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We investigate the thermodynamics of the heterogeneous system which results when a solid 
undergoes a first-order phase transition, and derive equations for equilibrium between the phases 
in the presence of elastic interactions. These equations are solved by finding the shape of the 
region containing the new phase, embedded in the infinite matrix of the old phase, which 
minimizes the elastic energy. For the case of elastically-isotropic phases, this equilibrium 
inclusion has the shape of an ellipsoid, possibly degenerate, i.e., a cylinder or a plane-parallel 
plate. We determine the regions of stability for the various equilibrium shapes as a function of the 
intrinsic strain tensor which characterizes the phase transition, and the relations between the 
elastic properties of the phases. We investigate the influence of an external homogeneous stress 
field on an equilibrium inclusion, and show that an external shear field does not penetrate the 
inclusion and does not interact with it. We construct the equilibrium surface of the inclusion and 
the matrix in the space of the shear and hydrostatic components of the external stress field. This 
surface bounds the region in which the matrix phase is stable against transformation into the 
inclusion phase. As the equilibrium shape of the inclusion is varied in an external stress field, there 
is a line of special points on this surface which can be interpreted as phase transitions to the 
resulting phase inclusion ("morphological" phase transitions for the phase inclusion). We 
determine the thermodynamic hysteresis of the phase transition. 

INTRODUCTION 

As a rule, there is an elastic interaction between phases 
coexisting in a solid, caused by the differing crystal lattices 
and elastic properties of the phases in contact. The elastic 
fields are long-range, i.e., they extend from the interphase 
boundaries out to a distance on the order of the size of the 
surface of contact. The long range means that even for 
phases having macroscopic dimensions (when the surface 
energy can be neglected compared to the elastic energy), the 
equilibrium depends on the volume, shape and mutual posi- 
tions of the phase regions. This constitutes the principal pe- 
culiarity of equilibrium between phases in a solid compared 
to equilibrium in liquid or gaseous phases. 

In these investigations we will treat heterogeneous- 
phase ("heterophase") solids as continuous media, repre- 
sented by originally homogeneous crystals in which a certain 
part has undergone conversion to the other phase (Fig. 1 ) . If 
the connectivity of such a crystal is not disrupted, i.e., if 
there are no breaks in its continuity and plastic deformation 
has not taken place, then an internal stress field appears in 
the crystal as a result of compensation for the changes in 
volume and shape of the transformed local region relative to 
its original state. In the transformed phase there is no elastic 
strain other than the so-called intrinsic strain, which is char- 
acteristic of the phase transformation and determines the 
changes in structure and symmetry during the transition. It 
can be determined from the change in the dimensions and 
shape of the whole crystal after the latter has been complete- 
ly converted to the homogeneous new phase. This concept of 
an intrinsic strain is fundamental to the following exposi- 

of the crystal, within the linear theory of elasticity can be 
written in the form': 

Here, 2 is the in2rinsic strain of phase 2 relative to phase 1; 
f, =f,, + 1/26Sb is the free energy density of the deformed 
phase, where f,, is the density Lor the undefy-med phase; .2, 
and 2, are strains, where 2, = S,6 and 2, = S,8 + 2; - 2'8 
and - i.,d are the amounts of wzrk done against the stress 
field 8. The elastic compliances S, are taken to be indepen- 
dent of the stress 8. The potentials pi are normalized to unit 
volume. (Here and below we will use a notation without 
subscripts for theJensors and their contractions: 2. is a sec- 
ond-rank tensor, S is a fourth-rank tensor). 

The differential form of Eqs. (0.1) for equilibrium 
between the phases 

is a generalized Clausius-Clapeyron equation,' in which 

- 
Using the intrinsic strain, the conditions for equilibri- 

um between the phases in a homogeneous stress field G, FIG. 1 .  ( a )  Crystal before a phase transformation. ( b )  The phase trans- 
formation, characterized by an intrinsic strain .?, has occurred in the cross- 

which are expressed by equating the thermodynamic Poten- hatched region. ( c )  Internal stresses compensate for the mismatch in the 

tials of the original ( 9 ,  ) and final (9,) homogeneous states crystal lattices of the phases. 
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2(8)  is a renormalized intrinsic strain which includes a term 
connected with the differing deformabilities of the phases in 
addition to the intrinsic strain 8 connected with the phase 
transformation, which depends only on temperature. Tak- 
ing into account the temperature dependence of the left side 
of (0.2), i.e., dAf, = qdT/T, whereq is the latent heat ofthe 
transition, we can use Eq. (0.2) to construct the phase equi- 
librium surface T = T,, (&), which serves as a phase dia- 
gram in the space of tensor components of the stress i3 and 
temperature T. This surface separates regions in which one 
of the homogeneous phases is more stable than the other. 

From the continuum-mechanics point of view, a hetero- 
phase crystal is a medium in which there is a certain spatial 
distribution of the intrinsic strain. In what follows we will 
limit ourselves to heterophase systems in which the intrinsic 
strains and moduli of elasticity are constant throughout each 
of the phases. In this case, the interphase boundaries are 
sources of internal stress. Treating the energy of the hetero- 
phase system as a functional of the interphase boundary con- 
figuration, we can find the equilibrium conditions of the sys- 
tem; along with the conditions of mechanical equilibrium 
V8 = 0, they include equilibrium conditions related to dis- 
placement of the interphase boundaries. Formally, this con- 
dition, which should be fulfilled at each point of the inter- 
phase boundary, coincides with the condition of phase 
equilibrium (0.1 ), where by 3 we must now understand not 
the external stress but rather the local stress caused by all the 
internal and external sources, with the exception of the in- 
trinsic stress of the portion of the boundary under ~ t u d y . ~ . ~  

The solutions to the equilibrium equations describe the 
various heterophases of the structure, which are character- 
ized by definite spatial distributions of the phases under 
study. In order to investigate the initial stages of the trans- 
formation, it is sufficient to discuss a two-phase system con- 
sisting of a finite region of one phase (an inclusion) within 
an unbounded region of the other phase (the matrix). The 
boundary for stability of the matrix phase against a transi- 
tion to the inclusion phase (i.e., a transition which takes 
place with a gradual increase in the fraction of the trans- 
formed phase) is determined by the existence or nonexis- 
tence of an equilibrium macroscopic inclusion whose shape 
has the property of minimizing the elastic energy (we will 
call such an inclusion an " equilibrium" inclusion). In ( T,B) 
space, this stability boundary corresponds to a certain sur- 
face T = T,, (8) which we will refer to as the phase transfor- 
mation surface: reacing this surface is a necessary condition 
for the evolution of the phase transition. In a solid, this sur- 
face does not coincide with the phase equilibrium surface 
T = T,, (8) as a rule. The equation for the transformation 
surface is 

where e is the elastic energy of an equilibrium inclusion of 
phase 1 in phase 2, referred to unit volume of the latter 
phase. The surface for the inverse transformation, i.e., from 
phase 2 to phase 1, is described by an analogous equation: 

where - b(8)  is the intrinsic strain of phase 1 relative to 
phase 2, e' is the energy of an equilibrium inclusion of phase 1 
in phase 2; this inclusion can have a shape which differs 

FIG. 2 .  Cross-section of the phase transformation diagram in T - Bspace 
(o is one of the principal values of the tensor 8 ) .  Dashed line--equilibri- 
urn curve; solid line-phase transformation line. The shapes of the inclu- 
sions of the new phase are shown (the phase 2 region is crosshatched). 
The points where the morphological phase transitions occur are marked. 

considerably from an inclusion of phase 2 into phase 1 (Fig. 
2).  Therefore, the phase equilibrium surface is split into two 
phase transformation surfaces, between which there lies a 
region where the homogeneous phase is stable against the 
formation of inclusions of the other phase, and hence where 
nucleation of the latter is impossible. This region where the 
transformation is forbidden determines the thermodynamic 
hysteresis between the direct and inverse phase transforma- 
tions. 

Hence, the thermodynamic behavior of the initial 
stages of a first-order phase transition in a solid is deter- 
mined to a significant degree by the energies of the equilibri- 
um inclusions. 

Up until now, the problem of an equilibrium inclusion 
has been solved only for the case of phases with identical 
elastic moduli, for which the equilibrium inclusion has the 
shape of a thin  late.^.^ The natural parameter which charac- 
terizes the equilibrium inclusion is its orientation relative to 
the crystallographic axes of the phases; this parameter is de- 
termined primarily by the anisotropy of the intrinsic strain, 
that is the orientation of its principal axes, and the ratio of 
the spherical component to the shear components of the in- 
trinsic strain E. Including the elastic anisotropy of the phases 
does not fundamentally change the results obtained for an 
isotropic medium, and as a rule leads only to a lifting of the 
degeneracy in the case of an intrinsic strain of symmetrical 
form.6 

This allows us to assert that even in the general case in 
which the phases have different moduli a qualitatively cor- 
rect solution of the problem can be obtained, if we likewise 
do not include the elastic anisotropy of the phases. In this 
approximation, the problem of the shape and energy of an 
equilibrium inclusion is solved in Sec. 2 of this article. The 
result depends significantly on the ratios of the elastic modu- 
li of the phases. 

If the inclusion phase is more rigid than that the matrix 
phase, and there is a dilatational component present in the 
intrinsic strain, the equilibrium inclusion has the form of an 
ellipsoid. As the fraction of shear in the intrinsic strain in- 
creases, the ellipsoid degenerates into a plate or cylinder. If 
the rigidity of the inclusion phase is smaller than that of the 
matrix phase, the equilibrium inclusion is a plate. The char- 
acteristic feature of these elastic equilibrium shapes is homo- 
geneity of the elastic strain field inside the inclusion and the 
absence of dilatational components in the elastic field out- 
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side the inclusion. As a consequence of this, the Gibbs ther- 
modynamic potential is constant along the entire interphase 
surface. 

Once we have found the dependence of the energy of an 
equilibrium inclusion on the intrinsic strain, we can con- 
struct a phase transformation surface on the temperature- 
external stress diagram. Since the components of the intrin- 
sic strain depend on the external stress [see Eq. (0.2) 1, the 
shape and energy of the equilibrium inclusion are changed 
along the transformation surface. At certain values of the 
external parameters, this change can have a qualitative char- 
acter. Correspondingly, there appear anomalous features on 
the phase transformation surface, as if the phase which 
forms could be precipitated out in various states between 
which there are "morphological" phase transitions. ' 

Formally, the presence of anomalies on the phase trans- 
formation surface is explained by the fact that in the differ- 
ential equation for this surface, 

the term de/d& enters in; this term undergoes a discontin- 
uity, or a discontinuity in its derivative, at the boundary of 
the transition from one equilibrium phase to another. In 
analogous fashion, we can investigate the phase transforma- 
tion surface in a multicomponent system, where along with 
the external stress there is an additional parameter: the con- 
centration, which also changes the ratio between the hydro- 
static and shear components of the intrinsic strain. 

For the model under discussion here, we have succeed- 
ed in giving a full thermodynamic description of the initial 
stages of the phase transformation in a solid, and have solved 
the problem of thermodynamic hysteresis. As an example, 
we carry out this program in Sec. 3 for the case of a purely 
external stress. 

In addition to the assumption noted above, viz., that it 
is possible to neglect anisotropy in the elastic properties of 
the phases, the model we are investigating is based also on a 
series of other simplifications. Certain qualitative conse- 
quences which more complicated models lead to, in particu- 
lar the inclusion of relaxation of the internal stresses, are 
discussed in the Conclusion of the article. 

1. EQUILIBRIUM EQUATIONS FOR ELASTICALLY 
INTERACTING PHASES 

Let us discuss an isothermal system consisting of two 
phases with volumes V, and V,, separated by an interphase 
boundary S. Certain prescribed forces F, act on the external 
surface S' which bounds the system. The thermodynamic 
potential of the system is 

The local free energy densityfI depends on the local values of 
the order parameters: a nonconserved one 7 and a conserved 
one c (for example, the concentration of the second compo- 
nent in a two-component system), and also on the gradient 
of the displacement u, (V, --a /axk ) ; p  is a Lagrange multi- 
plier which takes into account the condition that the param- 

eter c be conserved. Equilibrium corresponds to vanishing of 
the variation of the functional ( 1.1 ) with respect to variation 
in the functions 7, c, and u,, and also with respect to arbitrar- 
ily small displacements of the interphase boundary Sx, : 

where 

S/Sa is the variational derivative; uiL = af/aVk ui is the 
stress tensor; [ a ]  = a, - a, ;  a,, a ,  are the values of the quan- 
tity a on the two sides of the phase boundary for phase 1 and 
phase 2, respectively; and n, is a vector normal either to the 
surface S or to S '. 

Equation ( 1.2) implies an equilibrium equation in the 
volume of each phase: 

and a boundary condition on the external surface 

The different phases correspond to different regions of defin- 
ition of the order parameters 7 and c. 

If the phase transformation proceeds without disrupt- 
ing the continuity of the media (i.e., [Su, ] = 0) and without 
plastic deformation (i.e., there is no slip at the interphase 
boundary, so [Sx, ] = O), then, because the variations Su, 
and Sx, are independent, setting the last integral in ( 1.2) to 
zero implies that on the boundary S 

As a consequence of the condition of compatibility of 
the strains at the boundary S, i.e., curl V, u, = 0, the jump in 
the gradient of the displacement can be represented in the 
form of a dyadic product 

where S, is an arbitrary vector. If we take Eq. (1.7) into 
account, this latter assertion implies that a vector enters into 
the left-hand side of Eq. ( 1.8) which is parallel to the normal 
ni. Consequently, the vector equation ( 1.8) is equivalent to 
a single scalar equation, which can be written in an invariant 
form which has no explicit dependence on the normal vec- 
tor: 

[f-p~]-1~2(o,!a'+oi(~' ) [Viuk]=O. (1.9) 

In our model (in which the interphase boundary is a 
geometric surface), V, u, undergoes a discontinuity on S, 
and Eq. ( 1.9) becomes the Weierstrass-Erdman condition 
for a broken extremal. 

Equations ( 1.3 )-( 1.5 ) for equilibrium in the volume of 
the phases and the interphase boundary equilibrium equa- 
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tion ( 1.9), together with the boundary conditions ( 1.6), 
( 1.7), fully determine the equilibrium of the two-phase sys- 
tem under discussion here. We note that Eq. (1.9) has a 
simple physical meaning: it asserts that the local thermody- 
namic potentials are equal on the interphase boundary. Ac- 
tually, uik = 1/2 (oik'l' + u , ~ ' ~ ' )  is the "external" stress 
with respect to the region of the boundary under study, be- 
cause we have excluded the self-action of this region from 
the summation. Therefore, f -pc - {o,) Viuk is the 
Gibbs potential of the near-boundary regions of the phases. 
Equation ( 1.9) is easily generalized to the case of other long- 
range fields which arise in heterophase bodies, e.g., electric 
and magnetic  field^.^ 

From here on, we will limit ourselves to the case in 
which only elastic fields are present in the system, and the 
phases are spatially homogeneous with regard to order pa- 
rameter and concentration. In particular, such heterophase 
systems arise during deformational phase transitions (e.g., 
ferroelastic or martensitic), where the strain components 
are the parameters of the transition. The simplest case is a 
polymorphic transition in a single-component system. For 
such a transition, to second order we have 

A 

Here, E~~ = 1/2 (Vk ui + Vi uk ), and Ci is the elastic modu- 
lus tensor for the ith phase. In keeping with the definition 
given in the Introduction, the intrinsic strain 2, of the ith 
phase is specified by the condition - 

(af/aC)Lil = Cr (2 - 61) = 09 (1.11) 

i.e., this is the strain acquired by the homogeneous phase as a 
result of variation of the order parameter within it when 
there are no stresses. If we assume that P I  = 0, while 2, = P is 
the intrinsic strain of phase 2 measured from the unstressed 
state of phase 1, then taking ( 1.10) into account we can 
transform Eq. ( 1.9) to the form 

The second form of Eq. ( 1.12) is obtained from the first by 
using an identity transformation and by introducing an 
equivalent intrinsic strain 

A A 

e*=e+ASbz, (1.13) 

which allows us to replace the system of phases under study, 
in which the phases have different elastic moduli, by an 
equivalent system of phases (in the mechanical and geomet- 
ric sense) with identical moduli, specifically those of phase 
1. The strain B* is defined by the system of equations 

A 

6 2- -e 2 ( 8 (Z)-E)=C,(g",-l*). (1.14) 

This replacement preserves the stress and strain invariants 
of the system (B'2' is the total strain in phase 2) .  

As we will show below, the boundary equilibrium equa- 
tion in the form ( l. 12) is extremely convenient for determin- 
ing the equilibrium shape of the inclusion: it allows us to 
easily "guess" the solution of the problem we are looking 
for. I '  

2. EQUILIBRIUM SHAPE OF AN INCLUSION IN AN 
ELASTICALLY ISOTROPIC MEDIUM 

Let us discuss two elastically-isotropic phases whose 
elastic moduli are different. The intrinsic strain of the trans- 

formation Z is given, and we will assume that the external 
stress b = 0. We will prove that for an isotropic elastic medi- 
um there exists a region of values of the components of the 
intrinsic strain 2 within which an ellipsoid is the equilibrium 
shape of an inclusion. 

We begin with the equilibrium equation for the inter- 
phase boundary in the form ( 1.12). An ellipsoidal inclusion 
differs from an inclusion of arbitrary shape in that the elastic 
field within such an inclusion is homogeneous (8, = const). 
The stress has a discontinuity at the interphase boundary S; 
in addition, the value of b, at a given point of this boundary 
depends on the direction of the normal to the surface S at 
that point.17 It is obvious that in this case Eq. ( 1.12) can be 
satisfied at all points on the surface S only if the slip reduces 
to zero: 

Then Eq. ( 1.12) is transformed to the relation 

which expresses the fact that the variation of the free energy 
as the volume of the inclusion is varied equals zero17 (com- 
pare with Eq. (0.3) for 8 = 0).  

In the elastically homogeneous isotropic medium 
which we are dealing with here, after the transformation to 
the equivalent strain, condition (2.1) is satisfied if P* is a 
pure dilatation, i.e., the stress outside the center of dilatation 
is a pure shear,17 and the slip b,2* reduces to zero at any 
point of the inclusion surface. 

The components of the tensor 2* depend on 2 and on the 
shape of the ellipsoid. Consequently, the problem consists of 
choosing the shape of the ellipsoid for a given tensor 2 so that 
the equivalent strain, which is the solution to Eq. ( 1.14), is a 
pure dilatation. 

In order to calculate the strain 2'*' inside the ellipsoidal 
inclusion which enters into Eq. (i. 14), we useJhe solution 
given by J. D. Eshelby17: P'2' = Yb*, where Y is a linear 
operator given in the system of coordinates connected wi$ 
the axes of the ellipsoid. The components of the matrix Y 
are expressed in terms of the integral 

which characterizes the shape of the ellipsoid: the values I, 
depend on the ratios of the semi-axes of the ellipsoid a, .  For 
I, = I, = I3 = 1/3, the shape of the inclusion is a sphere; for 
I, = 0, I,+, #O, the ellipsoid degenerates into an infinite el- 
liptic cylinder with axis along the ith axis; for I, = 0, 
Ij,, = 0, it becomes an infinite thin plate with its normal 
along the ith axis. A 

In calculatizg 9 e  matrix elements of y, we can show 
that for E* = E*E (E is the unit matrix), then 

where vi is the coefficient of the Poisson matrix. Substituting 
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Z',' into Eq. ( 1.14) and taking into a c c o u ~ t  the fact that the 
medium under investigation is isotropic (Ci are the isotropic 
moduli of elasticity), we obtain a system of equations for 
determining E* and I,. This system has a solution only when 
the principal axes of the ellipsoid coincide with the principal 
axes of the intrinsic strain 2: 

where y = p ,/p,, pi are the shear moduli, vi is the Poisson 
coefficient for the ith phase, E is the dilatation, 2, is the prin- 
cipal value of the deviator for the intrinsic strain Z, and con- 
sequently Z{= , x i  = 0. Eq. (2.5) proves the assertion we 
made earlier. (The problem of equilibrium of a nucleus in a 
melt, which was formulated in a way analogous to this, was 
solved in Ref. 18. However, the solution obtained there for 
an ellipsoidal inclusion corresponded not to a minimum but 
to a maximum in the elastic energy). 

The stress within an equilibrium ellipsoidal inclusion is 

where 

We note that only the purely dilatational part of the intrinsic 
strain is "responsible" for the pressure p,, while only the 
purely deviator part is "responsible" for the shear T,. 

The energy of the equilibrium ellipsoidal inclusion, 
measured relative to a unit of its volume, is 

In addition to the ellipsoidal inclusions under study 
here, Eq. (2.1 ), which is a necessary condition for equilibri- 
um, admits as solutions inclusions in the form of ellipsoids of 
degenerate form, i.e., thin plates or long elliptic cylinders 
(the end surfaces are not taken into account). We can show 
that for y > 1 (i.e., the inclusion is less rigid than the matrix) 
the optimal oriented film-shaped inclusion always corre- 
sponds to a smaller elastic energy (for a given inclusion vol- 
ume) than e,, . The equilibrium ellipsoidal inclusion is ener- 
getically favored only for values of y < 1. 

Let us investigate the solution (2.5) for y < 1. The in- 
equality 

determines the region in which an equilibrium ellipsoidal 
inclusion exists. In the coordinates x , ,  x, (x, 
= - ( x ,  + x,), where the x i  are the values of the intrinsic 

shear divided by the intrinsic dilatation) the solution to the 
system of inequalities (2.8) is the interior of a triangle ABC 
(Fig. 3) ,  whose vertices have coordinates A ( - a,  - a ) ,  
B(2a,  - a ) ,  C(  - a,2a), where a = (1  - y)/p .  As y-. 1, 
this triangle collapses to a point which coincides with the 
coordinate origin. 

Along the sides of AABC, one of the values I ,  vanishes 
and the ellipsoid degenerates into an infinite elliptic cylinder 
whose axis coincides with the direction of the ith principal 
axis of the intrinsic strain Z: I, = 0 on the side AC, I, = 0 on 
side AB, and I, = 0 on side CB. At  the vertices of AABC, the 
ellipsoid degenerates into a film ( I ,  = 1 ) whose normal co- 
incides with the direction i: I, = 1 at point B, I, = 1 at point 
C, I, = 1 at point A. 

Suppose now that the inclusion has the form of a long 
elliptic cylinder. We can show that condition (2.1) for equi- 
librium of the interphase boundary will be fulfilled if the axis 
of the cylinder coincides with one of the principal axes of the 

FIG. 3. Diagram of the morphological states for 
y i 1 ( y = 0.5, vZ = 0.25). The values of the elastic en- 
ergy in the regions of stability of the various equilibri- 
um states are shown: within the polygon BCDEF, 
marked with e::,), the stable shape of the equilibrium 
inclusion is an elliptic cylinder with its axis along the 3 
axis; in the polygon BFGH, this shape is a plate with 
normal n = ( 1,0,0, ), etc. The energy e/e,,  takes the fol- 
lowing values on the numbered isoenergetic lines: 1- 
0.9, 2-0.8, 3-0.5, 4-1.5, 5-0.2, 6-0. 
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intrinsic strain 2, while the equivalent strain 2* is tetragonal. 
Thus, if the axis of the cylinder is directed along axis 3 
(I, = O), the equivalent strain must have the form 

Now Eq. ( 1.14) is a system for finding the three un- 
knowns E ,  *, E ~ *  and, e.g., I , ,  

where E, are the principal values of the tensor 2. 
The elastic energy of this cylindrical inclusion, which is 

asymptotically in equilibrium, is 

( In  Ref. 19, the extrema of the function e,,, = e,,, (2) were 
studied for the special case E, = 0) .  If the axis of the cylinder 
coincides with some other principal axis of 2, the corre- 
sponding expressions for I, and e&'{ are obtained from 
(2. l o ) ,  (2.11 ) by a cyclic permutation of the subscripts. 

Just as for the case of triaxial ellipsoids, the equilibrium 
elliptic cylinders are energetically favored compared to the 
plate-shaped inclusions only for values y < 1. 

For each direction of the axis of the cylinder, inequality 
(2.8) specifies an angle in the plane (x,,x,) within which 
there exists a given solution. Thus, if the axis of the cylinder 
coincides with the 3 axis of the tensor 2, the angle is given by 
the straight line (see inset to Fig. 3 )  

On these straight lines the cylinder degenerates into a plate 
whose normal coincides either with the direction of the first 
(the line BF) or the second (the line CD) principal axis of 
the tensor 2. As y- I ,  the angle "collapses" and the lines 
reduce to the line x, = x , .  

Let us discuss inclusions in the form of flat plates. The 
equilibrium conditions (2.1 ) in this case are fulfilled identi- 
cally, because 8, -O."he elastic energy e of the inclusion 
depends on the orientation of the normal n to the plate rela- 
tive to the principal axes of the intrinsic strain 2. As a func- 
tion of the form of 2, the minimum is attainedh either for a 
plate oriented along one of the principal axes, when e = e, : 

or, when the plane of the plate is inclined and e = ej: 

(the values e,, e, and e;, e; are obtained by cyclic permuta- 

tion of the subscripts). 
Ellipsoids, elliptic cylinders and plates exhaust all the 

possible shapes of inclusions within which the elastic field is 
homogeneous. By comparing the elastic energies for these 
various equilibrium inclusion shapes, we can construct a dia- 
gram of the morphological states in the (x , ,  x,) plane, i.e., 
we can bound the regions of stability of the various equilibri- 
um shapes as the geometric characteristics of the transfor- 
mation change. 

The results of this analysis are shown in Fig. 3 for the 
case y < 1: the heavy lines separate the stability regions of the 
various equilibrium shapes. The figure was drawn using 
y = 0.5, Y ,  = 0.25, but the qualitative form of the diagram is 
preserved for other parameter values. 

Equilibrium ellipsoidal inclusions are possible only for 
the relatively small intrinsic shears in the regions bounded 
by AABC. Outside this region, as the intrinsic shears in- 
crease, the energetically-favored inclusions are either cylin- 
ders (the region in which these can occur adjoins the sides of 
AABC), or (near the vertices of AABC) plates whose nor- 
mals are directed along one of the principal axes of the in- 
trinsic strain. With further increase of the intrinsic shears, 
the equilibrium inclusion becomes a plate whose orientation 
depends on the value of x, . 

On the boundaries of the stability regions for the var- 
ious equilibrium shapes there are singularities of the deriva- 
tives of the function e = e(2) .  Thus, as we pass through the 
line EE, the orientation of the equilibrium plate changes 
discontinuously; for a transition through the line D E F  the 
equilibrium elliptic cylinder is replaced by an inclusion in 
the shape of an inclined plate. On these lines, the derivatives 
de/d2 undergo a discontinuity; on the remaining lines the 
second derivatives d 'e/dF2 are discontinuous. 

In Fig. 3, we use thin lines to denote contours of con- 
stant elastic energy of the equilibrium inclusions, i.e., 
e = e(x , ,  x,) = const, normalized to the value of energy 
e,, = ~ , L L , E ~ / ~  for X ,  = X, = 0. If the intrinsic strain is close 
to a pure dilatation, the intrinsic shear causes the system 
energy to decrease. This dependence on shear takes place in 
the region where the ellipsoidal inclusion exists and for 
plates oriented perpendicular to one of the principal axes of 
the intrinsic strain. The elastic energy decreases most rapid- 
ly as the shear x ,  approach the points E?, G and I,. From 
these points, lines extend (e.g., line 6 in Fig. 3 )  and pass into 
the region of stability for the inclined plates; along these lines 
the elastic energy of the system reduces to zero, i.e., the func- 
tion e (x , ,  x,) attains an absolute minimum. In the region of 
existence of equilibrium cylindrical inclusions the function 
e = e (x , ,  x?)  has a saddle point (line 2 of Fig. 3) .  

For y > 1 the plate is a natural candidate for the equilib- 
rium shape of an inclusion, where the orientation of the plate 
depends on the value of the relative intrinsic shears x ,  (Fig. 
4) : for small shear the plates are oriented perpendicular to 
one of the principal axes of the intrinsic strain, while as the 
shears increase it becomes energetically favorable to have 
inclined plates. The boundaries of the regions of stability for 
plates of various orientations do not depend on y, and are 
determined solely by the value of v,. On the sides of the 
polygon EGIE,G,12 the orientations of the plates change 
smoothly, while there is a jump on the radial lines, e.g., EE, 
and GG, . 

In Fig. 4 we have normalized the elastic energy 
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FIG. 4. Diagram of the morphological states for 
y > I. The notation is the same as for Fig. 3. The 
energy e/e,,  takes the following values on the num- 
bered isoenergetic lines: 1-0.9,2-0.8, 3-0.1,4- 
0, 5-2. 

e = e(x, ,  x 2 )  by the value e,, = 2p2( 1 + v2)t?/(1 - y2) for smoothly, although there is a discontinuity in d 'e/dx2. 
x ,  = x, = 0. As in the case y < 1, the function e = e (x , ,  x 2 )  For y > 1 the shape of the inclusion is a plate, which is 
has a maximum at the coordinate origin, and the position of asymptotically in equilibrium: 
the absolute minimum does not change (e  = 0, line 4 of Fig. ( 1 ) For x > ( 1 + v2)/ (2  - v,) or x < 1, the inclined 
4 ) .  The saddle points represented by the isoenergetic line 2 
are located on the boundaries of the stability region for 
plates oriented perpendicular to one of the principal axes of 
the intrinsic strain. e/ eo 

Let us now discuss the intersection of Figs. 3 and 4 with 
the line x ,  = x, = x (the tetragonal intrinsic strain). If ,/' 
y < 1, then for 

-(l-y)lrp<x<(l-y)/2rp 

the equilibrium shape of the inclusion is a biaxial ellipsoid. 
Outside this interval the following shapes are energetically 
favorable: 

( 1 )  If ( I  - y)/2px < x , ,  where 

J 7 
the favored shape is a circular cylinder with its axis along the 
third principal axis of the intrinsic strain; 

( 2 )  For - 1 < x  < - ( 1 - y)/p ,  the favored shape is a 3 

plate orthogonal to the 3 axis; 
( 3 )  If x < - 1 or x > x, , the film is oriented at an angle: ' " i 

I 

while one of the projections n ,  and n, equals zero (the two I 

equally acceptable orientations of the film). I 
I 

In Fig. 5a we show the energy e of an equilibrium inclu- I 1  - 
sion as a function of the tetragonality parameter x.  For - I 0 Icv ,  1 - x 

x = x, the derivative de/dx undergoes a jump, while for the 2-v, j,'! 

rest of the boundary points the function e = e ( x )  varies FIG. 5 .  
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FIG. 6 .  

plate is energetically favored (with two equally acceptable 
orientations); 

(2)  For 0 < x  < (1 + vZ)/(2  - v2), the plate is oriented 
normal to either the first or the second principal axis (two 
equally acceptable orientations); 

(3 )  For - 1 < x  <0,  the equilibrium plate normal is 
directed along the third principal axis. In Fig. 5b we show 
the function e = e(x)  for y > 1. The derivative de/dx under- 
goes a jump at x = 0. 

In Fig. 6 we show the region of existence of an equilibri- 
um ellipsoidal inclusion in the (y,x) plane for the case of a 
tetragonal intrinsic strain, and the relative stability of the 
near-equilibrium shapes (the plate and the cylinder). On the 
line AB ( x  = - ( 1 - y) /p )  the ellipsoidal inclusion trans- 
forms into a plate with its normal n along axis 3. On the line 
BC ( x  = ( 1 - y)/2p)  it transforms into a circular cylinder. 
On the lines AD ( x  = - I ) ,  BE ( x  = 0 ) ,  and FG 
(X = (1  + v2)/(2 - v2)) ,  there are changes in the relative 
stabilities of plates of various orientations. On the line HF 
( X  = X. ( y)  ), the energies of the inclined plate and the cylin- 
drical inclusion are equal. On line BF(y = 1) the cylinder 
transforms into a plate oriented normal either to axis 1 or 
axis 2. 

3. EQUILIBRIUM INCLUSIONS IN A HOMOGENEOUS 
EXTERNAL FIELD 

Let the phase transformgion proceed under the action 
of an external stress 6 = - p E  + 'i. The total stresses in the 
two-phase* system are conveniently expressed as sums: 
8, = 8 + 5 , ,  8, = 6 + 5,. The tildes denote the internal 
stresses which are responsible for the phase transformation. 
Let us rewrite the original equation for local equilibrium 
(1.12) in the form 

Acp ( 8 )  - i / z ~ 2 ~ ( 6 ) - ' / 2 ~ , ~ * ( 6 ) = ~ ,  
A 

Acp ( 6 )  = A f o - 6 ~ - ' l z 6 A S 6 ,  (3.1) 
( 8 )  = E ~ + A s ~ .  2 ' ( 6 )  =;(a)   AS^^. 

Here, i ( 6 )  is the intrinsic strain as a function of the external 
stresses, and i.* (G) is the equivalent strain corresponding to 
it. The stresses 5 , ,  5, are calculated with respect to i(8) as if 
the external stresses were absent. Comparing (3.1) and 
( 1.12), we see that the introduction of the external stresses 
reduces' to a renormalization of 2 and to the replacement of 
Af, by A p ( 8 ) ,  which implies that all the conclusions of sec- 
tion 2 are still valid. 

From this it is immediately clear that the external shear 
does not change the value of the shear stresses in an equilibri- 
um ellipsoidal inclusion, and that such an inclusion does not 
interact with external shear. Actually, according to (2.6) 
and (2.7) we have 

f2 = 2 + i2, q2 = 2plE (6) / ( l  - y). 
Since S ( 6 )  = S - ( 1 - y)'i/2pI, the shear .i, = 2p,Z/ 
( 1 - y)  does not depend on 'i. The pressure in the inclusion 
is renormalized only because of the external pressure p: 

where Ki  is the modulus of hydrostatic compression. The 
change in the thermodynamic potential 6<P for such a two- 
phase system relative to the single-phase state also is inde- 
pendent of 'i: 

6 0  9 - = Af, + T A K ~ 2  + A p 2  v 

in which Vis the volume of the inclusion. Consequently, the 
"fine adjustment" of the shape of the inclusion which en- 
sures a minimum in the thermodynamic potential gives rise 
to an "expulsion" of the external shear field from the region 
occupied by the ellipsoidal inclusion. 

Let us construct the surface of the equilibrium phases 
(0.1 ) and the surfaces (0.3) and (0.4) for the direct ( 1-2) 
and inverse (2  - 1 ) transformations. In the approximation 
of linear elasticity theory this surface is one of second order 
whose specific form depends on the ratio of the elastic modu- 
li of the phases. 

The equation of the equilibrium surface Ap = 0 can be 
rewritten as a quadratic form in the components of the total 
intrinsic strain 

Then we obtain 

where T, is the transition temperature for the non-interact- 
ing unstressed phases. Eq. (3.3) approximates the actual 
phase equilibrium surface. The limits of the approximation 
are determined by the requirement that the stresses and 
strains in the system be small. 

For AK and Ap the same sign, Eq. (3.3) has a solution 
only if the sign of the parameter ?r coincides with the sign of 
AK and Ap. In this case, the transformation can only take 
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place starting with a certain critical temperature T. 
( x ( T ,  ) = 0 ) ;  the sign of the difference T,, - To ( T,, 
= T,, ( 8 )  is the phase equilibrium temperature) is deter- 

mined unambiguously. If the signs of AK and Ap are differ- 
ent, a solution to Eq. ( 3 . 3 )  exists for arbitrary signs ofx.  The 
equilibrium temperature T,, can be either larger or smaller 
than To, depending on the form of the external stresses 8. 

Let us analyze the following example: let the intrinsic 
strain be tetragonal: 

In the coordinate system ( T, ~ ( p ) ,  E ( r )  ) the phase equilibri- 
um surface is an elliptic paraboloid, within which the homo- 
geneously stressed phase 2 is stable. In  order to construct the 
transformation surface, we note that for a given form of;(&) 
the tetragonality parameter x = E ( r ) / ~ ( p ) .  Various inter- 
vals of x correspond to regions of stability for different equi- 
librium shapes of the inclusions. Sectors in the plane ( ~ ( p ) ,  
E(T) ) are associated with these intervals; these sectors are 
formed by straight lines which pass through the coordinate 
origin. To each of these sectors there corresponds a specific 
dependence of the elastic energy on the components of the 
intrinsic strain. Therefore, although qualitatively the phase 
transformation surfaces 1 - 2 and 2 - 1 replicate the phase 
equilibrium surface, they are only piecewise-smooth sur- 
faces. We note that forx  = - 1 the thermodynamic hystere- 
sis reduces to zero [e(x  = - 1 ) = 0 both for the direct and 
for the inverse transition]. This implies that the transforma- 
tion surfaces, direct and inverse, are tangent to the equilibri- 
um surface along their lines of intersection with the plane 
~ ( p )  + E(r )  = 0. 

The phase equilibrium surfaces and the phase transfor- 
mation surfaces we have constructed allow us to explain the 
observed effect of shear stresses on the hysteresis of the 
phase transformation under pressure. In the case of large 
shear components in the intrinsic strain, the action of exter- 
nal shear can turn out to be very significant (because of the 
linear term'2' .ii. which enters into the expression for 
Ap(8)  ). Here, the high pressure plays an auxiliary role, hin- 
dering fracture under the action of the shear stresses. 

To illustrate this, let us discuss the intersection of these 
surfaces with the plane T = const. The solid line in the plane 
( ~ ( p ) ,  E(7))  shown in Fig. 7 is a phase equilibrium line; the 
phase transformation lines 1 - 2 and 2 - 1 are shown by the 

dashed and dotted-dashed lines, respectively. Let the intrin- 
sic strain E be represented by the point A. In the framework 
of this model, we can choose to use only the portions of the 
curves close to the point A in describing the transformation. 
The straight line E(T) = E which passes through the point A,  
by intersecting the equilibrium and transformation lines, de- 
termines the value o f ~ ( p ) ,  and consequently the equilibrium 
pressure p,, along with the direct and inverse transforma- 
tion pressuresp,,, andp,-, at  r = 0. The thermodynamic 
hysteresis of the transformation is proportional to the dis- 
tance between the points ~ ( p , , ~  ) and &(p2,, ) .  In our ex- 
ample, for r = 0 the shape of the equilibrium inclusion for 
the transition 1 - 2 is an ellipsoid, while for the inverse trans- 
formation 2 + 1 it is a plate with a normal n = (0,0,1). If 
T # 0, the corresponding pressures are obtained from the in- 
tersections of the planes in the figure with the lines 
E(T) = const. As long as the external shear does not shift the 
point of intersection of the straight line d ( r )  = const. with 
the 1 -* 2 transformation line from the sector corresponding 
to an equilibrium ellipsoid, the pressurep, _, is independent 
of the external stress. However, the pressures p,, and p2-, 
change as r varies; for E # 0, depending on the sign of 7, this 
change can lead both to smaller [the straight line E(T) = 2, 
in Fig. 71 and larger ( the straight l ineE(r)  = 2,) hysteresis. 

CONCLUSION 

The thermodynamic analysis presented here is based on 
investigation of an isolated inclusion and, strictly speaking, 
pertains only to the initial stages of the phase transforma- 
tion, when the fraction of the phase in the inclusion is vanish- 
ingly small. However, if the formation of an equilibrium in- 
clusion is thermodynamically favored, then because such an 
inclusion causes a pure shear field in the matrix while the 
shear stresses do not interact with the inclusion, the conclu- 
sions arrived at here are valid up to those stages of the trans- 
formation when the spacing between inclusions becomes 
comparable to their sizes. These structural states are often 
observed in experiment and are used in practice. 

In comparing the conclusions obtained here about the 
thermodynamics of the transformation and equilibrium 
shape of the inclusion with the actual data, it is necessary to 
keep in mind the assumptions which are contained in the 
computational model, and which limit the sphere of its ap- 
plicability. The first assumption, which prevents us from ob- 

FIG. 7. Intersection of the phase equilibrium and 
phase transformation surfaces with the plane 
T = const. Sectors corresponding to regions of stabil- 
ity of the various equilibrium shapes are marked. 

fl; (I; 
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taining an exact description of the transformation process, is 
that the phases are elastically isotropic. I t  is possible to show 
that the fundamental conclusions concerning the equilibri- 
um inclusion remain valid when the anisotropy of the inclu- 
sion phase is included; however, we have not succeeded in 
estimating the role of anisotropy of the matrix. Apparently, 
in the case where the elastic anisotropy is not very large, the 
isotropic approximation gives a satisfactory description of 
real systems. Test of the continuum theory of defects persua- 
sively confirm these intuitive considerations. 

In addition to the assumptions about elastic isotropy, 
which, as with application of the linear theory of elasticity, 
basically affect the quantitative results of the theory, the 
computational model is based on a number of physical as- 
sumptions whose failure can qualitatively change the pic- 
ture. It is assumed that in the heterophase system no pro- 
cesses occur which decrease the energy of the internal 
stresses except for shifts in the interphase boundary. Along 
with these processes there can be division of the phases into 
elastic domains, plastic deformation and redistribution of 
the order parameters or concentration. Let us discuss the 
possible roles of these processes in the thermodynamics of 
the transformation. 

Elastic domains: in those cases when the phase transi- 
tion is accompanied by lowering of the symmetry, the new 
phase appears at  various oriented positions relative to the 
original phase, forming structural domains. These domains 
can also act as elastic domains, lowering the elastic interac- 
tion energy of the phase because of the variation of the mean 
intrinsic s t r a h 2 '  As a result, a polydomain phase forms in 
which the relative fraction of domains of various kinds is 
determined by the minimum of the free energy of the hetero- 

interphase surface energy. This makes removal of the elastic 
stresses by plastic deformation thermodynamically unfavor- 
able for inclusions of small size. In  addition, plastic deforma- 
tion will be kinematically forbidden if the plastic yields of the 
phases are sufficiently high. 

Redistribution of concentration and orderparameter: in 
our calculations we assumed that the intrinsic strain is an 
invariant characteristic of the phase transition. However, by 
virtue of the homogeneity of the elastic field in the inclusion, 
it is not difficult to include a possible change in the order 
parameter or concentration within the inclusion, and to find 
the corresponding equilibrium values of these quantities 
along with the intrinsic strains corresponding to them. 

I t  is more difficult to include a redistribution of the or- 
der parameters or concentrations in the matrix, where the 
elastic field is inhomogeneous. However, in many cases 
which are important for applications it is not necessary to do 
this. In  particular, the shear field in the matrix does not re- 
sult in redistribution of the centers of dilatation, which are 
usually assumed to be impurity atoms in a solid solution. If 
the symmetric phase serves as the matrix and the intrinsic 
strain depends quadratically on the order parameter, then in 
this case the matrix remains homogeneous since the elastic 
stresses do not affect the equilibrium zero value of the order 
parameter. Thus, the model investigated in this article al- 
lows us to give a thermodynamic description of a wide range 
of first-order phase transformations in solids. 

- ~ 

phase 'ystem' For an in a polydomain phase, the "The equilibrium equations obtained here agree with those of Refs. 2, 3; 
results we have obtained must be modified to take into ac- however, it should be noted that in various forms these equations have 
count the fact that the mean intrinsic strain depends on the been obtained by several different authors (Refs. 5,7-16). Theseauthors 

volume fractions of the various domains. H ~ ~ ~ ~ ~ ~ ,  in a paid no attention to the equivalence of the results they obtained in linear 
approximation. 

number of cases the single-domain phase, of the sort we have "In Ref. 20 the authors discussed only the dilatational components of?.  
assumed in our calculations, is selected out: first of all, if the Then the influence of shear reduces to quadratic corrections and is deter- 

phase transition is not accompaniedby a lowering ofsymme- mined by the difference in elastic moduli of the phases. 
- - 

try; secondly, when the formation of domains leads to a de- 
crease in the shear components in the intrinsic strain. Thus, 
if the dilatational components predominate in the intrinsic 
strain (in particular if the equilibrium shape of the single- 
domain inclusion is an ellipsoid) the division into domains 
must lead to an increase in the relative fraction of these com- 
ponents, and to an increase in the elastic energy. In this case, 
the formation of domains is not thermodynamically favored, 
and the structural domains cannot be elastic domains. 
Thirdly, separation into domains is connected with the ap- 
pearance of additional stresses at the interphase boundary 
and with a cost in energy for the formation of domain boun- 
daries. This leads to an increase in the effective surface ener- 
gy of the interphase boundary. Correspondingly, the energy 
barrier grows for nucleating the polydomain phase; there- 
fore, the beginning of the phase transformation is deter- 
mined by the equilibrium of the matrix with a single-domain 
inclusion: the new phase nucleates in the single-domain 
state, and only enters into the polydomain state as a result of 
the growth process. 

Plastic deformation: plastic deformation is a universal 
mechanism for lowering internal stresses. However, as with 
domain formation, it leads to an increase in the effective 
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