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We investigate temporal echoes of hydrodynamic type, produced in a plasma-vacuum transition 
layer by applying three successive pulsed perturbations. We show that it is possible to deduce the 
effective electron-collision frequency from the dependence of the amplitude of a three-pulse echo 
signal on the third-pulse delay time. 

1. The damping of a surface wave in plasma with a dif- 
fuse boundary has a resonant collisionless character due to 
the wave coupling with the local Langmuir oscillations in 
the inhomogeneous transition 1a~er . I .~  It is shown in Ref. 3 
that the surface-wave energy is transferred in the course of 
time to Langmuir oscillations that are localized near the 
plasma-resonance point in a region much narrower than the 
transition-layer width. These oscillations are not damped in 
a cold collisionless plasma, so that an echo of hydrodynamic 
nature can be excited in a strongly inhomogeneous transition 
layer. This echo, produced by two external-perturbation 
pulses and corresponding to allowance for second-order 
nonlinearities in the equation of motion of the electron fluid, 
was investigated in Refs. 5 and 6 .  At the same time, higher- 
order effects are possible in this system, such as three-pulse 
echoes produced in a homogeneous plasma6.' in response to 
three successive pulse perturbations. Plasma wave echoes of 
higher order, excited by two external perturbations, were the 
subject of a number of studies, which are reviewed in Ref. 8. 

We consider here a three-pulse hydrodynamic echo in a 
strongly inhomogeneous plasma-vacuum transition layer. 
The perturbations chosen are pulses of surface waves travel- 
ing along the boundary. An interesting situation arises when 
the delay time T of the third pulse is much longer than the 
time interval T between the first two. The echo signal is pro- 
duced at a time r after the third pulse, and its amplitude 
depends substantially on the electron-collision frequency Y if 
YT-  1. This circumstance can be used to determine Y from 
the dependence of the three-pulse echo amplitude on the 
time delay T. 

2. We consider a plasma occupying the space x > 0, uni- 
form along y and z, and with vacuum (x  < 0)  as its boundary. 
Let the equilibrium plasma density n,(x) increase monoton- 
ically in a transition region 0 < x  <a from zero to a value 
n,(a) and remain constant in the region z > a. We confine 
ourselves to high-frequency electron oscillations for which 
the plasma ions can be regarded as an immobile neutralizing 
background, and assume that the plasma is cold. The elec- 
tron fluid is then described by the hydrodynamic continuity 
and momentum equations 

Here n and v are the density and velocity of the electron 
fluid, e and m the electron charge and mass, c the speed of 
light, and Y the effective electron-momentum transfer fre- 
quency; in other words, the term - yv in the right-hand side 
of the equation of motion describes the friction force. 

We solve the set of Eqs. (1)  and ( 2 )  perturbatively, 
representing the variables in the form 

where A, is the equilibrium value of A, and A"' is the ith- 
order response to the external perturbations. For a two-di- 
mensional problem in which all the system perturbations are 
independent, say, of the coordinatez, Eqs. ( 1 ) and ( 2 )  break 
up into two independent systems for TE modes (with elec- 
tromagnetic-field components E, ,B, ,By ) and TM modes 
(with components Ex ,E, ,B, ) . We confine ourselves below 
to TM modes, which admit of a solution in the form of sur- 
face waves. 

The remainder of the solution procedure for the first 
and second approximation is described in detail in Ref. 5. We 
use Laplace transforms in time and Fourier transforms in 
the coordinate y: - m 

A (p, k )  = j d t  e-'' d y  e-+" (t ,  y ) .  

The dispersion function D(p,k ) ,  which determines the sur- 
face oscillations on the plasma-vacuum boundary with a 
strongly inhomogeneous transition layer ( Idno/ 
d, 11 % Iknol 1, we have 

a 

where 

wL,2 (x) =4neZno(x) lm, 

xo2=k'+pZ/c2, x Z = k 2 + p 2 ~  (a,  p )  / cZ ,  

together with the Maxwell equations for the electromagnetic Re x ,  Re x,>O. 
field 

1 aE 4ne 1 dB Putting p = - iw, - y in ( 3 )  and equating its real and rotB =-- -- nv,  rotE=---  
c d t  c c at ' imaginary parts to zero, we obtain the following expressions 

( 2 )  for the frequency w, and for the damping rate y of the surface 
div B=O, div E=-4ne [ n - n o ( x )  1. wave: 
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Here p,  is the collisionless damping rate of surface oscilla- 
tions with wave number k: 

As shown in Ref. 3, the oscillations of the linear velocity 
component vi" and the associated electric-field component 
E :I) are not damped. It is convenient to represent the above 
velocity component in the form 

where E yt is the electric field of the external perturbations. 
We choose them in the form of three successive pulses ap- 
plied to the plasma-vacuum boundary at times t = 0, t = r ,  
and t = T: 

Here is a constant with the dimension of frequency. The 
most favorable situation for observation of the two-pulse 
echo that results from the action of the first two pulses ( 7 )  is 

This condition means that the macroscopic signal of the first 
pulse vanishes by collisionless damping even before the sec- 
ond pulse is applied, but its memory remains in the form of 
micro-oscillations, having the local plasma frequency, of the 
components E:" and uiO). On the other hand, the friction 
force that causes loss of the phase memory of the external 
perturbation, hardly comes into play over times of order r. 

In second-order perturbation theory it is easy to find the 
velocity component vy) for the expression for the three- 
pulse echo: 

a 

(2)-  
Uxkp - 

k2e (a ,  P) J *  88 (x, P) J dk' - 
2(p+v)D (P, k) , e (x, P) dx 2n 

and the nonlinear surface charge of the two-pulse echo sig- 
nal: 

(2)  eE,E2 (t-z)  
o* (Y, t )  = 

Here 
aj=ai=ao(ki) ,  pj=-pi=-p (k,) if t<2z, 

(,,.=a s-oo = (ki*kz), pj=ps-p(ki*k,) if t>2.t, 
F(k,)=a(a-l) (2a-1)-'(2a2-2a+l)-'aO2(k) I , , , , .  

The surface charge (10) is a superposition of two signals 
with sum k, + k, and difference Ik, - k,( wave numbers. 

3. We consider now the response of the plasma to the 
third external-perturbation pulse applied to the plasma at 
the instant t = T, assuming that T$ r. In third-order pertur- 
bation theory, after taking the Fourier-Laplace transform, 
the system of Eqs. ( 1 ) and (2)  becomes 

4ne dk' dp' 
-7JxJZT 

where 

e 
v;;; s - - (8) 

1 d 
Eap --- 

m (P+v) 2(p+v) ax IkP 9 

a OL WL* 4ncnkr'= - [LE:~]+ ik 2 
ax P(P+V) 

2ne a 8 +-- -- IkP (XI 1, 
p (p+v) dx 

We have retained in ( 12), from among the terms that de- 
scribe the nonlinear interaction, only those containing prod- 
ucts of the type vi"vp), for it is just these terms which de- 
scribe the hydrodynamic echo. 

It is easy to obtain from ( 1 1 ) and ( 12) equations for the 
electromagnetic-field component: 

We find the solutions of ( 13) in the regions x < 0,0 < x < a, 
and x > a, and then match them in the planes x = 0 and 
x = a. Substituting the solutions obtained into the equation 
for the jump of the normal component of the electric induc- 
tion across the plasma-vacuum transition layer, we obtain 
the following expression for the third-order perturbation of 
the surface-charge density: 
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Using in (14) expression ( 9 )  for v:~' and taking the inverse . [ o L ;  ( a )  -oL:] [ j wL; ( z )  dz-aoL2] exp[- iaLe ( t - ~ - ~ )  1 
Fourier-Laplace transform, we retain only those terms o 

which describe the successive action on the plasma by the 
three external perturbations, i.e., terms containing the prod- v v 
uct of the three linear perturbations of the velocity v:": . [ o L : ~  ( - i w ,  - -, 2 k.) ~ ( - i w ~ ~  + -, k 3 )  

2 

E (a ,  p)  1 5 "' j "' - -  
p2 ( p + v )  'E' ( x ,  p) D ( p ,  k )  2n 2ni 

(1) 
(1) (1) 'JZk'P' d dkN 

.Uxk' -k" ,p ' -p"Uxks 'p"  + - 5 -  
(P-p'+v) E ( x ,  p-p') dx 2n 

We substitute in ( 15) the linear velocity perturbations in 
form (6)  with account taken of the form ( 7 )  chosen for the 
external perturbations. We can then integrate with respect 
to k ", k ', and k with the aid of 6 functions. The integration 
with respect topU,p', andp can be carried out by closing the 
corresponding integration contours in the left-hand half- 
plane; the main contributions are made in this case by the 
poles of the functions ~ ( x q ) .  The echo after applying the 
third pulse and resulting from the consecutive action of all 
the external perturbation pulses on the inhomogeneous tran- 
sition layer takes the form of a superposition of signals with 
combined wave numbers k, = rk, + Ik, +fk, (r, I, and f 
take on values f 1). These signals are described by the 
expression 

where w,, = w,, (x) .  Since the integrand in ( 16) contains 
the rapidly oscillating function exp[ - iw,, ( t  - T - T)] ,  
the integral vanishes for all instants of time except near 
t = T + T. At this instant, a macroscopic surface charge 
with a wave number k, is produced in the plasma-vacuum 
transition layer. 

To integrate with respect toxin ( 16), an actual form of 
the n,(x) dependence must be specified. We approximate it 
by the expression 

8e2ElE2E,  k,2 ( t  - T )  T w ~ ,  ( a )  
o!.) ( Y .  f )  = 3m'*' wL'(a) ( t  - T  - t )  e-YT - o o s [ k e y  -- n3a3 2*12 2'1. I 

Transforming next to the complex plane z = w,, (a)x/a, we 
displace the integration contour to + i~ , depending on the 
sign of t  - T - T. It can be verified that the contributions to 
the integral from the corresponding straight-line segments 
Re z = 0 and Re z = w,, ( a )  are small compared to the con- 
tribution from the poles of the dispersion function (3). The 
expression for is rather unwieldy, and we present here 
only its asymptotic value in the limits of short- and long- 
wave oscillations. 

The transition to the short-wave limit ( k i c ) 2 ) ~ i ,  ( a )  
( i  = 1,2,3,e) can be effected by taking formally the limit 
c- a. The dispersion equation D( - iw,k) = 0 for the sur- 
face waves describes then quasistatic oscillations, and Eq. 
( 16) takes the form 

In the long-wave limit ( k i ~ ) 2 & ~ i ,  ( a )  ( i  = 1,2,3,e) the dispersion equation of the surface oscillations describes quasi- 
transverse waves; for the third-order echo signal we obtain the expression 
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sin [key - klc ( t  - T - T ) ]  exp [p, ( t  - T - T ) ]  

k,B (kea - kI2)  (kS2 - k12 ) (kz2 -- k12) 7 t < T + T ,  

e a E ~ E 2 E s  ( t  - T ,  k 1 6 k ; k ~ ~ ~ c 1 2 e - ~ ~  s i n [ k e y - k t c ( t - T - ~ ) ] e x p I - - p i ( t - T - ~ ) l ,  t > T + T .  
ki"kt2 - k12) 11' (k i2  - kja) 

The prime on the product symbol means that the factor with 
j = i must be omitted, i.e., the product consists of two fac- 
tors. 

We have presented above expressions for two- and 
three-pulse echo signals in surface-charge-density form. The 
corresponding expressions for the current produced by the 
echo response can be easily obtained with the aid of the con- 
tinuity equation for the surface oscillations. 

4. The hydrodynamic echo in a strongly inhomogen- 
eous plasma-vacuum transition layer has a number of fea- 
tures in common with cyclotron echo in a magnetized plas- 
ma.99" In fact, a plasma receiving three successive pulses of 
frequency a,, at times t = 0, T ,  and T emits pulses at the 
same frequency at the instants ( n  + 1 )T and T + nr ,  where 
T >  27 and n  = 1,2, ... . These pulses were named two-and 
three-pulse cyclotron echo, respectively. The hydrodynamic 
echo also takes the form of a sequence of equally spaced 
pulses, if account is taken of the possibility of generating 
responses of higher orders, excited by the two- and three- 
pulse echo signals considered in the present article. For ex- 
ample, the second external-perturbation pulse ( t  = r )  and 
the two-pulse echo signal ( t  = 2 ~ )  generate a third-order 
echo at the instant t = 37. 

This analogy between the cyclotron- and hydrodynam- 
ic-echo patterns is due to the qualitative similarity of their 
mechanism. Cyclotron echo can be produced if the equa- 
tions describing the cyclotron motion of the electrons con- 
tain nonlinearities. Such a nonlinearity may be due to the 
dependence of the collision frequency of the particles on 
their velocities, on the non-uniformity of the magnetic field, 
etc." In our hydrodynamic-echo case, Eqs. ( 1) and ( 2 )  de- 
scribing the plasma are intrinsically nonlinear. 

The most interesting feature of the three-pulse echo is 
its dependence on the electron-fluid friction force, in other 
words, on the effective frequency v of the electron-momen- 
tum transfer. If the delay time T of the third pulse is such 
that vT- 1, the three-pulse echo is substantially weakened 
by electron friction. It can be seen from Eqs. ( 17) and ( 1 8 )  
that by specifying the ratio of the amplitudes ai3' and a:" 
for two delay time T,  and T,, respectively, one can calculate 
the effective electron momentum-transfer frequency: 

From the experimental standpoint, the most convenient 
situation is one in which the macroscopic external peturba- 
tion is attenuated, at the plasma-resonance point with decre- 
mentp, [see Eq. (5 )  1, within a time shorter than the inter- 
val between the pulses, i.e., p, r S 1 .  On the other hand, bulk 
plasmons that preserve in the transition layer information on 
the extraneous perturbation, should not manage to attenuate 
within the delay time of the third pulse. Such an attenuation 
can be due either to electron friction or to thermal outflow of 
plasmons from the plasma-resonance region.' The condition 
for the validity of Eq. ( 19)  is therefore 

where r,, is the electron Debye radius and x, is the coordi- 
nate of the plasma-resonance point at which the surface- 
wave frequency is equal to the local Langmuir frequency. 
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