 
form better suited for calculation. We haves = s,  + s,: 

1 
xi ( x ,  y ;  p) =e-'u (ch y ( I - x 2 )  + sh y ( 1 - 2 )  * )' 

(1 -x2)  % 

1 
x2 ( x ,  y ;  B) =e-.V( cos y (xz -1 )  * + sin y (x2-1)  111) ' 

(x2 -1 )  '" 

At high temperatures T$ Td the upper limit yo may be re- 
placed by co . Since, as noted in Sec. 4, largeb give the domi- 
nant contribution to the integral (4.2), the behavior of s ( 8 )  
forb% 1 is of interest. It is easily seen that the expression for 
s,  remains finite and - 1 asp+ co , but that s, diverges logar- 
ithmically. The terms, thus gives the main contribution for 
b> 1. 

We may write 

Again, s,(O) turns out to be - 1, and 
OD 

The integral (A5) is conveniently evaluated by making 
the change of variable z = y ( x 2  - 1) ' I 2 :  

". 
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for y( 1 we have Y = byzJ3. Insertion in (A4) gives 

For T< T, the characteristic values ofy, are 4 1. In this 
case we evaluate s, by expanding the integrand as a series in 
powers of x and y: 

Thus once again, s, is found to be small compared to s,. The 
latter quantity can be calculated by the same change of vari- 
able as above, and we find 

r. 

Essentially the same method can be used to calculate 
the function v(P) in the various limiting cases. 

"This idea was suggested by S.Hunklinger (Heidelberg), to whom the 
author is deeply grateful. 
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material and in the crystal substrate. 
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