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Solutions of the equations of the low-frequency spin dynamics of the superfluid B phase of 3He are 
analyzed which describe a steady-state flow of a spin current superposed on the spin precession in 
a magnetic field. The maximum spin current and the critical phase gradient at which it decays are 
found. A steady-state solution describing a spin vortex is also analyzed. 

1. GENERAL RELATIONS $,, = b'$/b'x,, etc. A summation is to be understood over 

Equations describing the low-frequency dynamics of a the index k, which takes on the values 1, 2. The double sign 
arises in the definition of p, ,  as a result of the elimination spin superposed on its precession in a magnetic field H, were 
from the expression for Fv of the third angle @, which is constructed for the superfluid B phase of 3He in Ref. 1. This 

is a Hamiltonian system for the two conjugate variables $ related to u by' 

and u = cos fl: u+(lSu)  cos @='I2. (4 )  

The angles $ and fl determine the orientation of the spin S 
with respect to a coordinate system which is rotating around 
H, at the precession frequency a,. The angle is the longi- 
tude, andp is the latitude, for which the origin of the scale is 
placed at - H,. Under conditions such that Eqs. ( 1) are 
applicable, fl varies over the range 0 <fl  < arccos( - 1/4). 
The Hamiltonian V is 

where w, is the Larmor frequency corresponding to the field 
H,, and Fv is a "gradient energy" which depends on the 
spatial variables $,, and u,, . The units have been chosen 
here in the same way as in Ref. 1; i.e., the gyromagnetic ratio 
for the 'He nuclei and the magnetic susceptibility per unit 
volume of the 'He-B are set equal to unity. The energy den- 
sity then has the units frequency squared. 

System (1)  can be used to study various cases of spin 
flow. In the present paper we analyze steady-state solutions 
of this system which describe a one-dimensional spin flow 
and a spin vortex. These solutions are of interest in connec- 
tion with recent experiments by Borovik-Romanov, 
Bun'kov, Dmitriev, and Mukharskii on spin currents and 
critical velocities in 'He-B (Ref. 2). In both of the cases 
under consideration here, the flow occurs in the plane per- 
pendicular to the magnetic field direction, i.e., the gradient 
energy contains derivatives with respect to the coordinates x 
and y only. According to Eq. (32) of Ref. 1 we then have 

where 

This relation associates two values of @, differing in sign, 
with each value of u. The states corresponding to these val- 
ues of @ are physically different, as can be seen easily if we 
take the customary approach of specifying as an order pa- 
rameter the rotation matrix R,, using the direction of the 
rotation axis, n, and the angle O ( O < B < a )  through which the 
rotation is made. Relation (4)  expresses the fact that for the 
solutions under consideration here we have 8 = 8, = arc- 
cos( - 1/4) = 104". In this case, there is a one-to-one corre- 
spondence between n and R, . The Cartesian components of 
n in a coordinate system which is rotating at an angular fre- 
quency w, are expressed in the following way in terms of $, 
p, and @: 

n==-- sin' c o s ~ s i n ( $ - ~ ) ,  
sin 0, 2 

ny = - 
sin Oo 2 

sin cD 
n. = - (Ifcos p) . 

2 sin 0, 

We see that when the sign of @ changes the vector n changes 
direction. 

Expression (3)  for the gradient energy can be simpli- 
fied by replacing @by the new variable w in accordance with 
the definition 

6 ' ~  a$ pi2 du -=-+--. 
d x ~  C ~ X R  pi* 3% 

(6 )  

In terms of the variables w, u, the system (1)  remains of 
Hamiltonian form: 

For the transformed Hamiltonian we have 

V= ' /2(p~ ,k~ ,k+~~,ku ,k)  + w P (  o p - ~ L )  U? 

where 
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The flux j of the quantity w, (I-u) is now given by 

dV - dw "=z- P Z '  ( 9 )  

i.e., the variable w has the meaning of a two-dimensional 
velocity potential. To proceed, it is useful to also introduce 
an analog of the momentum-flux tensor: 

In the steady-state case,this quantity satisfies the continuity 
equation an , ,  /ax, = 0. 

Steady-state solutions of system (7 )  are extrema of the 
functional F = JVd 2r, so an analysis of steady-state spin 
currents becomes similar to an analysis of superconducting 
currents in the Ginzburg-Landau t h e ~ r y . ~  The variable w is 
analogous to a phase, and the quantity 1 - u to a square of 
the magnitude of the order parameter in superconductors. 
Comparing the first and second terms in Hamiltonian (8),  
we can determine the length scale 
[ = c, [w, (w, - W, ) ]  - I 1 ' :  an analog of the correlation 
length in the Ginsburg-Landau theory. Dissipative terms 
have been ignored in Eqs. (7) .  The applicability of this ap- 
proximation can conveniently be discussed in connection 
with specific applications. 

2. ONE-DIMENSIONALSPIN FLOW 

We consider a steady-state spin flow along a channel of 
constant cross section which is long (has a length L $6) and 
narrow (has a transverse dimension a e l ) .  The channel is 
oriented perpendicular to the magnetic field H,. Under the 
limitations imposed here, the flow is one-dimensional; i.e., w 
and u vary in only the direction along the channel ( t h e y  
axis). Setting aw/at = 0 and &/at = 0, we obtain two equa- 
tions from ( 7 )  which describe a flow of this sort. These equa- 
tions are Euler-Lagrange equations for the functional J Vdy. 
To analyze the solutions, it is convenient to rewrite these 
equations as Hamilton's equations with respect to the coor- 
d ina te~ .  Weintroduce thecurrentsj = aV/awr andq = a V /  
du' which are conjugates of the variables wand u, respective- 
ly; the prime means differentiation with respect toy .  The 
role of the Hamiltonian is played by the component II, = n 
of the momentum flux tensor ( 10) : 

Equations describing a steady-state one-dimensional spin 
current can then be written in the form 

The variable w is cyclic, so its conjugate current j is con- 

served, and there exist solutions of the type du/dy = 0, dq/ 
dy = 0, dw/dy = h = const. These solutions are extrema of 
the potential n = n - hj with respect to the explicit vari- 
ables u, q, j. These are the solutions of primary interest in 
connection with the problem under consideration here. To 
construct these solutions we should substitute du/dy = 0, 
dq/dy = 0, and dw/dy = h into the left sides of Eqs. ( 12) 
and solve the resulting algebraic system for u, q, and j. From 
the first equation we then find 

This equation is satisfied in three cases: 1) q = 0, 2)  
u =  - 1/4,3) u =  1.Inallcaseswehavej=p(u)h,where 
u is found from the second equation of system ( 12): 

We now consider each of these three cases in succession. 
In case 1 ), Eq. ( 14) leads to the following dependence 

of u on h: 

The values of u lie in the allowed interval - 1/4 < u < 1 if h 
lies in the interval h,, < h < h,, , where 

The h dependence of the current becomes 

In case 2 ) ,  Eq. ( 14) is rewritten as 

if w, > w,, this equation can be satisfied only by values 
h<h,, . In this case the current is proportional to h: 

At h = h,, , expressions ( 15) and ( 16) predict the same max- 
imum current j,,, . 

In case 3) ,  the vanishing o f p  at u = 1 causes Eqs. ( 12) 
to contain zeros in their denominators, and it is convenient 
to transform to the variable o = P exp(iw) in order to find 
steady-state solutions. Retaining the leading terms in the 
limit fl-0 in system (7 ) ,  we find the following equation for 
o: 

w p  30 d20 o -i--=-+- 
c L Z d t  d y 2  g 2 '  (17) 

Its steady-state solutions are of the form o=a, 
X exp( + ih,, y ) .  The same result can be found from solu- 
tions 1 ) by taking the limit u - 1 in them. At the point u = 1 
itself,the angle $ and thus the phase w are undefined. For 
solutions 3) we have j = 0, and for h>hC2 a steady-state one- 
dimensional spin flow turns out to be impossible. 

Before we use these solutions to describe a spin current, 
we need to ensure that they are stable. In case 1 ), we can use 
the standard procedure for analyzing stability. In other 
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words, we should substitute perturbed steady-state solutions 
w =  hy+p(y , t ) andu  =u,(h) +r](y,t)intoEqs. (1)and 
linearize them in terms of the small perturbations p and r] .  

As a result we find the system of equations 

drp dp drp d2q 1 d2p ,--- h - + y - - . - -  h2- q=0, 
d t  du d y  d y 2  2 du2 

(18) 
d q  a l l  a29 O p - - - h - -  p-=o. 
d t  d u  d y  dyZ 

Substituting p, r ]  - exp [i( ky - wt) ] into these equations, 
we find the dispersion law for small oscillations of the spin 
and the order parameter, i.e., for spin waves superposed on a 
spin current: 

For - 1/4 < u < 1 and c i  > c:, the expression in the radical 
is positive; i.e., solutions 1) are stable with respect to small 
perturbations. By studying the definiteness of the energy 
density (2), Sonin4 recently concluded that the solutions 1) 
are unstable as a result of a violation of the Landau criterion. 
The conclusion that the Landau criterion is violated for 
these solutions is correct. That conclusion also follows from 
the dispersion law ( 19), which is analogous to the dispersion 
law for sound propagating in a liquid moving at a velocity v. 
In this case the combination-(h /a, ) (dp/du) plays the 
role of the velocity of the liquid and the spin-wave velocity 
s  = (h /up ) ( 1/2pd 2 p / d ~ 2 )  ' I 2  plays the role of the sound 
velocity. It follows from the inequality found by Sonin that 
for the solutions 1) we have v > s ,  i.e., spin waves may be 
emitted at the expense of the energy of the spin current. 
Note, however, that the spin current in this case is super- 
posed on a nonequilibrium and time-dependent state. This 
state relaxes to equilibrium even in the absence of a current. 
When there is a current, there is an additional component of 
the relaxation rate because of spin diffusion; i.e., the spin 
current is not dissipationless, even if the Landau criterion 
does hold. A violation of this criterion means that yet an- 
other relaxation mechanism has come into play, and the 
question is the importance of this mechanism. Simple esti- 
mates show that, under those assumptions regarding the na- 
ture of the perturbations introduced in the flow which are 
the most favorable assumptions for an analysis of spin 
waves, the ratio of the wave component of the dissipation to 
the spin-diffusion component is a bounded quantity of order 
(c2/Dw, ) X [ (w, - wL )/aL ] ( D  is the spin diffusion coef- 
ficient). Under the experimental conditions of Ref. 2 this 
ratio was - 10-2-10-3. The wave components may prove 
important only at temperatures well below T,, where the 
roles played by other dissipation mechanisms fade, and the 
only competing mechanism which is left is the emission of 
spin waves at the walls by the precessing spin (an emission 
which is unrelated to the ~ u r r e n t ) . ~  A violation of the Lan- 
dau criterion thus does not lead to a disruption of the current 
state. A more important circumstance is that for u > s  the 
spin flow becomes analogous to supersonic flow in gasdyna- 
mics,' and this circumstance influences its nature even if 
dissipation is ignored. 

Solution 2) corresponds to one end of the range of al- 
lowed values of u. The equations of motion (7)  have a singu- 
larity at u = - 1/4, and a stability analysis of solution 2)  

cannot be carried out by the standard method. We treat solu- 
tion 2) as the limit of solution 1 ) in the case h - h,, and, 
respectively, u- - 1/4 from the side u > - 1/4. The sec- 
ond term in the radical in ( 19) has a singularity at u = - 1/ 
4. Retaining only the leading terms in the limit u - - 1/4 in 
this equation, we find 

We see that no instability arises when this limit is taken, and 
the region of wave vectors for which the Landau criterion is 
violated disappears. We could also regard solution 2)  as the 
limit of the solutions with h = const for u < - 1/4. Solu- 
tions of this form and oscillations superposed on them were 
analyzed in Ref. 1. The limit u-. - 1/4 in the equations 
derived there is legitimate only if h 1/6. In this case the 
oscillation frequencies remain real, and no instability arises. 
A more complete analysis of the vicinity of the point 
u = - 1/4 will require going beyond the leading low-fre- 
quency approximation, but even the analysis presented here 
leads to the conclusion that solutions 2) are stable. 

The dependence of the spin current density j on the 
phase gradient h (Fig. 1 ) thus has two regions: a linear in- 
crease in the interval O<h>,h,, , in accordance with (16), 
and a decrease in accordance with ( 15) for h,, < h < h,, . The 
nature of the flow changes when h,, is crossed. At h < h,, , 
the flow is analogous to subsonic flow, while at h > h,, it is 
analogous to supersonic flow, in gasdynamics. The role of 
the sound velocity is being played here by the local velocity 
of the spin waves. By analogy with gasdynamics, one can 
assert that in order to achieve supersonic flow we would need 
a channel with a constriction and a subsequent expansion: a 
Lava1 nozzle. A transition from subsonic to supersonic flow 
in a channel of this sort occurs as the phase difference Aw 
between the ends of the channel increases, when the current 
density at the narrowest part of the channel reaches its maxi- 
mum value j,,, . With a further increase in the phase differ- 
ence, the current density in the narrowest part remains con- 
stant, while further downstream, i.e., along the h direction, a 
regime corresponding to h > h,, is established. If the flow in 

FIG. 1 

1 150 Sov. Phys. JETP 67 (6), June 1988 I. A. Fornin 1 150 



a channel with a varying cross section is to be regarded as 
one-dimensional, it is necessary that any substantial changes 
in the cross section occur over distances much longer than 
the length scale {. When the upper critical gradient h,, is 
reached, the phase decays: There is an abrupt decrease in h. 
Such decays were seen directly in the experiments of Ref. 2. 
The behavior of the critical gradient h, as a function of 
w, - w ,  found in those experiments agrees satisfactorily 
with a square-root law, and the value of h, does not differ 
greatly from I / { .  A more detailed comparison of theory and 
experiment will require consideration of the effect of dissipa- 
tion and the effect of the ends of the channel on the spin flow. 
When dissipative terms are taken into account in the equa- 
tions of motion, the conservation of the longitudinal compo- 
nent of the spin is disrupted, and the current density in a 
channel of constant cross section decreases with distance 
from the inflow region. I t  is legitimate to ignore dissipative 
terms if the relative change in the current density over the 
length of the channel is small. If only diffusive dissipation is 
taken into account, the result is the following limitation on 
the length of the channel: L <{c2/Dw, .  Under the experi- 
mental conditions of Ref. 2, this strong inequality did not 
hold. Dissipation can be taken into account, but in this case 
it is necessary to solve the problem for a channel of finite 
length. We will not take up that problem in this paper. 

3. SPIN VORTEX 

We now consider steady-state solutions of Eqs. ( 7 )  
which describe spin vortices which are analogous to the vor- 
tices in superconductors and in superfluid 4He. These solu- 
tions must contain a line on which the value u = 1 holds, 
while the phase w is not defined. When this line is circum- 
vented along a closed contour, the phase changes by ~ I T N ,  
where N is an integer (the number of circulation quanta)." 
The specific form of the vortex solution depends on the ori- 
entation of the singular line with respect to the magnetic 
field. The configuration simplest to analyze is that in which 
the singular line is a straight line running parallel to the field. 
In this case, the Hamiltonian ( 2 )  is axisymmetric, and axi- 
symmetric vortex solutions can be sought. Here we will con- 
sider only a configuration of that type. The second of Eqs. 
( 7 ) ,  written in the polar coordinates r a n d  p, takes the fol- 
lowing form in the steady state: 

The third axis, z, runs antiparallel to H,, and all quantities 
are assumed to be independent of z. For an axisymmetric 
vortex, the radial component of the current, j, = ~ d w / d r ,  
must vanish; i.e., we must have w = w ( p ) .  Equation (21 ), 
along with the requirement that the order parameter be sin- 
gle-valued, leads to the customary dependence of the phase 
w on the polar angle for vortices: w ( p )  = N p  + w,,. Now 
substituting w ( p )  into the first equation of system ( 7 ) ,  and 
setting dw/dt  = 0 ,  we find an equation for u ( r )  : 

Here we have introduced the dimensionless coordinate 
R = r / l  and alsop = p/c: a n d b  = ,u/c:. The change in u in 

FIG. 2. 

a vortex is described by the solution of Eq. ( 2 2 )  which is 
determined by the boundary conditions u -+ 1 as R - 0 and 
u -+ - 1/4 as R - co . From ( 2 2 )  we can easily find the man- 
ner in which these asymptotes are approached. In this limit 
R - 0  we have u z l  - A R Z N ,  while for R - a  we have 
u=: - 1/4 + B exp( - a R ) ,  where a* = ( 5 4  + 3c:)/2cfi .  
The constants A and B are found as a result of the solution of 
the equation. A numerical solution for a vortex with N = 1 
leads to the functional dependence u ( R )  shown in Fig. 2. 
For c t / c?  we adopted the value 4 /3 ,  which is the value to 
which this ratio tends in the limit T -  T,  . The region near the 
vortex axis with a size -6, where the basic variation of u 
occurs, should be regarded as the core of the vortex; outside 
this core we have u =: - 1/4. Actually, as r -  w the value of 
u tends toward a limit which is slightly smaller than - 1/4, 
so that the required frequency shift w, - w ,  is provided. A 
description of this effect goes beyond the leading approxima- 
tion in ID/{ ,  which is valid as long as the condition u + 1/ 
4> ( 1 ,  /g) * holds, i.e., as long as the condition r / { 4  ln({ / 
1, ) holds, where I D  is the dipole length. 

To  determine the orientation of the spin and that of the 
order parameter in a vortex, we should return from the vari- 
able w to the variable $, which depends on not only p but 
also r  (Fig. 3 ) .  When we go from w to $, we run into double- 
valuedness because of the two ways in which the sign can be 
chosen in the definition ofp  ,,. I t  can be seen from (6)  that in 
the case dw/dr  = 0 a change in the sign of p,, leads to a 
change in the sign of a$/&. This result means that there are 
two types of vortices: right-handed and left-handed, which 
differ in the direction in which 4 changes as we go radially 
toward the axis of the vortex. In  terms of the vector n [see 
( 5  ) 1 ,  the distinction between the two types of vortices is that 
at r  = 0 we have nllH, for right-handed vortices and 
nil - H,, for left-handed vortices. In the limit r-+ a, n tends 
toward a direction perpendicular to H, for vortices of both 
types. 

The appearance of spin vortices and their motion in the 

FIG. 3. 
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direction across the spin flow constitute a mechanism for 
phase slippage in those cases in which spin flow cannot be 
regarded as one-dimensional, i.e., in which the transverse 
dimension of the channel is not small in comparison with 6 in 
at least one direction. We should expect that vortices of this 
type would determine the magnitude of the critical phase 
gradient of the spin current in the case of a spin flow across a 
slit of thickness a (6 and width d%g, whose wide side runs 
perpendicular to the magnetic field. Since spin vortices are 
seen to be analogous to quantized vortices in superfluid 4He, 
we can thus immediately transfer the estimate of the critical 
phase gradient of the order parameter, at which the forma- 
tion of vortices becomes favored, from that other arena: 

The critical gradient falls off basically as { / d ,  in contrast 
with a one-dimensional flow. 

As a criterion telling us whether it is legitimate to ignore 
dissipative terms in the equations of motion in describing the 
vortex structure we can adopt the condition that the radial 
component of the current which arises when dissipation is 
taken into account must be small in comparison with the 
tangential component. This condition reduces to the in- 
equality 

ments of Ref. 2 is based on the circumstance that the motion 
of the order parameter under the conditions of those experi- 
ments is rigidly coupled to the motion of the spin, and the 
phase w  determines not only the orientation of the order 
parameter but also the orientation of the spin, rendering this 
phase a directly observable quantity. However, this circum- 
stance makes it necessary to work with time-varying states 
and thus the appearance of a dissipation. When dissipative 
effects are taken into account in the equations of motion, the 
analogy with currents in superconductors becomes incom- 
plete; in particular, the conservation of the longitudinal 
component of the spin is violated. In a superconductor, this 
violation would correspond to charge nonconservation. If, 
however, the conditions stated above are observed, the dissi- 
pative loss will be small. Furthermore, experiments are 
usually carried out in such a way that the vanishing of the 
spin is offset by an external pump; in such a case, all of the 
assertions based on a continuity of the phase continue to 
hold. Note also that spin currents in 3He-B, like superfluid 
currents in 4He or in superconductors, arise as a response to 
a disruption of the spatial homogeneity of a condensate of 
Cooper pairs or Bose particles; i.e., the spin currents in 3He- 
B not only are analogous to these other currents but also are 
of the same physical nature. 

I wish to thank A. S. Borovik-Romanov, Yu. M. 
Bun'kov, A. de Vaard, V. V. Dmitriev, Yu. M. Mukharskiy, 
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where r is the maximum distance out to which the approxi- 
mate description is valid. In the case of spin flow along a 
channel of width d, the condition for the applicability of a 
description of this sort is the inequality ln(d / l )  4c2 /Dw, .  

4. DISCUSSION 
"The possible existence of vortices of this type was also mentioned by 
S ~ n i n , ~  but certain assertions regarding the specific properties of the 

the examples considered here, the system ofspins in vortices which were made in that other study on the basis of general 
considerations are not supported by the solution being analyzed here. 
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