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As the line of the (first- or second-order) transition between ordered phases is approached, there 
is an inevitable lowering of the symmetry within the domain wall. In the cases considered, this 
symmetry lowering occurs by a second-order phase transition. Calculations are carried out for 
examples of a reordering governed by the second component of a multicomponent order 
parameter. The Landau potential for describing phase transitions in a domain wall is calculated. 
The regions in which high- and low-symmetry domain walls exist on the phase diagram are 
determined. The line of phase transitions between different domain-wall structures is found for a 
three-component order parameter. 

If the width of a domain wall is substantially greater 
than the interatomic distances, the wall can be characterized 
by the symmetry of small but macroscopic regions of the 
crystal inside the wall. The symmetry of a domain wall is 
determined by geometric and energy considerations. This is 
an important point, since when ordering describable by a 
multicomponent order parameter (or by several order pa- 
rameters) occurs, the configuration of the distribution of 
this parameter in the interior of neighboring domains always 
permits several possible configurations of the order param- 
eter in the domain wall. A change in the conditions at the 
reservoir may cause a change in structure and thus in the 
symmetry of a domain wall, without any change in the struc- 
ture of the domains. A change of this sort in the symmetry of 
a domain wall occurs as a phase transition in the wall. 

A temperature-induced phase transition in a domain 
wall was first observed' in DyFeO,. A transition induced by 
an external magnetic field in a domain wall has been ob- 
served in CuC1,.2H20 (Ref. 2)  and (C2H,NH,)2CuC14 
(Ref. 3 ) . 

A classification of domain walls by symmetry class 
which was proposed by Bar'yakhtar et u I . ~  was used by Bog- 
danov et U Z . ~  to construct a theory for phase transitions in a 
domain wall. By taking the approach of Ref. 4, Bogdanov et 
UZ.~ were able to predict the possibility of phase transitions in 
domain walls. Furthermore, it can be established on the ba- 
sis of the classification of Ref. 4 that a transition between 
certain symmetry classes of domain walls cannot go as a 
second-order transition. 

To evaluate the field which causes a phase transition 
within a domain wall, Bogdanov et equated the energies 
of walls of different symmetries, which depend on the exter- 
nal field. The field dependence of the wall energy was calcu- 
lated far from the transition field in Refs. 2 and 3. If the 
phase transition in a wall occurs as a second-order phase 
transition (or as a first-order transition which is approxi- 
mately a second-order transition), however, the dependence 
of the order parameter on the coordinates within the wall 
will depend strongly on the external conditions near the 
transition, as we will show below, so the field dependence of 
the wall energy will also change. The approach of Refs. 2 and 
3 will therefore be inappropriate for determining the point of 
the transition, for calculating the temperature dependence 
of the order parameter within the wall, and for calculating 

the singularities in the thermodynamic quantities upon the 
transition. 

Galkina et U I . ~  have found the temperature of the sec- 
ond-order transitions in a domain wall for the case of two 
interacting order parameters as a branch point of the equa- 
tions of state. They also gave a general form of the branched 
solution for this case. A determination of the temperature 
dependence of the amplitude of the solution describing a 
phase transition, the anomalies during the transition, the 
order in which the phases occur on the phase diagram, and 
the type of transition between the phases of a domain wall, 
however, requires the construction of a Landau potential for 
this transition. 

In this paper we analyze the branching of the solutions 
of the equations of state corresponding to a phase transition 
in a domain wall for the case in which the order parameter 
describing the transition in the crystal is a multicomponent 
parameter. We also find the symmetry and the structure as 
well as the conditions for the stability of walls of different 
symmetries. We show that the wall structures which are al- 
lowed are dictated by the initial Landau potential describing 
the transitions in the crystal. 

1. PHASETRANSITION IN A DOMAIN WALL WHEN 
ORDERING DESCRIBABLE BY ATWO-COMPONENT ORDER 
PARAMETER OCCURS 

Formally, the only difference between a description of a 
transition in a domain wall in the case of a multicomponent 
order parameter and that in the case of several order param- 
eters' is that there are relations among the coefficients of the 
potential, which are determined by the symmetry of the or- 
der parameter. This difference, however, leads to qualitative 
differences in the solutions. Let us consider the very simple 
Landau potential which describes transitions induced by a 
two-component order parameter (v, ,  v2):  

m 

where = av/qz, and S is  the area of the domain wall. This 
potential corresponds to the situation that there are three 
second-order operations among the symmetry operations of 
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FIG. 1. Phase diagram for potential ( 1 ). The region a ,  < 0, y,  >&-phase 
I1 ( T ) ,  #O, T)? = 0) ;  the region a ,  < 0, y ,  < 0-phase 111 (7, = T)>#O); 
hatched regions--domain wall of symmetry C , .  1 ) Line of transition in a 
wall in phase 11, ( 16); 2 )  line of a transition in a wall in phase 111, ( 17). 

the high-symmetry phase of the crystal: 

The order parameter satisfies the Lifshitz condition. 
The potential ( 1 ) can be used to study a transition from 

the high-symmetry phase I (7, = 77, = 0), which is stable at 
a, >O, to low-symmetry phases I1 (vI#O, 77, = 0; a, <0, 
yl>O) and I11 (v l  =T~$O;  a l<O,  yI<O) (Fig. 1). As- 
suming a,, a,, y, > 0, we will consider only the second-order 
transitions I + I1 and I - 111. 

The factors which make it necessary to retain the terms 
of sixth degree in the order parameter in ( 1 ) for a descrip- 
tion of the transition in a domain wall will be discussed be- 
low. 

In the space E, of the components of the order param- 
eter, the high-symmetry phase I has symmetry C,, . Phases 
I1 and I11 have the same symmetry, C, . Any pair of possible 
domains of the phases (I1 and 111) corresponds to a domain 
wall, whose symmetry in the space E, may be either C, or C,. 

The equations of state which follow from ( 1 ) , 

make it possible to describe a domain wall with either C, or 
C, symmetry. In phase 11, the distribution of the order pa- 
rameter in a wall of symmetry C, (a  Zhirnov wall6) is de- 
scribed by the solution7 

where 

In the region close to the line of second-order transitions, the 
quantity 

is a small parameter. To first order in E, a solution of ( 3 )  is 

where 

wall, a solution of the equations of state describing a Zhirnov 
wall is antisymmetric under the substitution t- - t; i.e., it 
disrupts the symmetry of potential ( 1) [the Lifshitz condi- 
tion can ke written as the requirement that the symmetry 
operator G,(r],, 77,, t)  = (q,,  r],, - t)  exist in the high-sym- 
metry phase of the crystal8]. 

According to the classification of Ref. 4, branching so- 
lutions may in principle have both symmetric and antisym- 
metric parts. We show below that for (1 ) the solution 7, is 
always antisymmetric, while 77, is symmetric, under the sub- 
stitution t+ - t. 

We now consider the case in which a solution of symme- 
try C, branches off from (5)  : 

qi=qo (t) +u (t), q,=v(t), u(* w )  = v  (f w )  =0. 

The equations for u ( t )  and v ( t )  are 

= 4 x u v t h t { 3 + e [ F -  (2p+1)ch-2 t ] }  

+ 2x2v3{1+~ [ (2p-1) -2p ch-2 t]}, ( 7 )  

where 

As soon as y becomes equal to the first eigenvalue of the 
equation 

a nonzero solution branches off from the solution u = v = 0 
of Eqs. ( 6 )  and (7 )  (Ref. 9) .  

The branching condition is, to first order in E, 

and the leading term of the solution should be sought in the 
form9 

where 6 is to be determined, and 

$ ( t )  = ~ h - ~ t { i - ( ~ / 7 )  [(p+Z)ch-'t+2(~-5)1n ch t]) (1 1) 

is the eigenfunction of Eq. (8 )  which corresponds to A,. 
Equation (8) has the unique solution ( 1 1 ), which satisfies 
the boundary conditions which have been imposed. This so- 
lution is symmetric under the substitution t -  - t. 

The leading term for u( t )  is found from ( 10) and (6)  to 
be 

If we place the origin of coordinates at the center of the where u ,  ( t )  satisfies the equation 
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The calculation of the Landau potential for a transition 
in a domain wall is described in the Appendix. As a result we 
have 

wherep = y =yo is the displacement from the branch point, 
and 

Minimizing ( 14) with respect to 6, we find the equation of 
state t2 = 0,p)O (a domain wall of symmetry C, ): 

147 uz 

L'= -Ti- u3(p -5 )  P7 P<O (wall of symmetry C, 1 . 

(15) 

The correction to the surface energy of the wall in phase 
I1 is thus 

Assuming p = b ( T - T, ), we find the jump in the heat ca- 
pacity associated with the phase transition in the wall: 

An equation for the line defining the region in which the 
walls of different symmetries exist on the phase diagram fol- 
lows from (9) .  This equation is (Fig. 1 ) 

It is easy to see that the problem of the transition in a 
wall in phase I11 through a 45" rotation in the space E, re- 
duces to the problem discussed above. In this case we need to 
replace a, by a, + y,, y, and y, by - 2y, and 2y,, and a, by 
a, + 3 y2/2 in Eqs. (5  ) - ( 16 ) . The equation of the branching 
line takes the form 

The coefficient of l4 in (14) is proportional to a,, the 
coefficient of (7: + 7; + 73)3 in ( 1 ). In order to describe a 
second-order transition in a wall we thus need to retain 
terms of sixth order in the Landau potential describing tran- 
sitions in the volume of the crystal. The coefficient of is 
equal to zero in the case a, = 0 because of the symmetry of 
the functional ( 1 ) . 

2. GENERALIZATION TOTHE CASEOF A MULTICOMPONENT 
ORDER PARAMETER 

If the change in the symmetry in the interior is de- 
scribed by an m-component order parameter (m > 2 ) ,  the 
symmetry of the wall far from the line of transitions between 
phases will be described by the multidimensional groups 2 
in Em (Refs. 10 and 1 1 ). In the space Em we can carry out a 
symmetry classification of domain walls similar to that 
which was carried out in Ref. 4. We find that domain walls 

whose symmetry groups are not subgroups of each other are 
possible. Only first-order transitions can occur between such 
domain walls. Also possible are phase transitions for which 
walls of high symmetry become unstable. Under various ex- 
ternal conditions (in different parts of the phase diagram), 
different types of low-symmetry walls will arise. The phase 
diagrams may thus have triple points or even N-phase points 
of transitions among several types of walls. 

To illustrate the arguments we consider the particular 
case in which a transition in the interior of a crystal is de- 
scribed by a three-component order parameter. lo Taking ac- 
count of only plane domain walls, oriented perpendicular to 
one of the crystal axes, which are possible in a crystal, we 
write the Landau potential as 

m 

1 1 
F = J { - ( f ,* '+q2~+q:)  +- u1 (T,,'+T,:+q:) 

- m  
2 2 

This potential can describe three one-parameter, low-sym- 
metry phases. lo.'' One of them has symmetry C,,  in E,, with 
q1 = 77, = 0 and q 3 # 0  This phase is thermodynamically 
stable in the space (a ,y,) ,  where a,  < 0 for y, > 0 and 

(Fig. 2).  In the phase of symmetry C, , ,  various types of 
symmetries are possible for domain walls., The highest-sym- 
metry walls have symmetry C,, in E, and the structure of 
Zhirnov walls. Domain walls also arise between (7700) and 

FIG. 2. Phase diagram in the (a,, y , )  plane corresponding to ( 1 8 ) .  1, 2, 
3-stability boundaries of phases whose symmetries are described by 
vI  = v2 = v3; T i  = v2, v3 = 0; vl  = v2 = 0, v3#0, respectively. I )  Sta- 
bility region of high-symmetry domain walls; 11,111) stability regions of 
walls whose symmetry is determined by { ,#O,  {, = 0 and = g2#O, 
respectively. 
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( - 700) domains. However, there is a region on the phase 
diagram in which high-symmetry domain walls between 
such domains are absolutely unstable. To determine these 
regions, we consider a branching off, from the solution of the 
equations of state which describes a Zhirnov wall, 
77, = pO(t),  77, = 77, = 0, of a solution of a more general 
type, 77, = po(t)  + u(t) ,  77, = v(t), 77, = w(t), under the 
condition u( + co)  = u (  f a,) = w (  f co)  = 0. 

The linearized equations for determining u, v, and w are 

It can be seen from ( 19) that the equations for v, w branch at 
the same values ofy as in (7).  The solutions which branch off 
are9 

where $(t) is defined in ( 11). By analogy with ( 14), we find 
a Landau potential which describes transitions in the do- 
main wall in this case: 

The sign of the last term determines the particular 
structureofthedomain wall. I fa ,  < 9y,a2/(y2 + y,), thena 
domain-wall structure between (77, 0, 0 )  and ( - 77, 0, 0 )  
domains is stable; in a first approximation in 6, this structure 
isofthe form (po(t),6$(t),  0) whilein thecasea, > 9y,a,/ 
(y2 + y,) the wall structure is of the form (po(t) ,  {$(t), 
C$(t)). 

If 5.75a3 > y2 > 4a3, then the coordinates of the point T 
at which the line a, = 9y,a2/(y, + y,) intersects the 
branching line ( 16 ) are 

FIG. 3. Transition from a change in only the magnitude of 
the order parameter in a domain wall (a) to simultaneous 
changes in the magnitude and the rotation ( b ) .  

For other values of y,, these lines do not intersect, and there 
is no point T i n  the (a,, y,) plane. We are left with only 
regions of stability of all types of domain walls. The coordi- 
nates of the point T given in (22) obviously go outside the 
region in which it is legitimate to use the approximation 
E &  1, which we have used here. Consequently, the results in 
(22) are only qualitative. Figure 2 shows the complete phase 
diagram corresponding to ( 18). The regions of stability of 
the various types of walls between ( ~ , 0 , 0 )  and ( - 7, 0,O) 
domains are shown. Walls in which we have 6, #O, 6, = 0 
and walls in which we have 6, = 6, $0 have symmetry C, in 
the space E,, and their symmetry groups are not related by a 
group-subgroup relation. Consequently, a transition 
between such walls is always of first order. The line on which 
they lose their stability in Fig. 2 coincides with the line on 
which their energies are equal only because we limited the 
calculation of potential (21) to fourth degree in 6, and g, 
(Ref. 11). 

3. DISCUSSION 

These calculations thus show that as the conditions in 
the reservoir approach the conditions corresponding to an 
order-order transition in the interior of a crystal there will 
inevitably be a phase transition in domain walls which in- 
volves a lowering of the symmetry of the walls. In the space 
of the components at the order parameter, E m ,  the transition 
from the highest-symmetry wall to a low-symmetry wall is a 
transition from a wall in which the order parameter varies 
only in magnitude (Fig. 3a) to a wall in which the change in 
magnitude is accompanied by a rotation of the order param- 
eter (Fig. 3b). For ferromagnets, if we allow for the relative 
magnitudes of the anisotropic and exchange terms in F, we 
see that we have p - 5 = y,/a, - 4 < 0, and this transition 
can occur only as a first-order transition in a domain wall. 

Finally, we note that the branching of the solutions of 
the equations of state of a domain wall which we have stud- 
ied here makes it possible to describe a possible new type of 
defects of domain walls in a region of the phase diagram with 
6 #O. This type of planar wall defect takes the form of lines 
which separate regions of the wall in which the relations 
6 = + go hold, e.g., far from this line. Along the centers of 
these lines the symmetry of the wall is higher than in the 
neighboring regions, in total analogy with the circumstance 
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that the symmetry at the center of a Zhirnov domain wall 
corresponds to a high-symmetry phase of a crystal. The na- 
ture of the transition from g = + go to g = - lo on the 
straight sections of these lines is described by the potentials 
( 14) and (2 1 ) , supplemented with gradient (along x )  
terms. The potential ( 14) leads to the antisymmetric (in x) 
change 6 = l ( x )  [the solution of the equation of state for 
{(x) is similar to (5) 1. In the case of an m-component order 
parameter (m > 2), we find obvious possibilities of a more 
complex structure of domain-wall defects of a new type, de- 
scribed by a solution of type (5) ,  ( 14). In other words, both 
symmetric and antisymmetric components 6, (x)  
(i = 1 ... m - 1 ) are possible on these lines. 

APPENDIX: CALCULATION OFTHE LANDAU POTENTIAL 
DESCRIBING ATRANSITION IN A DOMAIN WALL 

After the substitution 7, = po + u, 7, = v and a renor- 
malization of the coordinates, functional ( 1 ) becomes 

+[2 -3  ch-2 t-e ( 6  ch-"-7 ch-' t )  ] u ~ + ( ~ -  ( y + l ) ~ h - ~  t  

+R, ( I )  UV'+R, ( t )  v4}dt ,  

where 

1 a ,  ~ , ( t ) = - - ( I + & [  ( 2 p - l ) - 2 p ~ h - ~  t l )  
2 la11 

and F(po) is the free energy corresponding to a Zhirnov 
domain wall. We will omit this term below. 

We set y =yo + p, integrate the terms with uI2 and v" 
by parts, and use Eqs. ( 6)  and (7  ) . We easily see that in this 
case the coefficient off is 

S ( ) ' { $ R, ( t )  zzu2+RZ ( t )  v') dt. 
- - 

The calculation of the second term in this integral is carried 
out by substituting expressions ( 10) and ( 11 ) directly into 
this expression. In the evaluation of the first term, on the 
other hand, we run into the complication that we do not have 
an explicit expression for u,. A solution of ( 13) does exist, 
however, since we have (@(t ) ,  $( t)  ) = 0 by virtue of the 
odd parity of @(t ) .  Here @ ( t )  is the right side of (13), and 

is the scalar product in k2 ( - co , co ) . The solution of^( 13) is 
thus of the form u, = r @ ( t ) ,  where the o p e r a t o ~ r  is the 
inverse of the contraction of the operator Lo = a* /  
J t  - 2(2-3~h-~t ) .  

In first order in E,  U ,  appears only in the integral 

Making use of the Hermitian nature of ?, we find 

A direct calculation verifies 

and the evaluation of integral J can be completed. 
Finally, we find expression ( 14) for the Landau poten- 

tial describing a transition in a domain wall. 
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