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An investigation has been made of the influence of elementary tunnel excitations known as two- 
level systems, present in amorphous substances, on nuclear relaxation. The cases of nonmagnetic 
and magnetic two-level systems are discussed and in both cases the Hamiltonians of the 
interaction of nuclear spins with these systems are derived. A calculation is made of the 
macroscopic relaxation of nuclei allowing for spin diffusion. The proposed nuclear relaxation 
mechanisms are compared with the familiar two-magnon case. 

1. INTRODUCTION 

The currently accepted explanation of low-temperature 
properties of amorphous solids is based on the representa- 
tion of structural excitations of a special kind known as two- 
level systems. These representations were developed in Refs. 
1 and 2 specifically for amorphous insulators. According to 
these ideas, an amorphous system has specific atoms or 
groups of atoms which can be at one of two levels and which 
undergo phonon-assisted tunneling transitions between 
these levels. 

It has been found that the presence of two-level systems 
is specific not only to amorphous insulators but also to other 
disordered systems such as glassy  metal^,^ and semiquantum 
liquids4 It was postulated in Refs. 5 and 6 that atoms form- 
ing two-level systems exist in amorphous ferromagnets and 
influence strongly the transport properties of these sub- 
stances. Atoms forming these systems can be magnetic or 
nonmagnetic. When the tunnel states are formed by magnet- 
ic atoms, they can modulate the exchange interaction ener- 
gy, the dipole energy, and the magnetic anisotropy energy. 
When atoms in two-level systems are nonmagnetic, they can 
participate in the establishment of an indirect exchange in- 
teraction and a crystal field, and can also modulate the ex- 
change interaction and magnetic anisotropy energies. 

In the case of amorphous ferromagnets it is quite natu- 
ral to assume that the tunnel transitions between the states of 
two-level systems are induced not only by phonons but also 
by spin waves. The relaxation time of two-level systems in- 
teracting with spin waves and the decay of spin waves due to 
their scattering by such systems, as well as the magnetic con- 
tribution to the thermal conductivity (which in a certain 
range of temperatures is greater than the phonon contribu- 
tion) are calculated in Ref. 5. Thus the coupling of a magnon 
system to two-level systems in amorphous ferromagnets can 
sometimes be the dominant effect. One would expect the 
scattering to have a considerable influence also on the nu- 
clear spin-lattice relaxation (SLR) . 

Our aim was to investigate the influence of two-level 
systems on nuclear relaxation in amorphous ferromagnets. 

2. NONMAGNETIC TWO-LEVEL SYSTEMS 

We shall first consider the case when the atoms forming 
two-level systems are nonmagnetic. Obviously, in this case 
there is no direct interaction between nuclear spins and these 
systems. However, there may be indirect coupling. In fact, 
nuclear spins interact with magnons and the latter in turn 

interact with two-level systems. This is the reason for the 
indirect coupling of nuclear spins to two-level systems. 

We shall now derive the Hamiltonian for the indirect 
interaction of nuclear spins with two-level systems. We shall 
consider a ferromagnet with easy-axis anisotropy. It is 
shown in Ref. 5 that the Hamiltonian ofan amorphous ferro- 
magnet describing the processes of interaction of spin waves 
with two-level systems in any (including a noncollinear or 
canted ferromagnet) is 

+ EF,, (ak+@k*ic-ikRl+nk@kieikRi) Sfaz, 
a ik  

where E, = (A: + Afa ) ' I 2  is the energy of two-level sys- 
tems; A, is the asymmetry parameter; A,, is the tunnel ener- 
gy of two-level systems (the definitions of these quantities 
can be found in Ref. 1 ); a,,? and a, are the operators of 
creation and annihilation of magnons in states with an ener- 
gy E,  = il + pk and with a wave vector k (A is the gap 
parameter in the magnon spectrum and P is the exchange 
parameter); and S " * ' are the components of the pseudo- 
spin of two-level systems. The meaning and definitions of the 
other quantities occurring in V, can be found in Ref. 5. 

We shall write down the Hamiltonian of an amorphous 
ferromagnet subjected to a static magnetic field: 

V ,  = Z c i u a k + a k  (Siai+S,,-) exp {-i(k-kt)Ri), 
a i k k '  

Vs=B (1,-ak+ exp (-ikRi) +Ii+.. exp (ikRi) ) , 
ik 

where H, is the ground-state Hamiltonian of the nuclear 
spins, the magnon system, and two-level systems (0, is the 
NMR frequency ); and V, is the operator representing the 
interaction of nuclear spins with magnons ( B  is the hyper- 
fine structure constant). In contrast to Ref. 5, where no 
allowance was made for two-magnon processes of interac- 
tion with two-level systems (the operator V,), we included 
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this interaction (we shall show below that this interaction 
can sometimes dominate relaxation of the nuclear magneti- 
zation). 

The Hamiltonian describing the indirect interaction of 
nuclear spins with two-level systems is derived in the same 
way as in Ref. 7. The result is 

Fj"Sjaz 
H,=-B - (Ii-Bkj exp (-ikRij) 

i j a k  

+IifBk*j exp ( ikRij)) ,  

H,=B (Ii-ak+Sja- exp (-ikRij-ikfRj) 
i j akk ,  &k-fiwo 

+zi+akSja+ exp (ikRIj+ikfR,) ) , 

Hs=-B w- (Ii-Sja+@i exp (- ikRij)  
ijak ~ k - h ~ ~  

+Il+Sja-Bk" exp ( ikRd  1. 

The operators H ,  , H,, and H3 describe different relaxation 
mechanisms, but not all these mechanisms are equally effec- 
tive. It should be pointed out straight away that the relaxa- 
tion mechanism described by the operator H, is not very 
effective. In fact, H3 describes a process of reversal of the 
nuclear spin and of the pseudospin of two-level systems 
when a quantum of the Zeeman energy of the nuclei should 
be absorbed by two-level systems. Clearly, this process in- 
volves the two-level systems for which the splitting energy is 
equal to a quantum of the Zeeman energy of the nucleus. 
Clearly, the number of such two-level systems is relatively 
small, so that this relaxation mechanism is ineffective. 

Summing over the magnon states in the expressions for 
HI and H2 , we obtain 

H,=B C$ ( I . - ~ ~ + S ~ ~ -  erp (-ikRj) +li+akSja+ exp (ikRj) ) , 
ijak 

We can see that the constants of the interaction of nuclear 
spins with pseudospins of two-level systems depend on the 
distance Rv between them. 

Applying the Kubo expression for the nuclear SLR 
time, we can readily obtain an expression for the time repre- 
senting direct relaxation of nuclei located at a distance R 
from two-level systems and characterized by a splitting ener- 
gy E and by a tunnel parameter A,. Omitting the simple 
calculations of the direct relaxation times, described by the 
interaction operators HI and H,, respectively, we quote the 
results directly 

1 -- - B2F2V2 (E2 - AOa) z exp {- 2  (h/P)'/* R )  
TI'' ( R )  32nafiaA2 E2 ch2 (E /2T)  (1  + o02~2)  R2 7 (1) 

1  - E - h  ' 1 2  AO2 exp {- 2  (h/p)' /~ R )  --- - 
T?' ( R )  p ) E 2 s h ( E / 2 T ) R s  . (2)  

Clearly, this nuclear relaxation mechanism described by the 
operator H, involves only those two-level systems for which 
the splitting energy is higher than the gap parameter in a 
magnon spectrum ( E  > R ) . 

Equation (1)  is derived on the assumption that the 
pseudocorrelation function is Lorentzian with a correlation 
time T: 

It follows from Eqs. ( 1 ) and (2)  that the time constant for 
direct relaxation of nuclei depends on the distance from the 
two-level systems in accordance with the law 

1  e-TR 

TI ( R )  a: 3- 
where y = 2(R /O)'l2, which demonstrates that the nuclei 
located close to two-level systems reach an equilibrium with 
the lattice faster than the more distant nuclei. This gives rise 
to a spin temperature gradient and induces spin diffu~ion.~ 

Ignoring the power-law dependence of the nuclear SLR 
time on the distance in Eqs. ( 1) and (2),  compared with the 
exponential dependence, we find that TI1) (R ) and T;,'(R) 
are described by 

1 e-YR, = -  
T ~ ' ( R )  To, 

where the values of To, and To, can be readily obtained by 
comparing Eqs. ( 1 ) and (2)  with Eqs. ( 1') and (2'). 

The density of the magnetization of those nuclei which 
are in the "sphere of influence" of the two-level systems can 
be described by the following diffusion equation": 

where the dependence TI (R)  is given by Eqs. (1') or (2'); D 
is the diffusion coefficient of nuclear spins governed by their 
dipole-dipole interactions with one another; A is the La- 
place operator; m, is the equilibrium value of the nuclear 
magnetization density. 

Although the operators HI and H2 describe physically 
different relaxation mechanisms, the distance dependence of 
the direct relaxation time associated with H, and with H2 is 
the same, so that both relaxation cases can be considered at 
the same time. 

The problem we are treating is mathematically equiva- 
lent to that of nuclear relaxation due to local electron centers 
discussed in Ref. 11, so that we shall apply directly the ex- 
pressions obtained in Ref. 11 for the macroscopic relaxation 
time of the nuclear magnetization. It is shown in Ref. 1 1 that 
in the case of slow diffusion the macroscopic relaxation time 
is 

where n is the concentration of two-level systems per unit 
volume and 
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In the opposite case of fast diffusion the macroscopic relaxa- 
tion time is independent of the diffusion coefficient, but is 
governed by the direct relaxation time of the nuclei near- 
est to two-level systems and is described by 

The experimental results for the macroscopic relaxa- 
tion time can be described by averaging Eqs. (4)  and (5 )  
over the states of two-level systems via the probability of the 
distribution of the parameters of such systems: 

E dE dAo 
dw ( E ,  Ao) = P -  

A, (EZ-AOz)'" 

By definition, dw is the probability that two-level sys- 
tems have a splitting energy and a tunnel parameter within 
the intervals E, E + dE  and A,, A, + dA,. The average val- 
ue of any function p(E,A,) can be found from 

Here, A, is the minimum value of the tunnel parameter, P 
is the density of states of two-level systems, and E, is the 
maximum value of the splitting energy of these systems. 

Averaging over the macroscopic SLR time, which is 
due to the interaction H, in the case of fast diffusion, we 
obtain 

xshx 
a, = j ,dx; 

0 

The systems of equations ( 7 )  and (8)  are derived on the 
assumption that the temperature satisfies the conditions 
T)?iu, and T$ A, and that the correlation time r of 
two-level systems representing their coupling to magnons, 
satisfies the inequality w,,.rg 1. The correlation timer for the 
case when the dipole-dipole interactions are important has 
the form5 

[Eq. (7)  corresponds to this case], but if the dipole-dipole 
interactions can be ignored, then T is given by 

In the case of slow diffusion it follows from Eq. (4)  that 
in averaging the temperature functions occur in the loga- 
rithm, so that the temperature dependence of T I  will be weak 
in the case of slow diffusion. 

We shall now give the expression for the macroscopic 
relaxation time in the case of the interaction described by 
H,. In the case of fast diffusion simple calculations yield 

= J xl'* 
shx 

(it is assumed here that T >  A ). However, in the case of slow 
diffusion (exactly as pointed out above) the temperature 
dependence of the relaxation time is weaker than in the case 
of fast diffusion. 

3. MAGNETIC TWO-LEVEL SYSTEMS 

We shall now consider the case when the atoms forming 
the two-level systems are magnetic. Then, in addition to 
those mechanisms of the interaction of nuclear spins with 
pseudospins of the two-level systems discussed above, there 
is also a dipole-dipole interaction between the magnetic mo- 
ments of atoms in two-level systems, on the one hand, and 
nuclear spins, on the other; the constant of this interaction 
fluctuates as a result of transitions of atoms between the 
states of the two-level systems and this naturally gives rise to 
an additional channel of relaxation of nuclei. The fluctu- 
ation part of the Hamiltonian of the dipole-dipole interac- 
tion of nuclear spins located at points R ,  with the moments 
of atoms in two-level systems located at points R ,  leads to 
relaxation of nuclei and, in the representation in which the 
Hamiltonian of the two-level systems is diagonal, it can be 
written in the form 

(terms of the I i + S d  type are not included because the re- 
laxation processes are ineffective); 

(Ea2-AOa2) jh a, 
Lia=li, ,, 1 .  la = - , yrysa = - ' 6 

Ea Ria Ria4 ' 
y, and fi are the gyromagnetic ratios of the nuclear spins 
and atoms in two-level systems, respectively; a, is the dis- 
tance between the positions of a tunneling particle; R ,  
= Ri - R a .  

The interactionH, decreases strongly on increase in the 
distance and, therefore, it is clear that those nuclei which are 
located close to two-level systems will relax relatively rapid- 
ly, whereas in the case of the distant nuclei we can expect, as 
above, spin diffusion. 

The direct relaxation time of nuclei located at distances 
R from two-level systems, characterized by the parameters E 
and A,, due to tbe interaction H, is described by 

1 - -- 6"E2-A02) 2. 

T ,  ( R )  8R8A2E2 chz ( E / 2 T )  ( I + W ~ ~ T ~ )  

(as before, this expression is derived from the Kubo equa- 
tion). The magnetization density of the nuclei is once again 
described by Eq. ( 3  ) with T ,  ( R  ) taken from Ref. 1 1. 

The equation for the magnetization now differs from 
that investigated by Khutsishvili9 because of the dependence 
T ,  = T I  ( R ) .  In Ref. 9 it is assumed that the.rapidly relaxing 
centers are paramagnetic impurities fixed in space and fluc- 
tuations of the spin of these impurities are responsible for 
nuclear relaxation. Therefore, the dependence of the direct 
relaxation time on the distance is T ,  a R6.  However, in our 
case fluctuations of the magnetic field at the nuclei are due to 
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spatial jumps of atoms forming magnetic two-level systems 
and, therefore, as shown above, we have T I  c~ R8. 

An analysis of Eq. (3)  with TI (R)  from Eq. ( 11 ) will 
be made in a manner similar to that adopted by Khutsish- 
vili9 The central-symmetric stationary solution of the diffu- 
sion equation satisfying the boundary conditions stating that 
at R =0 ,  we have m(0)  = m, and at R = CO, we have 
m ( co ) = m, (m, are certain densities of the nuclear magne- 
tization far from the two-level systems, which is kept con- 
stant by, for example, an external field) is 

m (R) =mo-moR-"[AZ-g,,(v'"/3R3) -BIl,,(v'"/3K3) 1, 

where A and B are constants of integration, I, (x) is a modi- 
fied Bessel function, and 

v=R8/DT,(R). 

Following Ref. 9, we can show that in our case the nu- 
clear system is also characterized by a single relaxation time 
which in the case of slow diffusion is given by the expression 

where the quantity 

b=2"nv"e/3'"I? ( ' 1 6 )  I?('/e) ~ 0 . 8 4 ~ ' "  

with the dimensions of length has the following physical 
meaning: for the nuclei which are inside a sphere of radius b 
with the center at a magnetic two-level system the direct 
diffusion is more important than the spin diffusion, whereas 
in the case of nuclei outside this sphere the spin diffusion 
process is more important. 

However, in the case of fast diffusion the macroscopic 
relaxation time is governed by the direct relaxation time 
T,, ( a )  of the nuclei closest to the two-level systems and it is 
described by 

where n, is the concentration of nuclear spins in a sample. 
Averaging over the states of the two-level systems in 

Eqs. ( 12) and ( 13), we obtain: 
a )  in the case of slow diffusion 

where 

~ ' ~ 6  (sh x )  'I8 
dx; 

b) in the case of fast diffusion, 

Equations ( 14) and (15) are derived assuming that the cor- 
relation time T is determined by A % #ko. We can see that the 
temperature dependences ot the macroscopic relaxation 
time are quite different for the cases of slow and fast diffu- 
sion. 

4. DISCUSSION OF RESULTS 

We shall now consider the effectiveness of the proposed 
nuclear SLR mechanisms in amorphous ferromagnets, in 

which we allowed for the influence of the two-level systems, 
compared with those nuclear relaxation mechanisms which 
are discussed in the literature when dealing with the relaxa- 
tion in ferromagnets. It is known'' that if the gap parameter 
in a magnon spectrum satisfies the inequality A$fiwo, the 
contribution of one-magnon processes to SLR of the nuclei is 
forbidden by the law of conservation of energy, so that at low 
temperatures it is necessary to allow for two-magnon pro- 
cesses (the contribution of many-magnon processes is small 
at low temperatures). Allowance for two-magnon processes 
in SLR of nuclei leads to an almost quadratic temperature 
dependence of the relaxation rate 

Here, y, is the gyromagnetic ratio of electrons. 
The same temperature dependence can be deduced 

from our relaxation mechanisms for the case of fast diffusion 
[Eq. ( 15) 1. The ratio of the SLR rate of nuclei due to their 
interaction with magnetic two-level systems in the case of 
fast diffusion to the SLR rate reached as a result of two- 
magnon processes is given by the expression 

Substituting here the constant K taken from Ref. 5 and de- 
scribed by 

K=fi-'a-"D2(4nj~,Mo)-'" 

( M ,  is the saturation magnetization) and using typical val- 
ues of the parameters in Eq. ( 17), A - 10 l 7  erg, 0- 10 - 2 7  

erg, 0- lo-'' erg, and A,,,, - 10-'"erg, we can easily 
show that for reasonable concentrations of two-level systems 
we obtain 

i.e., the relaxation mechanism we propose is more effective 
than the familiar well-known two-magnon relaxation mech- 
anism. In the case of slow diffusion it follows from Eqs. ( 14) 
and ( 16) that in the investigated range of temperatures the 
rate of relaxation given by Eq. ( 14) is higher than the rate of 
relaxation allowing for two-magnon processes. 

We shall now consider the case of nonmagnetic two- 
level systems. In this case the ratio of T; ' from Eq. ( 17) to 
T i 1  from Eq. (16) is 

We can easily see that in this case we have T ,  ' > T i  I, i.e., 
at low temperatures the dominant role in the SLR of nuclei 
in amorphous ferromagnets is played by tunnel elementary 
excitations in the form of two-level systems. 

It therefore follows from estimates that if the concen- 
tration of two-level systems is reasonable, the proposed nu- 
clear relaxation mechanisms will predominate. 
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