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The problem of calculating the energy shift of hydrogen-like levels of ions due to the polarization 
of free charges in a plasma is analyzed. A linearized statistical model is used to provide a self- 
consistent description of the screening of a nucleus by plasma charges and a localized electron. An 
expression asymptotic in the parameter r, /rD < 1 is obtained for the energy of the polarization 
shift (r, is the characteristic size of the orbit of a quantum electron and rD is the Debye radius of 
the plasma). These results agree well (in the range ofvalidity of the model) both with the 
available experimental data for the He 11 ions and with the author's own numerical calculation 
based on a nonlinear statistical model of the screening. 

1. INTRODUCTION 

The problem of determining the energy of the polariza- 
tion shift of quantum levels of ions and atoms in a plasma has 
been studied for some time (for reviews see, for example, 
Refs. 1-3). There is a fairly large number of approximate 
models which sometimes give the opposite signs for the ener- 
gy of the polarization shift (Ref. 3) .  This is due to the diffi- 
culties encountered in a self-consistent description of the 
screening of the nuclear charge by a quantum electron in the 
presence of free electrons and ions in a plasma. The most 
rigorous description of the polarization shift is, in the pres- 
ent author's opinion, that given in Ref. 4 and based on simul- 
taneous self-consistent solution of the nonlinear Poisson 
equation for the total potential and of the Schrodiilger equa- 
tion for a bound electron. The nonlinear relationships 
between the concentrations of free electrons and ions in a 
plasma, on the one hand, and the total potential p, on the 
other, were determined in Ref. 4 by assuming classical statis- 
tics. The numerical calculations given in Ref. 4 demonstrat- 
ed in particular that at very high densities (at n, - 
cm-3 in the case of the Ne VIII ions and Ly, lines) there may 
be a change in the direction of the polarization shift. Only in 
the range of such high concentrations and at high tempera- 
tures can we use, for example, the model of screening by a 
"frozen-in" electron gas,5 which predicts line shifts in the 
direction of shorter wavelengths. It should also be men- 
tioned that the use of the linearization (by analogy with the 
Debye-Hiickel screening theory) in the case of the system of 
equations obtained in Ref. 4 makes it possible to write down 
the general solution of the equation for the self-consistent 
potential in terms of the appropriate Green's function (see 
Ref. 6).  

The existence of a "red" shift in the case of the n = 4, 5, 
6-n' = 3 transitions in hydrogen-like He 11 ions was dem- 
onstrated quite clearly in the experiments reported in Ref. 7, 
which involved a Z-pinched discharge at moderately high 
plasma densities njO' - ( 1-8) X 1016 cmP3 at temperatures 
T-4 eV. The authors proposed also a simple theoretical 
model for the interpretation of the experimental results 
based on the Debye (linear) screening model and on the 
assumption that the quantum electron is point-like (see be- 
low). This assumption is justified by the fact that the orbit 
size r, is usually much less than the Debye plasma radius rD . 
It is shown that the main term ( Z  - 1 )/rD of the series ex- 
pansion of the energy of the level polarization shift is inde- 

pendent of the quantum numbers n and I (see also Ref. 6) ,  so 
that the line shifts are governed by terms of higher order, r, / 
6. Hence, it is clear that the shift of the levels should be 
calculated sufficiently accurately and this is indeed the rea- 
son for the failure of a number of attempts to describe the 
polarization shift of lines using fairly rough non-self-consis- 
tent models. 

We shall use the Debye (linearized) model of the 
screening which allows self-consistently for the existence of 
a quantum electron and we shall consider the problem of 
calculation of the energy of the polarization shift of hydro- 
gen-like levels in a plasma. Using the solution for the self- 
consistent total potential obtained asymptotically in the pa- 
rameter r, /rD 4 l ,  we shall obtain analytic expressions for 
the polarization shift of levels and we shall include terms 
dependent on the quantum numbers n and I. The solutions 
obtained, which allow correctly for the presence of a spatial 
distribution of the quantum electron, are valid for any nu- 
clear charge Zof the ions, in contrast to the solution given in 
Ref. 7, which is valid only if Z %  1. For example, this solution 
makes it possible to find the polarization shift of lines of the 
hydrogen atom in the Z = 1 case, which is toward shorter 
wavelengths, i.e., opposite to that observed in the case of 
ions. It should be pointed out that in estimating the total 
shift of hydrogen lines we must allow for the competing 
mechanism of the Stark quadrupole shift of the levels (see 
Refs. 8 and 9) .  

We shall also report numerical calculations of the po- 
larization shift in the case of a nonlinear model of self-consis- 
tent screening. In the range of validity of the Debye model, 
i.e., when n X ( Z / T  [eV] ) ' I 2  (see below), the results of nu- 
merical calculations are described well by analytic formulas 
derived below and are also in agreement with the experimen- 
tal data reported in Ref. 7 for the n = 4, 5,6- n' = 3 transi- 
tions in the He 11 ions at T = 4 eV when ny'- ( 1-8) X 1016 
~ m - ~ .  

2. FORMULATION OFTHE PROBLEM 

We shall analyze the polarization shift of the levels of 
hydrogen-like ions on the assumption that the states local- 
ized in a plasma are those with the orbit size r, Sr ,  
[r, = (3/47~) ' I 3  (n jo' ) - ' I 3  is the average distance between 
the ions in a plasma and njO' is the equilibrium ion density]. 
This relationship imposes limits on the principal quantum 
numbers of the levels in question: 
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Rydberg atoms may exchange charge with plasma ions; the 
process has a large characteristic cross section a,, a m4/ 
Z '. Therefore, these atoms can exist in a plasma if the rel- 
evant collision frequency y,, a a,, vT is much less than the 
frequency w ,  = T ; ' a n-3 of a Rydberg electron and this 
imposes the restriction n 5 8.5 x lo3 (njO' 
[ ~ m - ~ ]  ) - 1 1 7 ( ~  3/T[eV] )'/I4, which is numerically close 
to the condition ( 1 ). Therefore, if njo'- lOI4 ~ m - ~ ,  the lev- 
els localized in the Z = 1 case are those with n < 40. It should 
be noted that in the case of an ideal plasma we have r, <rD 
and, consequently, the orbit radius is much less than the 
Debye radius r, (rD . We shall assume that this condition is 
satisfied. 

The equation for the equilibrium of charges of localized 
and free electrons is as follows (see Ref. 4) : 

where q, is the total potential, n, ( r )  and n, ( r )  are the con- 
centrations of ions with a charge Z and of electrons in the 
continuous spectrum with energies E = p2/2 (0  5 E < CC) ) , 
and $, ( r )  is the wave function of an electron of energy 
E, < 0 localized near the ion in question. We shall be interest- 
ed in the situation when the quantities q,, n,, and n, in Eq. 
(2)  are the values averaged over plasma fluctuations. Since 
n, and n, are nonlinear functions (see below) of the poten- 
tial, it is clear that the replacement of the potential with the 
average value q, is justified for an equilibrium plasma when 
the energy of fluctuations is low compared with the thermal 
energy T, which is indeed true (see, for example, Ref. 10) for 
an ideal plasma, i.e., when the number of particles in a Debye 
sphere is high: n, = ( 4 / 3 ) n y ' ~ r i  % 1. It should be noted 
that in this case the fluctuations of the concentrations of free 
charges n, and n, in the plasma are also small (they are 
proportional to n, "'), so that the use of equations for the 
determination of the average values n, , n,, and q, is statisti- 
cally justified. Within the framework of the Debye model 
[i.e., when Eq. (2)  is linearized] this problem is not encoun- 
tered, because we can then assume that (n, - Zn, ) a q, and 
the average values of the concentrations can be determined 
rigorously in terms of the average values of the potential. 
However, this is one of the reasons why the Debye screening 
model is valid even when n, ( 1, as demonstrated recently in 
Ref. 11, where calculations were made by tracking many 
particles, allowing for the transient nature of the plasma mi- 
crofield because of the motion of the plasma charges. The 
total potential q, is then close to the screened Coulomb po- 
tential ifq, is understood to be the value averaged over a time 
t in which a Debye sphere contains many particles 
[ t >  T~ = (a&NuT ) -'I. It should also be noted that the dis- 
cussion given below applies only in the case of an equilibrium 
plasma characterized by T, = Ti and by the Maxwell- 
Boltzmann distributions of the particles. Otherwise it is nec- 
essary to allow for the effects of the dynamic polarizability of 
the plasma (see, for example, Ref. 12). 

Using equilibrium distributions for free electrons with 
E > 0 and a Boltzmann distribution for ions, we readily find 
that the densities n, and ni subject to the potential q, are 
described by 

(3)  
ni (r) =nJ0) exp ( - z ~ / T ) ,  

where y = q, / T  and 

is the error function. The Debye screening model is applica- 
ble if the nonlinear relationships of Eq. (3)  between the par- 
ticle densities and the potential can be linearized, i.e., if 
y = q, /T< 1. Since to lowest order the potential at distances 
r- r, (of the order of size of the orbit of a quantum electron) 
is close to the Coulomb potential, the condition y<  1 sets an 
upper limit to the quantum number 

Thus, if Z = 1 and T = 0.1 eV, we find that n R 12. It should 
be noted that linearization of Eq. (2)  can be used also by way 
of estimate in the case of lower levels. This is due to the fact 
that the solutions of the linear and nonlinear equations 
should have the same asymptotes in the limit r-0. More- 
over, these limits should be identical in the asymptotic range 
of large distances, where linearization is always justified. In 
the region y = q, /T( 1 allowing for Eq. (3), we readily ob- 
tain 

The corresponding linearized equation is of the form 

r-'(rcp)"=4nZ(Z+I) (TIT) nJ0)+4n$,2=h2cp+4n~n2, 

cp (-0) =Zlr, cp(r+=) = (2-1) lr,  
(5) 

where 

It should be noted that if we ignore the nonpoint nature of 
the charge of a bound electron [assuming in Eq. (5)  that $2, 
= S( r ) ] ,  the solution of Eq. (5)  is the screened Coulomb 

potential (Z - 1 )e - Ar/r. The potential created by the me- 
dium can be found by subtracting from it the Coulomb po- 
tential (Z - I ) / r  of the nucleus Z and the electron e-, so 
that the polarization shift of hydrogen nl levels can be deter- 
mined using perturbation theory: 

Such an estimate of the shift of the levels was obtained in Ref. 
7. We can see that all the nl levels are shifted by the same 
amount - ( Z  - l)/r, because of the arrival of free elec- 
trons at an ion and because of the screening of the field of the 
nucleus by these electrons. The experimentally observed 
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shift of the nI- n'l ' hydrogen lines is governed by the second 
term in Eq. ( 6 ) ,  which is dependent on quantum numbers n 
and I and which is responsible for the stronger reduction in 
the level energies with higher values of n and a correspond- 
ing red shift of the lines. It is clear from Eq. ( 6 )  that the shift 
of the ionic lines is proportional to the charge density in the 
plasma and to the orbit size ( a n2/& -nj0'n2),  as con- 
firmed by the experimental results given in Ref. 7.  It should 
be noted that Eq. ( 6 )  is invalid when the nuclear charge Z is 
large. In particular, in the case of atoms it follows from Eq. 
( 6 )  that the effects are canceled because of the action of the 
nuclear and bound electron charges on the medium, i.e, 
there is no shift. 

3. CALCULATION OF THE POLARIZATION SHIFT USING A 
SELF-CONSISTENT DEBYE SCREENING MODEL 

We shall introduce a screening functionx = re, / Z  for a 
charge Z in a plasma. Applying the linearized model of Eq. 
( 5 ) ,  we obtain the following equation and the relevant 
boundary, conditions needed to determine this function: 

In the zeroth approximation we can regard the wave func- 
tion $,, = (R, , / r )  Y,, of a quantum electron close to the 
Coulomb function of a hydrogen-like ion. In the derivation 
of Eq. ( 7 )  the density of a quantum electron in an nl state is 
averaged over the magnetic quantum numbers using the 
expression 

I 

(21+i)-i (Rnl2Y1,,,/ r  ' ) - -Rn12/4nr2. 
,,,=-I 

The solution of the linear equation ( 7 )  with a given function 
R ; , /Zr is readily obtained by, for example, the method of 
variation of constants: 

m 

Clearly, the functions exp ( + A x )  vary slowly (because of 
the condition r, g r ,  = 1/A)  compared with the function 
R i , / x  in the region of the quantum electron orbit. Conse- 
quently, using expansion as a series 

we can obtain the asymptotic solution of Eq. (8 ) :  

In view of the linearity of Eq. (71, the total potential e, can be 
represented by the following sum: 

where V, is the potential created by a quantum electron, Z / r  
is the Coulomb potential of the nucleus, Vp is the potential of 
the medium created by ions and free electrons in the plasma, 
i.e., 

- 2  drr. 1 r-r' 1 I r-r' 1 

Using Eq. ( 10) for the potential created by a plasma in the 
region of a quantum electron, we readily obtain 

It is this potential ( - Vp ) that determines the energy of the 
polarization shift of the levels, i.e., AE,, = - ( n l  I V, In1 ). 
We can see that the shift due to the first two terms in Eq. 
( 1 1 ) is governed by the reaction of the medium to the system 
formed by a nucleus Z and an electron, which are located at 
the same point ( r  = 0 ) .  This shift is naturally given by Eq. 
( 6 ) .  The third term in Eq. ( 1  1 )  is negative and it appears 
because of the spatial distribution of the charge of a quantum 
electron, which results in a stronger screening due to the 
additional inflow of free electrons to the center. The binding 
energy of a quantum electron then decreases. 

We shall first consider the polarization shift of high lev- 
els n ) 1 characterized by small values of the orbital momen- 
tum 1-4 n. In this case it is natural to describe R,, quasiclassi- 
cal wave functions 

where k, = ( Z / r  - Z 2/2n2)"2 is the radial wave vector. 
Averaging over oscillations of the wave function gives 

Substituting this expression in Eq. ( 1 1 ) and applying pertur- 
bation theory to determine the polarization shift (i.e., 
AE,, = - ( n l  I Vp In1 ) ), we obtain 

where 
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Here, B(a ,  p) is the beta function and AE ~f'corresponds to 
the contribution made to the polarization shift by the three 
terms in Eq. ( 1 1  ). As expected, the first two are exactly 
identical with Eq. ( 6 ) ,  i.e., the use of semiclassical functions 
introduces no error. Less trivial is the calculation of the inte- 
grals in Eq. (13c ) .  Altering the order of integration in the 
first of the integrals in Eq. ( 13c) and applying integration by 
parts, we can obtain 

Using the recurrence relationship13 for a partial beta func- 
tion 

It (a ,  P)=tZt(a--4, p)+(l-t)ft(a, P-1) 

and integrating the integrals in Eq. ( 1 4 )  by parts, we find 
that certain operations yield the relationships 

Using these relationships, we obtain the polarization shift 
AE $' due to the spatial nonpoint nature of a quantum elec- 
tron 

Therefore, all the levels experience the same shift AE ,!;' 
= 11 ( Z  - 1 ) independent of n  as well as a shift dependent on 

n, which governs the polarization shift of the lines: 

In the case when Z = 1, we obtain AE ,!:' + AE !,:' 
= O.3A 2n2, for Z = 2  we find that - - 0.2311 ' n2 ,  for Z = 3  

we have - - 0.411 2n2, and for Z-  cc the result - - 0.75A 2n2 is identical with that given by the model of 

Ref. 7. We can see that in the case of hydrogen with Z = 1 
the n-dependent shift results in the level expansion, in con- 
trast to the case of ions with Z > 1  when the binding energy of 
the levels increases. The corresponding spectral lines of the 
hydrogen atom experience a "blue" (and not red, as in the 
case of ions) polarization shift. The magnitude of the effect 
is even greater than for He 11 ions, but the resultant direction 
of the shift for H I is governed by competition with the qua- 
drupole Stark 

We shall now consider the case when I- n. The orbits of 
a quantum electron are then close to a circle of radius 
r-r, = n2. Expanding the Coulomb wave function as a se- 
ries at a stationary point, we obtain 

exp (2n-4n In n f  2n In r-2rln) 
m ,  

(nn) '" 

exp {- (r-n2) ' / n )  
x. 

(nn) '" 

Clearly, in the case of sufficiently large values of n this func- 
tion is close to the 6 function, which corresponds to a circu- 
lar orbit. We shall therefore assume that R =:S(r - n 2 / Z )  
for an ion with a charge Z. This approximation allows us to 
calculate readily the integrals in Eq. ( 1 1 ). The nonpoint part 
of the potential of the medium and the polarization shift are 
then described by 

( 3 )  n2 1  Zr n2 v, = - - h2r [ ( - I ) + ]  for ,<-' 
2 Zr 3 nZ Z 

(S ) -  1 han4 n2 ( 1 7 )  
V ,  - --- for r>- 

6 rZ2 Z 

and, correspondingly, 

We can see that for Z s  1, this result is identical with both 
Eqs. ( 15) and (6), because in this case the nonpoint nature 
of a quantum electron is unimportant. If Z = 1 ,  the n-depen- 
dent shift of the levels with I<n is approximately twice that 
in the case when I- n.  This is due to the fact that the electron 
charge is shifted away from the center further in the case of 
elongated orbits, so that the average orbit size (r)., - 3n2/ 
2 2  in the I <  n case exceeds ( r )  ,,, - n 2 / Z  in the case when 
I-n. 

4. NONLINEAR MODEL OF SELF-CONSISTENT SCREENING 
AND DISCUSSION OF RESULTS 

We shall now analyze the numerical solution of the non- 
linear equation ( 2 ) .  Using the expressions in Eq. ( 3 )  and 
introducing dimensionless parameters 

we can rewrite Eq. ( 2 )  in a more convenient form 
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The following notation is used above: 

where the screening functions X ,  and xP are introduced in 
such a way that the potential q,, = Z,,, / r  corresponds to the 
potential created by a nuclear charge and a quantum elec- 
tron (i.e., Ap, =  IT$,?, ), whereas q$ = Z x p / r  corresponds 
to the potential created by plasma charges. It should be 
pointed out that, in accordance with Eq. ( lo) ,  the screening 
function X ,  is described by the expression 

Note that the potential q, (and, consequently, the function 
X )  should show reversal of the sign in the case of screening of 
the hydrogen atom, i.e., when Z  = 1. In fact, multiplying 
Eq. (2) by 2, integrating with respect to dr from 0 to co , and 
allowing for the boundary conditions and the normalization 
of the wave function of a quantum electron, we readily ob- 
tain the following relationship: 

It follows from this relationship that in the case of screening 
of neutral atoms the total charge of free electrons reaching 
an atom from infinity is zero (in contrast to the screening of 
ions when we have Z ) 2 ) ,  i.e., there is only polarization of 
the plasma and free electrons expelled by a quantum electron 
are displaced toward the ion core. Clearly, this behavior of 
the plasma charges is possible only ifthe total potential q, has 
a variable sign, because the excess of electrons in the region 
of a nucleus corresponds to q, > 0, and a deficiency in another 
region corresponds to q, < 0. The expressions in Eq. (3)  are 
not valid for q, < 0, but-as demonstrated by the solutions 
given below-in the region q, 5 0 we can accurately use a 
linearized model of Eq. (7),  which is valid for any signs of 
the potential q, if y = q, / T <  1. Equation (20) is then of the 
form 

FIG. 1. Energy shift of the lines due to n-2 transitions for H I atoms 
(curve 1) and He 11 ions (curve 2). The dashed curves are calculated on 
the basis of Eq. ( 15) and the continuous ones represent numerical calcula- 
tions based on the nonlinear screening model ( T = 1 eV, r ,  = 2 5 0 ~ ~ ) .  

FIG. 2. Dependence of the relative shift of the 4- 3 ( a ) ,  5 - 3 ( b ) ,  and 
6 -  3 ( c )  lines of He 11 ions on the electron concentration njo' in a plasma 
( T = 4 eV). The continuous lines are calculated using Eq. (24) allowing 
for estimates7 of the contribution of the quadrupole Stark effect. The 
points are the experimental values.' 

Therefore, in the numerical calculations a start is made at 
r  = 0 using the solution of the nonlinear equation (20) and 
in the region y = q, /T< 1 (i.e., in the asymptote of the solu- 
tion) this equation is replaced with the equivalent-in this 
range-Eq. (23). 

The results of calculations of the polarization shift for 
the n -+ 2 (n = 3-8) transitions in H I and He 11, carried out 
using the framework of the nonlinear screening of Eq. (20), 
are compared in Fig. 1 with those obtained using analytic 
expressions of Eq. ( 15) in the linearized model. 

It follows from Eq. (4)  that the linearized model is val- 
id for n>4 and n>6 for the cases Z  = 1 and Z  = 2, respec- 
tively. It is clear from Fig. 1 that the error of the linearized 
model amounts to more than 100% at n = 3, that it de- 
creases on increase in n and that where the linear model is 
valid it is less than 30-40%. Therefore, we can draw the 
conclusion that Eqs. ( 15) and ( 18), obtained, give satisfac- 
tory results in a self-consistent Debye model of the polariza- 
tion shift in the range where the condition (4)  is obeyed. 

Under the experimental conditions of Ref. 7, when 
n = 4,5,6-n' = 3, Z = 2, and T  = 4 eV, the condition (4)  
is satisfied if n X 3. Consequently, if we use Eqs. ( 15) and 
( 18) to average approximately over 1 and 1 ', we find that the 

FIG. 3. Screening functionx of the total potential for He II ions (curve 1 ) 
and He I atoms (curve 2) .  

11 15 Sov. Phys. JETP 67 (6), June 1988 V. S. Marchenko 11 15 



relative shift A d a ,  of the lines for the n - n' transition is 

It is clear from Fig. 2 that the values of the relative shift Aw/ 
w ,  calculated using this expression for different n -+ n' transi- 
tions agree well with the corresponding experimental re- 
sults. Estimates of the short-wavelength shift due to the qua- 
drupole Stark effect in the case of ions, obtained in Ref. 7 on 
the basis of the theory of Refs. 8 and 9 for given plasma 
parameters, give values smaller than the corresponding po- 
larization shifts. We can therefore assume that the experi- 
mentally observed red shift of the lines is due to the polariza- 
tion effect. 

Figure 3 shows the screening functions for the total self- 
consistent potential q, in the case of the hydrogen atoms H I 
and helium ions He 11, obtained by numerical solution of Eq. 
( 2 0 ) .  As expected, the potential in the Z = 1 case has vari- 
able sign. We can see also that in the region of the minimum 
of the potential at r-rmin = (70-80)a, the linearization of 
Eq. ( 2 )  is justified, because we then have q,(rmin ) / T - 2  
X 1 .  It should be also pointed out that the point r,*, at 
which q,(r,*) = 0 ,  separates the region of a positive charge 
from a negatively charged region r > r,. The kink in the curve 
~ ( r )  for the Z = 2 case observed at r z r ,  = 25a0 is related 

to the change in the screening regime, because for r < r ,  the 
screening is mainly due to a quantum electron, whereas for 
r > r ,  it is due to free charges in a plasma. 
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