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The smectic-A-crystal phase transition is investigated in the case when it is a first-order transition 
that is almost second-order. The analysis is performed using the Landau expansion in the order 
parameter associated with the short-wavelength density modulation. Effects induced by 
fluctuations are taken into account. The form of the phase diagram of the system is found for the 
case of an anisotropic four-point scattering vertex in the Landau expansion. 

The liquid-crystalline state of matter is distinctive in 
that, as a rule, a whole series of phase transitions occurs in 
the system in a small range of temperatures. Among the liq- 
uid-crystalline phases are the nematic phases, which are 
translationally invariant, and phases with modulated den- 
sity. The latter include smectic and diskotic phases, possess- 
ing one-dimensional and two-dimensional lattices, respec- 
tively. The strongly layered true crystals that are known as 
smectics B, E, F, G, and H are also usually regarded as liquid 
crystals. The point is that it is difficult to distinguish these 
phases experimentally from smectics (the smectics B also 
include true smectics) . 

Transitions from a smectic state to a strongly layered 
crystal are always first-order. However, these transitions 
can also be regarded as almost second-order. Evidence for 
this is provided both by the weakness of the modulation in 
the layer and by the small experimentally observed heat of 
transition. In the present paper we construct a theory of the 
smectic-A-crystal transition, based on the Landau expan- 
sion.' A smectic A is a layered structure in which each layer 
can be regarded as a two-dimensional isotropic liquid. As the 
temperature is lowered, density modulation arises within the 
smectic layer as well, i.e., the smectic A crystallizes. To  study 
this transition we shall use the Landau expansion of the ener- 
gy density E in the short-wavelength field p ( r ) :  

Here r vanishes near the transition point: r- T - To, where 
Tis the temperature and the quantity To is close to the tran- 
sition temperature but does not coincide with it. The isotrop- 
ic gradient term in ( 1 ) has the same form as in the liquid. 
The quantity q, in it determines the fundamental period of 
the density modulation. The presence of smectic order leads 
to the appearance in ( 1 ) of anisotropic terms, one of which 
(with coefficient a,, )has been retained in (1 ) .  In it, V,, 
-n.V, where n is the unit vector along the normal to the 
layers. We shall assume that in equilibrium the layers are 
perpendicular to thez axis, i.e., n is the unit vector along this 
axis. 

In Eq. ( 1 ) there is a term cubic in the field p, and this 
leads to the result that, even in the mean-field approxima- 
tion, a transition describable by this energy becomes a first- 
order transition. However, as Brazovskii ~ h o w e d , ~  in the 
theory of weak crystallization a large role is played by fluctu- 

ations of the field p .  The character of these fluctuations de- 
pends in an essential way on the relative magnitudes of the 
isotropic and anisotropic terms in the energy ( 1 ) .  The crys- 
tallization of an isotropic liquid was investigated in Ref. 3. 
The changes that arise when weak anisotropy is taken into 
account, for both signs of all, were considered in Ref. 4. In 
Refs. 3 and 4 it was assumed that fluctuations of the field p 
with wave vectors q close to the surface of a sphere of radius 
q, in reciprocal space are strongly developed. For strong 
anisotropy, fluctuations with wave vectors either near the 
poles of the sphere, corresponding to all <O, or near the 
equator, with all > 0, are important. In the first case, effects 
associated with the large phase volume over which the fluc- 
tuations are accumulated are absent, and the system under- 
goes a transition to a state with a one-dimensional density 
wave. This paper is devoted to a study of the second case, 
when the fluctuations are concentrated near the circle 
Iql = go, q2 = 0 in reciprocal space. A similar situation for 
another problem has been investigated by S ~ i f t . ~  

The three-point vertex p in the expansion of the energy 
can be assumed to be a constant. The four-point vertex il is, 
generally speaking, a certain functionil (q ,  , q, , q, , q, ) of the 
wave vectors of the field p. Taking into account the conser- 
vation law q,  + q, + q, + q, = 0, and the fact that the 
wave vectors lie on the above-mentioned circle, we find that 
they form a rhombus. Thus, il is a function only of the angle 
0 at a vertex of the rhombus. Using the symmetry properties 
of the four-point scattering vertex, we find 

This function can be represented in the form of a Fourier 
series: 

a ( 8 )  =A0 [ i + hk cos ( 2 k 8 ) ]  . ( 2 )  
k- t 

In the following we shall confine ourselves to an analysis of 
the cases when only one term in the series (with k = 1,2 ,  or 
3)  is nonzero. In order that the isotropic phase be absolutely 
stable, it is necessary to require 1il,1 < 1. Otherwise, the 
model, when restricted to terms of up to fourth order in the 
expansion of the energy, is inapplicable. 

The phase transition under investigation can be inter- 
preted as a condensation of the field p. In the initial smectic 
A, (p ) = 0, and therefore to calculate the bare correlation 
function (pp ) we can confine ourselves to the quadratic part 

1144 Sov. Phys. JETP 67 (6), June 1988 0038-5646/88/061144-04$04.00 @ 1988 American Institute of Physics 11 44 



FIG. 1. Basic self-energy contribution to the correlator (pp ). 

of ( 1 ) . As a result, we have 

where A = T. To obtain Eq. (3 )  we used the conditions for 
weakness of the transition described by the energy expansion 
( l ) ,  which take the following form: 

It is these inequalities which enable us to confine ourselves in 
( 1) to a single anisotropic term, since higher terms of the 
expansion in VII lead to effects that are small in the param- 
eter A/a l  qt . 

The analysis performed by Brazovskii2 showed that sat- 
isfying the restrictions ( 4 )  allows us to neglect the A-vertex 
renormalization that arises when fluctuations are taken into 
account. To calculate the energy of the crystalline phase we 
only need allow self-consistently for the self-energy contri- 
bution described by the diagram depicted in Fig. 1. It is easy 
to see that this contribution changes only the magnitude of 
the gap A in (3) .  Hence, for the gap in the smectic phase we 
obtain the equation 

where A, is the zeroth Fourier harmonic of the vertex /2 ( 6 )  
in (2 ) .  

The calculation of the gap in the crystalline phase is 
performed a n a l o g ~ u s l y . ~ ~ ~ e  now find a nonzero value for 
the condensate ( p  ), which has the form 

where v,, are vectors specifying the lattice type and perpen- 
dicular to thez axis, and a, are the ampIitudes of the density 
waves that arise. The gap in the crystalline phase becomes, 
generally speaking, anisotropic. Its dependence on the angle 
6, measured from one of the crystallization directions ( v ,  ), 
is given by the equation 

+ 4allqo" 9" J z i ( e - o ~ ) i n ( - ) .  ( 7 )  
8n (aa,,)  " , 2x A (0')  

As indicated in Ref. 3, the solution of the analogous equation 
in a three-dimensional system can be found only numerical- 
ly. In the present case, when two-dimensional crystallization 
occurs in a smectic layer, for the chosen dependence 

A ( 6 )  = A, [ 1 + A, cos (2k6) ] it is possible to progress ana- 
lytically practically to completion. 

Before investigating the problem with allowance for 
fluctuations, we shall consider it in mean-field theory. For 
this it is sufficient to confine ourselves to the part of the 
energy ( 1 ) without gradient terms, taking into account that 
the condensate has the form ( 6 ) .  The solution of the result- 
ing problem of two-dimensional crystallization in Landau 
theory for a constant vertex is well known. On the phase 
diagram there are three phases-the initial smecticd phase 
(A),  a hexagonal phase (H) with a condensate of the form 

and a phase with one-dimensional density modulation in the 
smectic layer, which corresponds most closely to the so- 
called smectics2 (Ref. 6) .  In the A phase the condensate has 
the form ( p ( r ) )  = a cos(q,x). The constant a appearing in 
the expressions for ( p ( r )  ) characterizes the depth of the 
density modulation in the smectic layer. The quantity a de- 
pends on the distance from the phase transition. 

As the temperature is lowered there is a transition from 
the A phase to H at T = 4p2/45A, and then a phase transition 
H-A at .r = - ( 7  + 3fi)p2/5A. In Ref. 3 it was shown 
that it is possible to solve the problem of two-dimensional 
crystallization for an anisotropic interaction vertex A(6).  
For the case under consideration 

it is found that for negative values ofA, the phase diagram is 
not qualitatively changed in comparison with the diagram 
for A = const. For positive values of A, new phases appear. 
Thus, for k = 1 with A ,  > 1/3, instead of the smectici  there 
appears on the diagonal a tetragonal phase T with conden- 
sate 

As the temperature is lowered the sequence of transitions 
T t  H-A occurs. 

F o r k  = 2 with A, > 1/3 the one-dimensional phaseA is 
replaced by an orthorhombic crystal R, to which corre- 
sponds a condensate 

X+Y \ 
(rp (r) )=a cos ( 4 , ~ )  +a cos (q,  -/ 

13 

Finally, for k = 3 two transitions occur. First, analogously 
to the case k = 1 with A, > 1/3, the one-dimensional phase is 
replaced by a tetragonal phase T. Second, for A,>0.224, 
between the regions of stability of A and H on the phase 
diagram there appears a quasicrystal Q, with condensate of 
the form 

where the six vectors v,, make angles 7r/6 with each other. 
Thus, a sucession of transitions A ( T) + Q, + H t  A becomes 
possible. All the transitions in this chain are first-order 
phase transitions, even in mean-field theory. 

Now that we know precisely which phases should be 
expected to appear, we shall investigate the problem with 
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allowance for fluctuations. We shall consider the calculation 
of the energy of the one-dimensional phase for 

In this case Eq. ( 7 )  is written in the form 

4 
[I + hl cos ( 2  (8 - €)'))I. 

Here, and down to Eq. ( 1 1 ), for convenience we have used 
dimensionless variables A, ?, andjl ,  defined by the relations 

This equation has the solution A;, = x + y cos(28), where 
the x and y satisfy the system 

The relation between the parameter a2  and the magnitude of 
the gap in the crystalline phase is determined from the condi- 
tion for the minimum of the energy with respect to a, and has 
the following form: 

Hence, for the two harmonics of the gap of the one-dimen- 
sional phase we obtain the system 

which, after the change of variable y = x sin $, where 
0<$  sign(A, ) <n-/2, reduces to the equation 

hi sin* 1-hi+2 sin$ +-- = 0. 
8n l+cos $ 2hi- (I-hl) sin $ 

The quantity x is connected with the root of this equation by 
the relation 

h, ( l+hl)  sin 
x =  

1 

8n l+cos $ 2h1- (I-hi) sin $ 

Analysis of Eq. ( 10) shows that, in the case A ,  < 1/3, at a 
sufficiently low temperature there exist two solutions for $, 
of which we must choose the one that is largest in absolute 
value. For A ,  < 0 this solution exists down to A, = - 1. But 
for A ,  > 1/3, the desired solution vanishes when the tem- 
perature is lowered. The vanishing of the solution is connect- 
ed with the vanishing of the quantity A ( 0 )  in the direction 
perpendicular to the direction of crystallization, i.e., with 

FIG. 2. Phase diagram of the system for A = const. 

the loss of stability of the one-dimensional phase. 
I t  remains to calculate the energy of the one-dimension- 

a1 phase. It is determined by the expression 

where x, y, and a f 2  are related by the system (9 ) .  As a result 
of the integration we obtain 

The energies of the tetragonal and hexagonal phases are de- 
termined analogously. For these, in the case k = 1 under 
consideration, the gap is found to be isotropic. To construct 
the phase diagram of the system it remains to solve an equa- 
tion of the type ( 10) numerically and to calculate the energy 
using equations analogous to ( 1 1 ) . 

Figure 2 depicts the phase diagram of the system with 
allowance for fluctuations for A = const. In all the figures 
the dimensionless variables defined by the formulas (8 )  are 
used. In the region pBp , ,  = 0. 17A0(q,,T) 112/(aall ) 'I4, 
where po is the coordinate of the triple point, the phase- 
equilibrium lines are close to the curves obtained in mean- 
field theory. For small values of p ,  i.e., in the region of 
strongly developed fluctuations, a direct first-order transi- 
tion A - 2  occurs at ~ ~ 0 . 2 2 A , , q ~ , T / ( a a ~ ~  )'I2, a purely fluc- 
tuational effect. Figure 3 depicts the dependence of the gap 

FIG. 3. Dependence of the gap in the correlator on the temperature in 
the case A = const for & = 0 and ,G = 0.45. 

1146 Sov. Phys. JETP 67 (6), June 1988 A. R. Muratov 11 46 



FIG. 4. Phase diagram for 1, = 0.34. 

A(0 = 0 )  in the correlator on the temperature fo rb  = 0 and 
ji = 0.45. It can be seen that at the phase transitions the 
magnitude of the gap increases discontinuously. 

As in the mean-field theory, for negative values of the 
parameter A, the diagram is not qualitatively changed. For 
positive A, new phases arise. Figure 4 gives the phase dia- 
gram for A, = 0.34. The fluctuations preserve the one-di- 
mensional phase in a certain region for A ,  > 1/3. This phase 
loses stability at the temperature 

The temperature of the transition A -+ T tends to - co asA , - 1/3 + 0. The fluctuations make the A 4 T transition a 
first-order transition. Upon further increase of A ,  the one- 
dimensional phase A disappears. 

The cases k = 2 and k = 3 can be treated analogously. 
Here the magnitude of the gap for the tetragonal phase de- 
pends on the angle 0 for k = 2 only, while for the hexagonal 
phase it depends on 0 for k = 3 only. For the crystal 
R(k  = 2)  and for Q, (k  = 3) the magnitude of the gap is 
also independent of the angle. 

The phase diagram for k = 2 with A, = 0.34 coincides 
exactly with that depicted in Fig. 4, except that the crystal R 
appears in it in place of the tetragonal phase. All the remarks 
made above can be applied to this case as well. The phase 
diagram for k = 3 with A = 0.34 is given in Fig. 5. As A, 
increases the phase A disappears. It is curious to note that in 
the approximation used for k = 3 the energies of the tetra- 
gonal phase and ofthe crystal R ' with condensate of the form 
( p ( r ) )  = a{cos(q,$) + cos [q,,(x.3"' + y)/2])  coincide 
exactly, both in the Landau theory and with allowance for 
fluctuations. 

The investigation carried out above makes it possible to 
draw the following conclusions about the character of the 
phase diagram in the variables ?, f i .  In the Landau theory all 
the phase-equilibrium curves have the form of parabolas 
?-P' Allowance for fluctuations leads to the result that in 
the region of strongly developed fluctuations, which is situ- 
ated near the coordinate origin, all the intermediate phases 
disappear, and a direct first-order phase transition occurs 

FIG. 5. Phase diagram for 1, = 0.34. 

from the initial phase to the phase that is stable at low tem- 
peratures. 

For the case of an isotropic scattering vertex the phase 
diagram is given in Fig. 2, in which three phases are pres- 
ent-smectic A ,  hexagonal crystal, and smectic 1. The pres- 
ence of anisotropy of the scattering vertex substantially 
changes the form of the diagram of states. As before, it is 
arranged in the form of three sectors, but now the low-tem- 
perature phase can be either a tetragonal phase or another 
orthorhombic phase, and between this phase and the hexag- 
onal phase a quasicrystal can be wedged in. In the Landau 
theory, transitions of this type occur independently of r and 
p when the anisotropy parameters A, are changed. 
Allowance for fluctuations leads to the appearance of a de- 
pendence of the transition point with respect to A, on r a n d  
p. The above pertains to the dependence A (O), which has 
minima (absolute) at certain angles to the direction of crys- 
tallization. If there are no such minima, the phases remain 
the same, although the transition lines are, of course, dis- 
placed. 

The phase transitions described above lead to discontin- 
uities of observable quantities-compression moduli of the 
smectic layers, Franck constants, specific heats, sound ve- 
locities, viscosities, etc. In addition, in these quantities fluc- 
tuation contributions appear. These changes are considered 
in Ref. 7. 

In conclusion, the author expresses his deep gratitude 
to I. E. Dzyaloshinskii for suggesting the topic of the work, 
and also to E. I. Kats and V. V. Lebedev for useful discus- 
sions. 
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