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A comparison of the expressions for the effective action reveals an analogy between the polaron 
model and the quantum mechanical model for tunnel junctions between normal metals. The 
current-voltage characteristic and impedance of a low-capacitance tunnel junction can be 
calculated by the polaron model in the Feynman approximation for arbitrary values of the tunnel 
conductance (dissipation) and temperature. 

INTRODUCTION 

Interest has increased recently in the properties of tun- 
nel junctions with extremely small capacitances C at low 
temperatures k, T 5  EQ -e2/2C (Refs. 1-4). In these junc- 
tions the tunneling of a single electron can appreciably alter 
the voltage across the junction capacitance, thereby signifi- 
cantly changing the tunneling conditions for the other elec- 
trons. By correlating the tunneling events of the individual 
electrons, this mechanism gives rise to coherent one-electron 
effects such as Coulomb blockade and single-electron oscil- 
lations, among others. These were analyzed in Refs. 1,2 by 
using perturbation theory with the tunnel dissipation 

as the small parameter (here GT is the tunnel conductance of 
thejunction and RQ = 2d/4e2=:  6.5 k a  is thequantum unit 
of resistance). However, this procedure yielded only the es- 
timate a, k 1 for suppression of correlated tunneling and 
onset of Coulomb blockade. 

It was shown subsequently3-' that the equilibrium char- 
acteristics and dynamic properties of tunnel junctions are 
sensitive to increases in a,, and also to the linear dissipation 
parameter a, = T - ~ G , R ~  due, for example, to shunting of 
the junction by the ohmic conductance G,. The current vol- 
tage (I-V) characteristic for a junction at low currents was 
calculated in Ref. 4 for arbitrary a, and small a, < 1, and the 
results were used to estimate the threshold for the onset of 
Coulomb blockade in this case also. I t  was shown in Refs. 5 
and 6 that in the opposite limit a, %max(a , , l ) ,  Coulomb 
blockade occurs only for exponentially small currents 
I-exp( - 2r2a , ) ,  i.e., it is almost totally suppressed by 
dissipation. The behavior of the I-V characteristic at high 
currents is determined by incoherent tunneling, whose prob- 
ability was calculated in Ref. 5. Finally, the case a, <a, of 
strong junction shunting was considered in Ref. 7, where the 
conductance and I-V characteristic were calculated. 

Unfortunately, only the static properties (conductance, 
I-V characteristic) were calculated in Refs. 3-7, where the 
Feynman path integral formalism was employed. It is also 
important to analyze the dynamics of one-electron processes 
in low-capacitance tunnel junctions with nonzero dissipa- 
tion. The present paper is concerned with deriving and ana- 
lyzing an approximate equation for the dynamics. 

2. THE POLARON HAMlLTONlAN AND THE EQUATION OF 
MOTION 

A tunnel junction with a, = 0 can be described using 
the effective action8 

where f i  = 1, p = l/k, T. The action for the polaron prob- 
lem is given by an expression with a similar ~ t r u c t u r e . ~  The 
two coincide exactly if one formally considers a one-dimen- 
sional polaron, in which an "electron" in an external electric 
field E interacts with "phonon modes" having identical 
wave vectors f k but different frequencies w ,  . The Hamil- 
tonian for such a system is 

where the electron momentum and coordinate p, x corre- 
spond to the charge Q on the junction capacitance and its 
canonical conjugate p, respectively: 

p=Qle, x=cp/2 ( 5 )  

(we also havep = V/V,,, where Vis the junction voltage and 
V,, = e/C). The magnitude of the "external electric field" E 
is proportional to the current I across the junction, and the 
electron mass is proportional to the junction capacitance: 

The coupling coefficients G, determine the magnitude of the 
dissipation and the form of the function a ( r )  
(Z ,... -J dwp(w) ... ) :  

m 
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which for a given by ( 3 )  corresponds to 

Here the function f, (0) is obtained by cutting off the 
phonon spectrum at high frequencies. For definiteness we 
will assume that f, (w) = mf/(w2 + wf ), where the cutoff 
frequency w, is assumed to be much higher than all the char- 
acteristic frequencies of the problem. 

The above analogy has a simple physical interpreta- 
tion-a change of Ap = k = 1 in the momentum of an 
electron interacting with a phonon corresponds to the tun- 
neling of a single electron across the junction: AQ = + e, 
while the change in the number of phonons corresponds to 
the response of the system of conduction electrons to the 
discrete tunneling. All the results in Ref. 1 can be derived 
from the Hamiltonian (4)  by perturbation theory in the lim- 
it a,  g l .  

The polaron mobility was calculated for arbitrary a,  
and T by Thornber and Feynman," who employed path- 
integral techniques and approximated the Green functional 
by a Gaussian. A simpler operator technique was later em- 
ployed for the same purpose by Bogolyubov," using an ap- 
proximate linear Hamiltonian (both methods lead to the 
same result). The basic idea behind the operator method' is 
to calculate the expectations 

<exp (ikx (t) ) exp (-ikx(tl) ) ) ( 9 )  

of the Heisenberg operators in the equation of motion for the 
case of a model Hamiltonian H, ,  obtained from the exact 
Hamiltonian (4)  by replacing the term containing the expo- 
nential by the linear expression 

(the term c2x2 must be included to preserve translational 
invariance"). It is important to note that in spite of this 
simplification, the method does treat the strong exponential 
dependence of the expectations (9)  on x. In addition, since 
the electron becomes spatially localized as the dissipation 
a,  increases, it is perfectly legitimate to approximate the 
exponential by ( 10) for a, > 1. 

For a, g 1, however, the approximation gives results 
that differ somewhat from the predictions of perturbation 
theory, which are exact in the limit a,  -0 (Refs. 1,2).  This 
is because the calculation of the expectations (9) using the 
linear Hamiltonian H ,  neglects the self-consistent change in 
the momentum distribution function W(p), which is as- 
sumed to be Gaussian. Nevertheless, this assumption is valid 
at high temperatures k,T$EQ or for strong shunting 
a,  <a,. 

Applying Eq. ( 11 ) to the present case, we have 
s I 

o  
G(t) =aT J do w A [cth($) cos at+i sin a t ] .  ( 14) 

0 oZ+oE2 

We will analyze the equation of motion ( 11) for several spe- 
cial cases. 

3. THE VOLTAGE-CURRENT CHARACTERISTIC AND THE 
IMPEDANCE 

For a constant external field E( t )  = const, Eq. (1 1) 
takes the form 

where F(w) denotes the Fourier transform of the function 

F ( a )  = J dt e z m t F  ( t )  . (16) 

Relation (15) gives the equation for the I-V character- 
istic of the tunnel junction (Fig. 1).  The first term on the 
right in ( 15) gives the ohmic component of the conductance, 
the second gives the nonlinear component. At zero tempera- 
ture the I-V characteristics for large and small a,  are given 
by 

where @ is the error integral, E = E / y  = I /I,,, I,, = GT e/C. 
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The last expression is particularly simple in the limit a, -0: 

For the reasons discussed above, for small currents E 5 1 
expression ( 19) gives a rather crude approximation to the 
true I-V characteristic calculated in Ref. 1 for a, -0; how- 
ever, the two results coincide when E% l.  The I-V character- 
istic also obeys ( 19b) in the limit a, % 1. The treatment thus 
again predicts a shift in the asymptotic portion of the I-V 
characteristic by A V = e/2C, from the ohmic line I = G, V 
toward higher voltages. As a, increases the Coulomb block- 
ade region ( 19a) shrinks (Fig. 1 ), and in the limit a, $1 we 
find p, a exp( - 2 d a ,  ), in agreement with the result in 
Ref. 5. 

The nonlinear portions of the I-V characteristic become 
less distinct with heating. For small a, (2.rr2a, < 1)  the 
smearing-out becomes considerable at temperatures 
k, T2 EQ. For large a, (27?aT % 1 ) the Coulomb blockade 
region becomes fuzzy at much lower temperatures 
k ,  TZ EQexp( - 2 ~ a T  ). Due to the smallness of the Cou- 
lomb blockade region and its instability relative to tempera- 
ture fluctuations, it will probably not be possible to observe 
or exploit the stationary Coulomb blockade effect in junc- 
tions with large tunnel conductance G, R, 2 1. 

If a weak harmonic signal E ( t )  = E w e  - '"' is applied to 
thejunction, with Em -0, the complex conductance G ( w )  of 
the junction can be found from Eq. ( 1 1 ) : 

In particular, we find 

for the real part of the conductance, where Im F ( w )  is given 
by Eq. (15). 

4. INFLUENCE OF THE OHMIC CONDUCTANCE OF THE 
JUNCTION 

The ohmic conductance G, of the junction can be found 
by adding a linear term H, of the form ( 10) to the Hamilto- 
nian (4) ;  the coefficients G, satisfy (8 )  with a, replaced by 
a,. The shunting gives rise to an additional term 
- 2.rraSp(t)/m on the left in the equation of motion ( 11 ), 

and a, must be replaced by a, in (13), where 
a, = a, + a,. We note that adding the linear term Hs to 
the Hamiltonian can only improve our approximation, since 
the expectation (9)  is now evaluated using the more realistic 
model Hamiltonian H, + H, .  For a, < a ,  the approxima- 
tion is exact to first order in a,/a,. In particular, to first 
order in a,/a, expression ( 15 ) for the I-V characteristic 
(with a, replaced by a, in the first term, and p/m in the 
integral set equal to E /2.rra, ) agrees exactly with the result 
in Ref. 7 found by path integration. Moreover, in the limit 
a, <a, g 1 expression ( 19) approaches the I-V characteris- 
tic calculated numerically in Ref. 12, even for a,/a, 5 0.3. 

The author is deeply grateful to D. V. Averin and K. K. 
Likharev for their help in this work. 
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