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This paper analyzes in detail the evolution of the "hot spot" which is produced by intense optical 
or thermal excitation in semiconductors or insulators of high purity when ordinary heat- 
conduction conditions prevail in the heated region. The spatial asymptotic behavior of the 
temperature distribution is singled out for special study. Two characteristic regions can be 
distinguished in this asymptotic behavior. Directly adjacent to the high-temperature part of the 
spot is a region with "diffusion" asymptotic behavior, within which the motion of a front with a 
given temperature is described by anx  a t ' I 2  law. For the real phonon relaxation mechanisms, 
however, this asymptotic behavior can occur only in one-dimensional geometry, i.e., only at 
distances from the surface shorter than the spot radius. The second characteristic region-that of 
the "runaway" asymptotic behavior-makes it possible to satisfy the physical limitations at 
infinity which stem from the limitation on ballistic heat transfer. The space-time dependence of 
the temperature is found for three-dimensional experimental geometry and also two-dimensional 
geometry (a film) for various heat-conduction laws. The occupation numbers of ballistic 
phonons emitted by the spot are found. Their spectrum is shown to be non-Planckian, 
characterized in particular by depletion of the low-frequency region. The time evolution is 
determined by both the details of the phonon kinetics and the experimental geometry. In 
particular, the corresponding dependence may be nonmonotonic and may even have a local 
minimum. This analysis yields an interpretation of several recent experimental results. 

INTRODUCTION 

Both the intense thermal excitation of the surface of a 
semiconductor or insulator which can be achieved using a 
metallic heater ("heat generator") and intense optical exci- 
tation of the surface of a semiconductor are known to be 
accompanied by the formation of a phonon nonequilibrium 
region or "hot spot" in the surface layer (Refs. 1-3, for ex- 
ample). This spot exists for a comparatively long time, 
which is significantly longer than the time scale for the re- 
moval of energy by ballistic phonons; it also depends on the 
pump. There are two mechanisms which might be responsi- 
ble for this behavior, which lead to a "cutoff" of the phon- 
ons in the surface layer and which prevent their free escape 
into the "cold" crystal. The first of these mechanisms con- 
sists of phonon-phonon umklapp processes which do not 
conserve the total momentum of the phonon system; the sec- 
ond mechanism is the scattering of phonons by defects (in- 
cluding isotopic defects). The efficiency of each of these 
mechanisms obviously increases with increasing character- 
istic energy of the phonons and thus with the extent to which 
the surface is heated. For the first mechanism, this depend- 
ence, which is accompanied by dependence on the filling 
numbers, is sharper, and it is usually important at fairly high 
temperatures. With regard to the second mechanism, we 
note that it is strongly affected by normal phonon-phonon 
processes which redistribute the energy of the phonon sys- 
tem over the spectrum. 

Kazakovtsev and Levinson4 have derived a theory for 
hot spots for the case of strong scattering by defects, in which 
the condition I; ( a )  <IN (w) holds for all phonon frequen- 
cies (here li and I ,  are the phonon mean free paths with 
respect to scattering by defects and with respect to normal 
phonon-phonon processes, respectively). In this case there 
is a nonlocal heat conduction regime."' The conditions un- 

der which a spot forms and the subsequent evolution of the 
spot were studied. In particular, it was predicted that a spot 
would decay rapidly as soon as its thickness became compar- 
able to its radius r, (i.e., after the transition from one-dimen- 
sional to three-dimensional geometry). 

Since under the condition & < O  ( O  is the Debye tem- 
perature) we have I, (&-T) cc TP4,  while we have 
IN (& - T) a T -' (Ref. 7 ) ,  the relation between li and IN is 
evidently determined by both the purity of the sample and 
the intensity of the excitation. If experiments are carried out 
on samples of pure substances, arid the excitation level is 
sufficiently high (in several actual experiments, the spot 
temperature exceeds O; Ref. 8 ) ,  we would expect the in- 
equality 1, < I, to hold. In this cast we would be dealing with 
ordinary heat conduction. Processes accompanied by scat- 
tering might also play a substantial role in the vicinity of a 
spot. This limiting case was studied by Guseinov9 for germa- 
nium, where the relation x cc T ( x  is the thermal conduc- 
tivity) holds over a broad temperature range. Guseinov car- 
ried out a semiquantitative analysis of the nonlinear 
heat-conduction problem on the basis of energy conserva- 
tion." However, in Ref. 9 Guseinov studied only the evolu- 
tion of the region in which most of the spot energy is concen- 
trated (this comment also applies to Ref. 4) .  At the same 
time, it is obvious that there cannot be a temperature drop at 
the boundary of a spot. The argument is that if there were 
such a temperature drop the high-energy phonons would be 
able to escape freely into the cold volume, where they should 
undergo umklapp events and so give rise to a nonzero tem- 
perature, but this result would contradict the concept of a 
sharp boundary. There thus exists a wide region of a compar- 
atively slow temperature decay-the "atmosphere" of a 
spot-which controls the escape of energy from the spot and 
thus its lifetime. An analysis of this region is of further im- 
portance in that if the frequency of the nonequilibrium 
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phonons observed experimentally is sufficiently high then 
the only place they could be produced is in this atmosphere, 
since phonons of the corresponding frequency generated in 
the high-temperature region would ultimately attach to 
thermalized phonons, forming a spot. In such a case, it 
would be the evolution of the atmosphere which determined 
the time evolution of the observable filling numbers. 

In this paper we carry out a detailed study of the hot 
spot in the case in which the condition 1, &Ii is satisfied in 
the spot region. When this condition holds, we can use the 
ordinary heat-conduction equation, for an arbitrary tem- 
perature dependence x ( T). We will be particularly interest- 
ed in the spatial asymptotic behavior of the temperature dis- 
tribution and also the time evolution of the filling numbers of 
the ballistic phonons emitted by the spot and detected by a 
narrow-band phonon detector. 

The spot itself and the hottest part of the atmosphere 
are analyzed through an exact solution of the nonlinear heat- 
conduction problem with appropriate boundary and initial 
 condition^.'^ Such a solution exists if x (  T) is described by a 
power law: x (  T) a T3 - n ,  where n is not too large. In this 
regime, which we will call a "diffusion" regime, the behavior 
T(x, t)  is determined by the relation D(T)t-x2, where 
D(T) is the diffusion coefficient of phonons with an energy 
fiw - T. In other words, the law describing the shift of a point 
on the temperature relief with a temperature Tis character- 
istic of a diffusive motion and is determined exclusively by 
the value of D( T). An important property of such a tem- 
perature distribution is that most of the energy is concentrat- 
ed at small values of x; i.e., a given state of the spot is repro- 
duced in the course of its evolution. The maximum 
temperature T, can be estimated from energy conservation 
and the circumstance that most of the energy is concentrated 
in a region with a typical thickness x, - (D(T, ) t )  'I2. 

As we have already mentioned, however, such "diffu- 
sive" spreading of a spot can occur if D( T) does not increase 
too rapidly with decreasing T. With D a T n ,  in the one-di- 
mensional situation, this situation corresponds to a limita- 
tion n < 8; in three dimensions it corresponds to n < 8/3; and 
in two dimensions (a film) we have n < 4. [In the one-di- 
mensional case, the corresponding condition is obviously 
violated only if the thermal conductivity is limited by 
phonon-phonon umklapp processes; the exponential factor 
in the functional dependence D(T) plays a fundamental 
role. In the three-dimensional situation, on the other hand, a 
diffusion solution is impossible for essentially any scattering 
mechanism.] In the opposite case, the nonlinear heat-con- 
duction equation does not have a solution which satisfies 
homogeneous boundary conditions at infinity (the natural 
conditions for a hot spot propagating in a cold volume). This 
means that in a heat-conduction description the energy 
transfer into an infinitely remote region would occur in infi- 
nitely short times." Since a conclusion of this sort is unphy- 
sical, it is necessary to impose a restriction on the energy flux 
(which corresponds to the solution of the heat-conduction 
equation): This flux cannot be greater than permitted by the 
ballistic regime for the propagation of phonons. In particu- 
lar, it is obvious that for x > wt (w is the sound velocity) we 
have I = 0. At the same time, if we focus on some particular 
coordinate x, < wt then we would expect, under the condi- 
tions of this heat-transfer regime, that the energy of the 
phonon system corresponding to the region x > x,  would be 

considerably greater than that concentrated at x <x,.  We 
will accordingly call the corresponding asymptotic behavior 
of the temperature relief, which supports a rapid energy 
transfer, a "runaway" asymptotic behavior. Since the time 
scale of the heat transfer in this situation is short in compari- 
son with the time scale for the heat-conduction equation 
[ -  (D(T)/x2)'12], in analyzing the latter it is natural to 
assume that the energy flux has already reached a steady 
state and is independent of the time: I ( x )  = const. To esti- 
mate I we can use the value corresponding to a ballistic re- 
gime with x - wt. 

Under the conditions corresponding to this runaway 
solution, a spot obviously could not form (so that, in partic- 
ular, the initial stage of the evolution of a spot is necessarily 
one-dimensional). However, a runaway asymptotic behav- 
ior may be realized in a certain intermediate region of the 
atmosphere-under conditions such that most of the energy 
of the spot is concentrated in the region in which the diffu- 
sion solution applies. At any rate, a transition from one- 
dimensional to three-dimensional geometry necessarily in- 
volves a transition to a runaway asymptotic behavior. An 
asymptotic behavior of this sort may also be manifested in a 
purely one-dimensional problem-if the temperature de- 
pendence x (  T) becomes exponential at low temperatures. 
An important question is how the transirion from diffusive 
to runaway behavior occurs. It would appear at first glance 
that this transition would occur at specifically those coordi- 
nates at which the dependence x (T)  changes or at which 
there is a transition to a three-dimensional (or two-dimen- 
sional) geometry (i.e., at x -ro). This is not always true, 
however. The reason is that the energy flux satisfies 
I a  xVTa T4-" ,  and the temperature growth under the 
conditions corresponding to the diffusive solution at r-ro, 
for n > 4, would imply a decrease in I ,  while in the case of a 
runaway solution, controlled by the ballistic removal of en- 
ergy, the temperature growth should have lead to an increase 
in I .  Accordingly, the merging of the two asymptotic expres- 
sions at r- ro is possible only if n < 4 [i.e., only if the depend- 
ence x (T)  is of a nature which is not really typical from the 
experimental standpoint]. For n >4, on the other hand, 
since the spatial variation of the heat flux must be monotonic 
in the asymptotic region, we see that the diffusive solution 
becomes inapplicable quite early, at some x, ( t )  <r,: It is 
near x, that the transition to a quasisteady runaway asymp- 
totic behavior occurs. For this reason, the decay of the spot 
occurs earlier than we would expect on the basis of the esti- 
mate x, ( t )  - ro [specifically, at x, ( t )  -x, ( t )  <ro]. 

The three-dimensional geometry has an important dis- 
tinctive feature, analogous to a spreading resistance. As we 
move away from the center of a spot, the effective "poten- 
tial" U = J xdT falls off rapidly. Its gradient determines the 
heat flux density: j = VU. At n > 4 ( Ucc T4 - ), this circum- 
stance would obviously be incompatible with the require- 
ment T I .+ - -0. This result means that even at r- r,, the 
concept of a temperature and the heat-conduction descrip- 
tion become meaningless, and the subsequent propagation of 
the phonons is in a regime of ballistics, quasiballistics, or 
quasidiffusion." The lowest temperature which is still 
meaningful (it can be assigned to the "edge of the spot"), 
T * = T(r- r,,) isdeterminedby theestimate T * - T,, where 
I(T, ) -ro (it does not change during the existence of a 
spot). 
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If, on the other hand, we have n = 4, then we have 
ja d(ln T)/dx, so the temperature decay in the region of the 
quasisteady asymptotic behavior is very sharp. The quantity 
x, turns out to be on the order of ro, and in this region (which 
essentially coincides with the region of the transition from a 
one-dimensional to a three-dimensional geometry) the tem- 
perature decays from values Tr = T(xr ) a t 'I4, determined 
by the diffusion asymptotic behavior, to values - T,. 

The case of two-dimensional geometry, in which the 
sample is a plate or film, is quite distinctive. In this case there 
is always a phonon scattering mechanism at the boundaries 
for which we have D = const. At the same time, heat remo- 
val through the film surface can play an important role. It is 
because of this latter circumstance that (as we will see) there 
can be a sharp temperature decay near r-ro in the case 
n = 4. The temperature of the "edge of the spot," T *, in- 
creases in time in proportion to t 'I4. 

In the final section we will show how we can use a 
known temperature distribution in a spot and its atmosphere 
to find the time evolution of the filling numbers of the ballis- 
tic phonons which could be detected by a detector. In partic- 
ular, we show that these dependences may be rather complex 
and nonmonotonic (dependences of this type were seen in 
the experiments of Ref. 8) .  We will also demonstrate that at 
low frequencies there is a depletion of the spectrum of occu- 
pation numbers of nonequilibrium phonons (again, this re- 
sult has been seen experimentally '*.I3). 

1. HIGH-TEMPERATURE REGION OF A SPOT; DIFFUSIVE 
ASYMPTOTIC BEHAVIOR 

We consider the half-space x > 0, filled with a semicon- 
ductor or insulator, in which an energy E is introduced at the 
time t = 0, in a process which takes a negligibly short time to. 
We assume that the characteristic radius of the excited re- 
gion, ro, is considerably greater than the thickness of the 
excitation layer, x,, which we will also assume to be negligi- 
bly small (Fig. l a ) .  We examine the case of high excitation 
levels, in which we have IN 41i in the spot region for the 
typical phonon energies, and the typical thickness of the lay- 
er in which most of the spot energy is localized satisfies 
x, ( t )  ,IN. When these conditions are satisfied, we can use 
the heat-conduction equation 

The boundary condition on Eq. ( 1 ) at the boundary x = 0 
corresponds to the requirement that the heat flux vanish 
there: VT I,, , = 0 (it turns out that heat removal can be 
ignored in this situation). At infinity, on the other hand, we 

FIG. 1 .  a-Three-dimensional experimental geometry; b-two-dimen- 
sional. 

require T I,, , -. 0 (the condition of a "cold" volume). With 
regard to the temperature dependence of x, we assume that it 
is determined by both the temperature dependence of the 
heat capacity, C( T), and that of the phonon diffusion coeffi- 
cient D [i.e., actually that of the phonon mean free path I 
with respect to momentum-loss processes: x - C( T)D( T), 
D- wl/3]. For simplicity we will be ignoring the distinction 
between the various branches of the phonon spectrum. 

The nature of the temperature dependence will obvious- 
ly differ in the regions T >  @ and T <  @. Following Ref. 9, we 
introduce a temperature To, at which we will join the high- 
temperature and low-temperature asymptotic expressions. 
For the region T >  To we have C = Co = const, 1- IN - IoTo/ 
T, and x a T -' (Refs. 7 and 14). For the low-temperature 
region we have C- Co( T/T0)3. The behavior I( T) requires a 
more detailed analysis. We know that the phonon-phonon 
component of I - ' is described at T<@ by l4 

l - i - z , - i ( ~ / T ~ ) ~  exp ( - T o l a T ) ,  ( 2 )  

where m and a depend on the particular details of the 
phonon spectrum. It is important that the relation as 1 
usually holds, since the exponential dependence begins to be 
seen only at extremely low temperatures. In turn, it is at 
these extremely low temperatures that impurity scattering is 
usually predominant (for this type of scattering, under the 
condition I, 5 I, we have I cr T -4) .  It thus turns out that over 
a broad temperature range (up to the temperatures at which 
the conceptbf a local thermal conductivity becomes mean- 
ingless) the dependent I( T) can be described by a power law 
I a T- " . This behavior corresponds to the actual experi- 
mental situation.I4 

We will first analyze one-dimensional spot evolution. 
An important point is that in the case of a power function 
x (T)  -CoTo(T/To)v-n-l [where C(T)=C,(T/ 
To)"- ] the nonlinear equation ( 1) has a simple solution 
which satisfies the boundary and initial conditions of inter- 
est here1': 

where 

L ~ ~ X Q " / ~ / C I  T=TO-Do (CoTo)n/v/~n'v, 

~t-*/"= (2-nlv)  nn/2Vn-LI'n/Y (v/n-'I2) I'-"Iv ( v ln )  - 4, 

and E- $/a4 is the surface density of the injected energy. 
The asymptotic form of this solution as x- co is quite sim- 
ple: 

~. 

(4 )  

It does not depend on E, and it has a clear physical meaning: 
A front corresponding to some given temperature Tis prop- 
agating into the interior of the sample in accordance with a 
diffusion law D(T(x, t)  )t-x2. The trajectory x ( t )  is deter- 
mined exclusively by the value of Tand does not depend on 
the temperature distribution at smaller values of x. The spot 
region proper, where we find most of the energy of the spot, 
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corresponds to small values of x, for which the term 6 on 
the right side of (3)  is important. Since lo- 1, the boundary 
of this region, x, , is found from the condition 

while the maximum temperature in the spot is, in order of 
magnitude, 

If T,,, > To, then in a certain region of the atmosphere at 
x-xo(t) there should be a transition from a regime with 
T >  To to one with T <  To. Correspondingly, there will be 
changes in the indices n and Y; according to (4)  we have 
x0- ( ~ , t )  ' I 2 .  Solution (3)  of course presupposes n, 
Y = const, and strictly speaking we cannot use it for 
T, > To. However, the fact that the law of motion of a 
T = const front is essentially independent of the T distribu- 
tion in the hotter region, according to (3)  and (4),  being 
determined only by the value of D( T), makes it possible to 
join the high-temperature and low-temperature asymptotic 
expressions self-consistently at T- To [since the numerical 
factors in (4) for T >  To and T < To are different, the joining 
occurs in a certain transition region, but the presence of this 
region can be ignored if we are content with order-of-magni- 
tude estimates]. 

2. RUNAWAY ASYMPTOTIC BEHAVIOR 

Solution (3)  evidently holds only if ( 2 ~  - n)  > 0. Since 
this condition clearly does hold at T >  To, we will restrict the 
present section of this paper to the case T <  To, for which the 
condition becomes 8 - n > 0. To see the physical content of 
this limitation, we note that in addition to the natural nor- 
malization condition 

from which we find 

lim [xT4 ( x )  ] = 0, 
I.+ OD 

the function T(x, t )  must satisfy the requirement that the 
energy flux vanish at infinity. 

lim (xVT)= 0. 
I-. 

We will discuss the meaning of this condition in more detail 
in just a moment. It is not difficult to see that conditions (8)  
and (9) are compatible only if (8 - n) > 0. If, on the other 
hand, we have n>n, = 8, and conditions (7)  and (8)  hold, 
then we necessarily have xVT 1,- _ - W .  

It is not difficult to generalize these considerations to 
the d-dimensional situation ( d  = 2 or 3), writing conditions 
(8)  and (9)  in the form 

lim PT4 (r) =0, 
r+- 

lim I (r) = 0, I (r) =2nrd-'x V 
I-.- 

(here we have taken account of the circumstance that in the 
typical experimental situation with d = 3 the heat is propa- 
gating into a half-space, while ford = 2 the heat is propagat- 
ing in all directions). The critical value of n, which corre- 
sponds to a disruption of the compatibility of (8a) and (9a), 
isn, = 4  ( d  = 2) orn, = 8/3 ( d  = 3). What are theconse- 
quences of the incompatibility of (8a) and (9a)? Let us first 
refine the meaning of (9)  and (9a). In the limit r +  C U ,  t > 0, 
the condition dT/dt>O must hold [since we have 
T(t = 0)  = 0, and the heat transfer rate is finite]. It follows 
that in the limit r- co the function I ( r )  falls off monotoni- 
cally. Integrating ( 1 ) over a region bounded by the radius r, 
we find 

dE(r)/dt=-Z(r), (10) 

so that, on the one hand, condition (9a) means an infinite 
time for the heat transfer to an infinitely remote point, while 
on the other hand the result I ( r )  - w [which follows from 
(8a) in the case n>n, ] means an instantaneous heat transfer 
over infinitely long distances.'' 

In principle, we could assume that the nonlinear equa- 
tion (1)  has a solution which vanishes at finite distances 
r = r'. In this case, however, the boundedness of I as 
r -+ r' - 0 would require that the condition V T I ,-, -, -+ 0 be 
satisfied [since we have x (  T) I .-, - w 1. The simultaneous 
vanishing of Tand V Tat the point r', however, would not let 
us have a nonzero solution at r < r'. In this regard, the situa- 
tion is quite different from nonlinear heat conduction under 
explosive conditions (cf. Ref. 15 ) , for which we would have 
n < 0 and C = const, i.e., x 1 .-, - 0. At the same time, for 
n>n, it is not possible to realize an "explosive" self-similar 
solution (as proposed in Ref. 4) ,  according to which heat 
transfer over an infinite distance would occur in a finite time. 

The picture of instantaneous heat transfer obviously 
does not correspond to the physical meaning. For n>n, we 
should thus take account of the relevant physical limita- 
tions. In the first place, Eq. (1)  can be used only if r < I(T), 
i.e., r < r,, where r, corresponds to the transition to the bal- 
listic regime and is determined by the condition r, - I (  T), , 
T, = T(r, ). Second, for r- r, the energy flux corresponding 
to (1)  should join with that determined by the ballistic 
transport of phonons: 

d-4 .  
Z=Ih=2nrh J ~ ,  jb-C(Tb)Tbw 

(an estimate of I, will be derived below for specific situa- 
tions). Since the energy flux coming out of the spot is limited 
only by the ballistic removal, the corresponding asymptotic 
behavior can be called the "runaway" asymptotic behavior. 
Clearly, under such conditions (n>n, ), with rapid removal 
ofenergy, a spot cannot form. We can thus discuss specifical- 
ly this asymptotic region in a case in which the condition 
n < n, holds in the hotter part of a spot. 

As we mentioned earlier, the condition dI /dr  < 0 holds 
in the atmosphere of a spot. In the limit r- cu with n>n,, 
that condition is incompatible with (8a),  but since we are 
talking about finite distances r < wt this incompatibility is 
unimportant. We can thus write the following expression in 
the region of the runaway asymptotic behavior: 

E (r-wt)/E(r,) B l ,  if r,<wt. 

Since 

I )  r - w )  E(r-wt)/Z(r-wt) -t, 
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we have E(r , ) / I ( r , )  (t. Since the quantity E( r ) / I ( r )  is an 
estimate of the time scale of the evolution of the heat distri- 
bution, it follows that for r( wt the solution is q6asisteady. 
In other words, it satisfies the equation 

Let us examine the question of joining the diffusion 
asymptotic behavior (4)  with the runaway asymptotic be- 
havior ( 11 ). It might appear that this joining should be done 
at those values r = r, (or x = x, ) for which the transition 
from the n < n, regime to the n>n, regime occurs. Such a 
transition evidently could occur when we go from the one- 
dimensional geometry to d = 2 or d = 3; in this case we 
would have x, -r, (Fig. la) .  In principle, this transition 
could also occur within the confines of a one-dimensional 
geometry, if at some T = TI there were a corresponding 
change in the heat-conduction law. However, matching at 
r = r, can be realized only for n < 4. The reason is that the 
expression for the energy flux density, 

shows us that a power-law increase in the temperature over 
time as described by solution (4)  would not be accompanied 
by a corresponding growth of j for n>4 (for n > 4, j would 
decrease with increasing T). In the case of the runaway 
asymptotic behavior, on the other hand, a temperature in- 
crease would evidently lead to an increase in the ballistic flux 
and thus in j. As we will see from some estimates which 
follow, in the case n>4 we have Id iR( r  = rc - 0)  
<I ( r  = rc + 0 )  -Ib (the equality I,,, -I, holds only at the 
time t-r,/w). It follows that for n>4 we have intermediate 
asymptotic behavior, which falls in the region of a one-di- 
mensional geometry, for which the relation I ( x )  > I,,, (x) 
holds. It is easy to see that in this region we have 
T(x) 5 T,, ( x )  . We thus have the estimate 

i.e., for the intermediate asymptotic behavior we have CdT/ 
dt g I /x, or d I  /dx (I /x. Since the x in this relation is the 
length scale of the variation along the coordinate, we have 

I (x) =const 

in this region. The conclusion which we draw is that the 
quasisteady asymptotic behavior described by ( 1 1 ) can be 
continued into the region with n < n,. Matching with solu- 

FIG. 2. Temperature distribution in a spot. (0, x, )-Region of diffusion 
solution (3);  x >x,-region of quasisteady solution ( 11); x,-boundary 
between the n < n, and n > n, regimes ( ford  = 2 and 3 we have x, = r , ) ;  
r,-boundary of the transition to the ballistic regime. 

tion (4)  is done at x = x,, where 

From (12) and (4)  we find the following results for x, and 
for the corresponding temperature T, : 

x , x  (CoToDo/2nIb) n/(8-n)(yDot)(4-n)/(8-n), (13) 
T,-To (yD,t/xT2) 'In. ( 13a) 

We see that we have x, = x, ( t ) .  In particular, with I, 
= const we have x, a t(4 - n)'(8 - n,  , 

Figure 2 is a sketch of the temperature distribution in a 
spot and its atmosphere. 

3. RUNAWAY ASYMPTOTIC BEHAVIOR IN ONE- 
DIMENSIONAL GEOMETRY 

Analogous behavior is possible in substances which are 
so pure (including isotopically pure) that x has an exponen- 
tial dependence at low temperatures. Although the preced- 
ing analysis was carried out for a power law D(  T), this as- 
sumption is not important for the quasisteady runaway 
asymptotic behavior ( 1 1 ) . It is sufficient that the growth in 
D(  T) with decreasing Toccur more rapidly than T - "' (this 
condition is met in the present case). We consider the I( T) 
dependence [see (2)  1 at temperatures exp(T, /T) > ( T, / 
T)" - ( T, r T,/a). The general solution of ( 1 1 ) with 
d = l i s  

so we have 

We find I, on the basis of the following considerations. For 
x - wt, there is evidently a transition from diffusive propaga- 
tion of phonons to ballistic propagation. At x 5 wt, the con- 
cept of a temperature is meaningful (since we are assuming 
I, (li ). For x 5 wt, this is correct in order of magnitude. We 
see that the value T(x - wt) r Tb is determined by the condi- 
tion I( Tb ) - wt. On the one hand, we have I( Tb ) k wt, while 
in the opposite case phonons with tiw- Tb could not be at 
point x at time t. At the same time, if the condition 
I( T, ), wt held, then phonons with energies greater than Tb 
could be at point x, having arrived from the heated regions of 
the spot. Using (2) ,  we then find 

Knowing the characteristic temperature which we can as- 
sign to the ballistic front, we find the following estimate of 
the energy flux: 

The quantity I, depends on the time, but this dependence is 
weak, and it does not disrupt the quasisteady nature of solu- 
tion (11). 
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4. THREE-DIMENSIONAL GEOMETRY (FIG. la) 

Since we have n, = 8/3 in this case, for realistic values 
of n we are in the region of runaway asymptotic behavior. 
Let us estimate the temperature T * corresponding to r- r,. 
We first assume that this temperature is so high that the 
condition I, ( T * ) 5 I (  T * ) <ro holds. We can then use Eq. 
( 1 1 ) for r > r,; the solution of this equation is 

(T*/T)"-6=1+ (n-4)zb[2nx (T') T']-' (l/ro-l/r), n>4, 
(18a) 

ln(T*/T)=~~[2nn(T*)T*]-'(l/ro-llr), n=4. (1%) 

For n > 4, the dependence T(r)  is a power law, and 
since r,, is the only length scale characterizing the spatial 
distribution of the temperature we have VT5  T*/r,. Ac- 
cordingly, the maximum value of I for r-r, is 
277$x(T *) T*/r,. It is easy to see that in this case expres- 
sions ( 18) do not satisfy the requirement T I,, , -+ 0. The 
assumption I (T  *) gr, thus leads to a contradiction. On the 
other hand, by analogy with the arguments in Sec. 3, we can 
conclude that we have I (T*)  5 r,. As a result we find the 
estimate I( T *) - r,,, which we presented in the Introduction. 
This result means that even for r-r, there is a ballistic re- 
gime (or quasiballistic regime"). The typical temperature 
of the periphery of the spot, T *, does not vary with time and 
is given by the estimate 

We also have 

Knowing I, , we find the lifetime of the spot: 

t-2E/nC (T*) T'w. (21 

This value turns out to be lower than that which would be 
found from the estimate x, ( t )  - r,. 

There is a slightly more complicated situation at n = 4, 
since in this case we have I a V (ln T). In the region of the 
diffusion asymptotic behavior (4), we have I ( t )  = const but 
T(t)  #const. Using the characteristic value for the transi- 
tion to the ballistic regime, r,, from the condition 
I( T, ) -rb , we find the following , estimate for I, : 
I, -277% (T)  Tr, . "Cutting off" the solution ( 18b) at r- r,, 
joining it with the corresponding solution for the one-dimen- 
sional quasisteady asymptotic behavior, ( 11 ), which takes 
the form 

In (TIT') = (ro-x)rb/ro2, T*=T (z-r-r,), (22) 

in the case n = 4, and, finally, joining (22) with the diffusion 
solution (4)  for x - r, , we find an equation for x, : 

\ 
Here t * is determined by the condition T(t *, 
rO) = To*, I(TZ) = r,. In turn we have 

We see that we have 6- 1; i.e., for x-r,, in the region of the 
transition from the one-dimensional regime to the three-di- 
mensional regime, there is a sharp decay of the temperature, 
fromvalues ~ , - T , * ( t / t * ) " ~ $  To* toavalue Tb-T,*. 

For n < 4  we have x ,  -ro (i.e., T*  a t"" ) and 

r, - rO(T*/Tz)n(4-  ")'('" -4) .  This is not a really typical 
regime from the standpoint of the experimental curves of 
x ( T), but it does have an analogy in the case of a nonlocal 
heat conduction, as we will see. 

5. TWO-DIMENSIONAL GEOMETRY (FIG. 1 b) 

In this case we have n, = 4, and for r >  r, runaway 
asymptotic behavior occurs for the typical scattering mecha- 
nisms. The physical picture, however, is noticeably different 
from that shown above. One of the impsrtant factors respon- 
sible for the differences is the diffuse scattering of phonons 
by the boundaries of the film. Because of this scattering, the 
mean free path is limited by the condition 1 5  d. We intro- 
duce a temperature Td such that we have I(Td ) -d. Clearly, 
for T <  Td the propagation of the phonons is determined by 
surface scattering, and the solution is different in the regions 
T >  T, (we denote its boundary by r, ) and T <  T, (i.e., for 
r > r, ) . Another important factor is heat removal across the 
surface. It is a complicated matter to take this factor into 
account, particularly because of the nonlinear behavior as a 
function of T (for example, if liquid He is the heat reservoir, 
heating leads to a change in its properties near the surface 
and to a sharp degradation of the heat removalI6). The heat 
removal is more important for the parts of the film which 
have been heated relatively little (both because of the large 
values of the coefficient for the escape of phonons across the 
surface, k, and because of the larger area corresponding to 
these parts). In view of the discussion above, it appears pos- 
sible to describe at least qualitatively the basic details of the 
physical picture on the basis of the following simple model. 
We assume that for r < rd the coefficient k does not depend 
on the phonon frequency and that for r > rd (i.e, for T >  T, ) 
we have k = 0. 

We first consider the region r >  r,. Here Eq. ( 1 ) re- 
duces to the linear equation 

whereo- kw/d. Equation (25) also holds if the concept of a 
temperature becomes meaningless, but in such a case Q 
should be understood as the total energy density of the 
phonon system. We also assume t %fl-  '. In this case the situ- 
ation is in a steady state, and the solution is 

where K ( z )  is the modified Bessel function, with the proper- 
ties 

K(z) (,,,- (n/2z)'"e-', K(z-0) -ln(z/2). 

For the total energy flux at r-r, we then have the interpola- 
tion estimate 

Id-2nrdx (T,) VT I ,,, ,-2nx (Td) TdB-', 

We now consider the region rd > r > r,,, T >  Td . We assume 
r, $ r, (this assumption is, at any rate, valid for r,$d). 
From (11) and (27) we find 

I-(Td/T) "-'= (n-4)ln(rd/r) B-', n>4, 
(28) 
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Settingr= r,andT= T*[T*  = T(r-r,)] in (28),wefind 
a relationship between rd and T *: 

(these expressions are again interpolations). In turn, we find 
the value of T*  from the condition for joining with the 
asymptotic behavior corresponding to the one-dimensional 
situation at x - r, (for simplicity we set r, - d )  . For n > 4 we 
have 

At n = 4 we find, using X T  = const, 

Id-2nT.x (T') B-'.  (31) 

This quantity, to within a logarithmic factor, is on the same 
order of magnitude as that corresponding to the diffusion 
solution at x - r,. Consequently, it is at x - r, that we join 
with the diffusion solution; at this level of accuracy, we have 

It can be concluded from this analysis that for n > 4 the tem- 
perature decay for r, < r < rd is slow: 

The temperature of the edge of the spot, T * = T(r,), is com- 
paratively low and does not vary with the time. At n = 4, on 
the other hand, the temperature decay for r >  r, is quite 
sharp: 

T-T* (ro/r) 'IB; (34) 

as for d = 3, the temperature of the edge of the spot, T *, 
increases with the time, in proportion to t 'I4. 

6. PROPERTIES OF THE ASYMPTOTIC BEHAVIOR IN THE 
CASE OF NONLOCAL HEAT CONDUCTION 

Since we have li (h- T) a T4, lN (h- T) a T 5  even 
when ordinary heat conduction takes place in the hottest 
part of the spot, the condition IN > li may hold in the cold 
part of the "atmosphere" of the spot, and there may be a 
transition to nonlocal heat cond~c t ion .~ -~  The heat transfer 
is implemented by subthermal phonons (h < T) which ar- 
rive at a given point from hotter regions. It can be shown (see 
the Appendix), however, that if the temperature falls off 
sufficiently rapidly with distance the heat flux at point x, 
with temperature T, is determined primarily by the value of 
T and depends only weakly on the temperature distribution 
at xl<x (we will discuss the case d = 1 first). We can thus 
use considerations analogous to those of Refs. 4-6 in order to 
evaluate the temperature distribution. We know5~" that in 
the case 1, >Ii three regimes are possible: I )  x/ 
WTN (T )  <~3 ' ' ~ ,  S=rN/r i ,  corresponding to definitely non- 

local heat conduction; 2) S ' / 3 < ~ / ~ ~ N  <S; 3) X/ 

WT, > S > 1. We restrict the present discussion to an analysis 
of situation 1 ). In this case the typical frequencies w,, of the 
phonons which implement the heat transfer at the point x are 
determined by the condition 

[where rN1(w, T) ccwT4], and the time scale of the heat 
transfer is determined by the time scale for spectral pumping 
of energy from frequencies w - w,, to h - T: 

Solving Eqs. ( 35 ) and ( 36) for T, we find 

where T, is some normalization temperature. 
We turn now to the question of the transition to three- 

dimensional geometry. For r > r, the heat transfer is imple- 
mented by phonons with frequencies i5 such that 
D(W)rN (75, T) =:?, and the energy flux is 

Analysis of conditions of the form (8a) and (9a) shows that 
we are dealing with runaway asymptotic behavior. By analo- 
gy with Sec. 2, we find Izconst .  Hence 

whereD(TD)TN(TD)-d , ID = x(T)T.2rro. On theoth- 
er hand, for solution (37) we have I(x-r,,) a ~ ? / ~ ( r , ) ;  i.e., 
in the case of nonlocal heat conduction the energy flux in- 
creases with increasing T, as in the case of local heat conduc- 
tion with n <4. This result means that solutions (38) and 
(37) join at r-r,. We thus find 

It follows from estimates in Ref. 17 that in regime 2) we 
have I a T, and this energy flux is qualitatively the same as in 
the case above, while in regime 3) we have Ia T, and the 
energy flux is similar to that in the case n > 4 (Secs. 2 and 4) .  
It is easy to see that as the temperature at point x rises there is 
a sequence of transitions from regime 1 ) to regimes 2) and 
3) (and then to local heat conduction with n = 4). If we 
instead look at the edge of the spot, at x - r,, we conclude by 
analogy with thediscussion above (Sec. 4 )  that T(r,) initial- 
ly increases [regimes 1 ) and 2) ] and then, at the transition 
to regime 3) becomes approximately constant: 
T(r,) ~ c o n s t .  

7. SPECTRUM OF OCCUPATION NUMBERS OF BALLISTIC 
PHONONS EMITTED BY A SPOT 

Let us find the occupation numbers N, of low-frequen- 
cy phonons which are emitted by a spot and which then 
propagate ballistically. Here it is sufficient to consider three- 
phonon interaction processes involving thermal phonons. 
The collision operator can be described in the relaxation- 
time approximation. We thus write the kinetic equation in 
the form 
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where No - T/w is the equilibrium distribution function. For 
simplicity we restrict the analysis to the case T,,, < To. The 
expression for rN ( a ,  T) is7.I4 

In this section of the paper, where we are assuming a given 
temperature distribution, we will not restrict the discussion 
to the single-branch model. We allow a to deviate from unity 
(in particular, for longitudinal phonons in crystals of cubic 
symmetry we would have a = 2, Refs. 7 and 14). We assume 
that the time required for the phonons to propagate to the 
observation point is much shorter than the spot evolution 
time. We can thus regard the temperature distribution in 
(39) as quasisteady. The solution of (39) is expressed in 
terms of an integral along a trajectory: 

X i 

dx' &" 
No (a,  T) exp( - 1 

(a ,  T )  
). (41) 

W T . ( W ,  T) 
I' 

Here T = T(xl), and for simplicity we have written (41) for 
the case d = 1. In the d = 2 cases, we should understand x' 
as a trajectory variable along the corresponding trajectory 
directed along the wave vector q, and we should understand 
x as the coordinates of the observation point. We then need 
to sum solution (41 ) over q, i.e., over the trajectories. If the 
region r 5 ro is dominant, however, and if the condition x $ ro 
holds, this summation reduces to multiplication of (41 ) by a 
coefficient V(R) determined by the solid angle R which the 
spot subtends at the point x. In the case x$  ro and d = 3, we 
obviously have V(R) ax-'; in the case d = 2 we have 
V(R) ax- ' .  

Clearly, expression (41 ) depends strongly on the inte- 
gral in the argument of the exponential function. The latter 
cuts off the range of the integation over x ' ,  which corre- 
sponds to 

We will first discuss the situation in which (42) cannot be 
satisfied regardless of the value of x,, i.e., the situation in 
which we have 

This condition obviously holds for phonons with frequencies 
below a certain qi , ,  at which the left side of (43) is equal to 
unity. Clearly, in a given situation, for realistic values of a 
and n, the integral in (41) is determined by the hottest part 
of the spot, where we have T- T,,, ; i.e., here we have 

According to (44), in the case w < q i ,  we have N(w)/ 
No(w) I,,, -0; i.e., the low-frequency region is depleted in 
comparison with a Planckian distribution determined by the 
typical energies of nonequilibrium phonons at point x. Such 

depletion of the low-frequency part of the phonon spectrum 
has been observed in several experiments. 12913 

At w > wIi,, three situations are possible: a )  x ,  <xs ; b) 
x,  >xs ,  T (x l ) )  T(x); C )  x1 >x,, T(xl)  - T(x). [Since we 
have t ,  (w, T) > rN (&I - T), condition c )  can hold only if 
the concept of a temperature at point x is meaningful.] 

We will evaluate the integral in (41 ) in order of magni- 
tude, restricting the integration over x' to a lower value of x ,  
and replacing the exponential function by unity. In case a ) ,  
as before, the integral is determined by the region x' <x,, 
and we have 

In case b),  because of the strong dependence of 7,- ' on x for 
realistic values of a and n, the integral in (41 ) is determined 
primarily by the neighborhood of the point x,. In the d = 1 
case, this is true regardless of whether x ,  falls in the region of 
a diffusion or runaway asymptotic behavior (the case ana- 
lyzed in Sec. 3 is exceptional). We thus write 

No-V (Q) No (o, T=T (xi) ) , T [ W T N  (T) VT] -' I.=,,- 1. 

(46) 

The evolution of the observed signal is thus determined by 
the evolution of the value t (x,) ;  the latter increases as the 
decay of T(x)  becomes sharper. If the point x ,  corresponds 
to the region d = 1 (x, <ro) and to the region of diffusive 
asymptotic behavior, then we have, as can be seen easily 
from (4)  and (42), 

For realistic values of a ,  and n, the value of N, falls off with 
increasing t up to the time at which the point x ,  falls in the 
region of quasisteady asymptotic behavior. 

With d = 3 and n > 4 we have T * = const; at x ,  > x, 
there is no change in N, before the spot disappears. In the 
n = 4 case, the region of a quasisteady asymptotic behavior 
is comparatively narrow and the temperature decay in it is 
sharp. If in this case we have 

then we have x,  -x, and 

Nm-N,(T(xr) 1. (49) 

Since T(x,) increases with the time, growth N,  ( t )  cc t 'I4 

occurs under the conditions (48). According to (23) and 
(24), wi thd= 3andn=4in thereg ionx>x,  wehave 

d(ln T)ldr.cZ,~E-I+ (1/8)ln(t/t'), 

so, according to (46), at x, < x ,  < ro we have 

N , ~  E1/(5-a,. 

If, on the other hand, we have x ,  > ro, i.e., if we are dealing 
with a spherical surface, then the growth in the area of this 
surface with increasing t comes into play (gives rise to an 
increase in a) ,  and we have 

N, a E2. 

Correspondingly, in the case of nonlocal heat conduction we 
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find, using (37) and (38), 

One distinctive feature of the d = 2 case is that the bal- 
listic phonons correspond to a small phase volume, -d /r. 
For r$r,, r > (dw/B) 'I2, however, the phonons which are 
incident on the surface move off comparatively easily into 
the reservoir. An exceptional case is constituted by the small 
group of phonons which are incident on the surface at angles 
?r/2 - p(p-0) .  Since the specular reflection coefficient p 
increases as p - 0, propagation of these phonons is approxi- 
mately ballistic. If ( 1 - p )  a pa , the critical value of p for 
this group is p,, - (d  /r)"'" + " . We now see that the rela- 
tive number of phonons which arrive at the observation 
point diffusively falls off with increasing r, and an estimate of 
the type in (46) remains valid. For n > 4( T * - T, = const), 
as at d = 3, the value of N, for the phonons of fairly high 
frequencies [x, (w) > x, ] does not change up to the time that 
the spot disappears. At n = 4, however, we have T * cc t 'I4. If 
the heat removal is sufficiently rapid 
(Dd/B6 < ( T*/Td I4l3 , B = 2/3), the temperature decay 
for r >  r, is extremely sharp ( cc rP3l2).  AS a result, it be- 
comes possible to satisfy conditions (48); for the corre- 
sponding frequencies we have N ,  cc t 'I4. 

In case c) ,  which may occur in a one-dimensional ge- 
ometry or at r-r,, during the lifetime of the spot there is a 
growth of N,  due to the temperature rise near the observa- 
tion point. If the relation x,  < x  initially holds, then N, ( t )  
initially decreases and then (at x ,  -x) begins to increase. 

CONCLUSION 

This analysis shows that, despite the comparative sim- 
plicity of both the experimental situation and the mathemat- 
ical formulation of the problem, the physical picture asso- 
ciated with a hot spot is extremely rich. The space-time 
distribution of the temperature is determined by both the 
surface density of injected energy, E, and the experimental 
geometry. The general nature of this distribution is shown in 

Fig. 2. The region 0 < x <x, is described by Eqs. (4)-(6). 
The properties of the region x 2 x, are listed in Table I for 
the three- and two-dimensional cases (Fig. 1 ) . 

With regard to the frequency spectrum of the filling 
numbers N, of the nonequilibrium phonons emitted by a 
spot, we find that most of the energy in the N = 3 case is 
concentrated at frequencies fia - T, [ T,, is given by (24) 1,  
while at d = 2, we have fia - Td ( Td was introduced in Sec. 
5 ) .  The shape of the spectrum, however, is quite different 
from a Planckian spectrum; in particular, the low-frequency 
region [corresponding to I ,  (w, T = T,,, ) > x, ] is depleted. 
As was mentioned earlier, this situation agrees with experi- 
mental results. 

The time evolution of N, during the lifetime of a spot 
[x, ( t )  < x, ( t)  ] according to the results in Sec. 7 is also dis- 
tinguished by a diversity of forms. The basic conclusions are 
presented in Table 11. We see that a typical result is a decay 
of N ,  with increasing t, which reflects a gradual cooling of 
the spot. At n = 4 in the two- and three-dimensional cases, 
however, in a certain region of values ofw and t there can be a 
growth of N, ( t )  as a result of the increase in the tempera- 
ture of that region of the spot which serves as a source of 
phonons of the corresponding frequencies, if the outer part 
of the atmosphere is sufficiently narrow and does not pre- 
vent the escape of phonons. Growth of N,  ( t )  also occurs if 
the region in which the phonons are produced corresponds 
to a three-dimensional geometry, since the area of the emit- 
ting surface increases over time in this case (the atmosphere 
"swells"). These events can occur, in particular, in the case 
of a nonlocal heat conduction. Finally, N, ( t )  may grow if 
the observation point itself is in a fairly hot part of the atmo- 
sphere (e.g., in the one-dimensional geometry ). Further- 
more, N, ( t )  may have a local minimum, if this growth is 
prevented by a decay region. Finally, after the condition 
x, ( t )  -x, ( t )  is attained, the spot decays. 

Akimov et a/.' have recently carried out an experimen- 
tal study of the hot-spot situation in a thin wafer of pure 
GaAs. In the region r >  r,, a nonmonotonic dependence 
Nu ( t )  was observed, with a maximum for a group of ballistic 

TABLE I. Characteristics o f  the temperature distributon in the region o f  the runaway (quasi- 
steady) asymptotic behavior ford = 2 and 3. 

I I I 
- 

I I Concept o f  a temperature becomes 
meaningless (ballistic regime) 

d = 3  

/ z, < z < rn I Similar to d = 3 

d = 2 ,  
Concept o f  a temperature becomes 
meaningless for r > r, 

xr < x < ro 

Concept o f  a temperature becomes 
meaningless at r > r, 
- ro[ l  + 1/8 l n ( t / t * ) ] - r , ,  

T, -- T,*(t: t*)1/(8-n) 

T ( r )  - T ,(z,/ x ) ' / ( ~ - ~ )  
T*  = T(ro) -To* 

x, - ro, T,. - To6( t /  t*)ll' 

Note. Here t * and T,* are determined by the conditions I(T,*) -min(r,, r i / l ,  (T,*) ), 
t * = max(r,/w, T ,  ( T : ) ) .  In the d = 2 case, we assume rapid heat removal: D,/D6 5; 1. In the 
case o f  a nonlocal heat conduction [regime 1, rO/wTN < (7,/7, ) l i 3 ] x ,  -ro. For x < r,, we have 
~ ~ ~ ~ [ ~ ( ~ ~ ) t / x ~ ] ~ " ~ ( t / ~ , ( ~ , ) ) " " ; f o r r > r ~ w e h a v e ~ - ~ ~ ( r ~ / r ) ~ ' ~ ( t / ~ , ( ~ ~ ) ) ~ " ~ w h e r e  
D ( T D ) ~ , ( T D ) - d .  
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TABLE 11. Time dependence N, ( t )  in various stages of the existence o f  a spot [x, ( t )  < x, ( t )  ] at 
r ,  ro for various parameters o f  the problem. - 

Note.{-1 + 1/81n(t/t*).Ifr-ro(d=2,3andro/w~N(o,T*)Z1,thenN, at1'";undercondi- 
, i f  WT,(O, T * )  >ro or tions o f  a nonlocal heat conduction we would have N, a t  s / " 1 - 8 ' s - a "  ' 

N, CC t 4 5 ( 1 0 -  2a ) /11 (45  - 7n )  i f  WT ( W ,  ~ 1 )  < rO, 9 N 

phonons with energies of 0.3 and 0.6 THz. The position of 
the maximum did not depend on r (ruling out a diffusion 
nature for the corresponding effect). This behavior could be 
explained on the basis of the model proposed above, under 
the assumption that the growth in N, ( t )  stems from the 
factors listed above and that the position of the maximum 
corresponds to the time at which the spot begins to decay. 
Order-of-magnitude estimates of the spot lifetime and also of 
the temperature of the edge of a spot, T * (r- r,) , based on 
the data of Ref. 8 agree with this assumption. In the one- 
dimensional case (in which the phonon detector is posi- 
tioned opposite the excitation region), a local minimum was 
observed at early times. The presence of such a minimum can 
also be explained by our model, as we have already seen. 

I wish to thank Yu. M. Gal'perin for reading the manu- 
script and for a discussion of this study, and I also thank A. 
V. Akimov, V. L. Gurevich, V. D. Kagan, and I. B. Levinson 
for a discussion of this study and for several valuable com- 
ments. 

APPENDIX 

Let us find which regions of the spot are primarily re- 
sponsible for the heat transfer to a given point x. We assume 
a quasisteady temperature distribution describable by a 
power law T a x  - " . If phonons with an energy .lie arrive at 
the point x primarily from a region (x,, x ) ,  the meaning is 
that as these phonons diffuse in the region (x,, x )  they are 
scattered at a probability - 1 by thermal phonons. Hence 

2 

x dx' --I - 1. 
D ( w )  T N ( W  T ( x ' ) )  

Since we have rN = T~ (w), the value of x ,  and thus that of 
the temperature Tl = T(x, ) depend on w. Phonons with rel- 
atively low frequencies may arrive from hotter regions. 
From ( A l )  we find an estimate of the typical frequency of 
the phonons which can arrive at point x after being produced 
near point x ,  with temperature TI: 

o ( T , )  <wph(T/T, ) ( 5 - a - f / m ) / 5 ,  (A21 

where w,, is given by (35 ) . Since the occupation numbers 
for these phonons satisfy - T,/w( TI ), the component of the 
heat flux at point x is proportional to w2(Tl) TI. The total 
heat flux at point x, on the other hand, is proportional to 
-IT; T, T, 

do 
dam (Ti) Ti  - I dT,o2 (T , )  T ,  - -I dT,w3 (T , ) .  (A31 

T dT, 

Using (A3), we easily see that if 

then the integral is determined by its lower limit [in the 
single-mode model which we are considering here, we would 
have a = 1, and (A4) would take the form m > 3/71. This 
result means, in particular, that under condition (A4) the 
heat flux at point x is determined in order of magnitude by 
the temperature in the hotter regions. It is easy to see that for 
law (37) condition (A4) holds, i.e., that our calculation is 
self-consistent. 

"For many semiconductors, the temperature dependence x (  T )  is sharper 
than T - '  at T S  O. As we will see below, this circumstance may prove 
important. 
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