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The mechanism for the appearance of a relativistic string binding quarks in a hadron is analogous 
to a second-order phase transition in statistical physics. The number of colors Nplays the role of 
the inverse temperature. The critical value is N, = 1. 

Nonabelian SU(N)-gauge theory simplifies1 in the lim- 
it of a large number of colors N> 1. In this limit the basic 
properties of the theory are preserved and the 0( 1/N) cor- 
rections are small. The central unsolved problem consists in 
evaluating the term of zeroth (leading) order in 1/N. When 
the usual fields of quarks and gluons are used as dynamical 
variables, there arise in leading order an infinite number of 
planar diagrams with all possible gluon exchanges, whose 
totalkontribution is unknown. On the other hand, it was 
shown in Ref. 2 that the 1/N expansion represents the quasi- 
classical limit in the parameter 1/N. That means that the 
functional integral (statistical sum) over the color variables 
should be performed by the saddle-point method (in Euclid- 
ean space R 4) .  In doing this it is necessary to find the stable 
configurations of fields that extremizes the action S. To this 
end it is convenient to pass to new, more adequate variables, 
in terms of which the fluctuations are small, of order - 1/N. 
An analogous approach was used by Landau3 in the theory 
of phase transitions. Moreover, if the resultant extremum 
SeR is connected with a (spontaneous) reduction of the 
original gauge symmetry to a smaller subgroup, there arises 
a phenomenon similar to a second-order phase transition in 
condensed media. We shall show below that it is precisely 
such a mechanism that results in the appearance of a chro- 
moelectric string with quarks at its ends in leading order in 
1 /N. 

We consider the Euclidean correlator K ( l  ..., n ) ,  con- 
taining n field operators of constituent mesons 
i$z (x)$, (x), where $, stands for the field of the quark 
q ( c  = 1, ..., N), ($'$I* = $'$* = - $'$: 

[i$+ (xi) $ (xi). . . iq+ (x,) 9 (4 l exp  

internal O( 1/N) quark loops, we write the connected part of 
( 1 ) in the form4s5 (for simplicity we use scalar quarks) 

We made use here of the representation of the quark propa- 
gator in the field A by an integral over paths x, (y )  and 
metrics A ( y )  on the contour T.637 The variable y parame- 
trizes the closed contour T, which arises by confluence of the 
q and ?j trajectories at the points x,,  ..., x,, with 
x, (0) = x ,  ( I ) ,  x, = dx,/dy. Further, we used in (3)  the 
notation 

For the purpose of going over to S '' it is convenient to 
rewrite C(T)  as an integral over Grassman fields f, (y) ,  
describing the color spin of the quarks4,": 

Following these manipulations Eq. (3)  takes on a form con- 
venient for the application of the saddle-point method: 

( 2 )  +*I. 1 d'z G.:G.:. 

D, = 13, + ie(Aa/2)AL =a, + iA,, B is a normalization (7) 

constant, e2 = ei/N. Integrating over $ and throwing away The choice of more suitable variables is based on the follow- 
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ing arguments. It follows from SS/& * = 0 that 

where g(0) is arbitrary. 
The field (8)  maps the contour r into the group 

SU(N), which is trivial since T, [SU(N)] = 0 for N ) 2 .  An 
exception is provided by the case of spontaneous symmetry 
breaking down to the local subgroup U( 1 ), since 
T ,  [ U( 1 ) ] = Z. Hence quantization arises9 of the chromoe- 
lectric current of the gauge field on an arbitrary surface Z 
with boundary aZ  = T. In the quasiclassical approach one 
must have a stable extremum of the actions. It is known that 
stable field configurations consist of topologically nontrivial 
solutions of the classical equations of motion. 

This quantization of the current can only stabilize the 
field configuration if it is the full current of the field that is 
being quantized, and not some arbitrary part of it. Since the 
contour r represents a one-dimensional boundardy dZ, such 
a requirement will be satisfied by quasi-two-dimensional 
fields that "live" on surfaces B with injection x, = x, (7' ) 
and dB = T, 

We therefore make a change of variable, introducing under 
the integral sign in (6)  the unit functional 

with the ~acobian of the transformation given by 

Thereafter the correlator (6) will contain integration over 
two-dimensional fields A P(7) for fixed surface Z followed 
by summation over all surfaces (i.e., over x, (7) =xX ): 

.Ec' (0) ex~(-iEd (0) g,'(O) -s:"), 
(11) 

where 

gik = (dx,/dvi) (ax,/aqk) is the metric induced by the in- 
sertion x, = x, (7) into R 4. For fixed surface I; the S-func- 
tion in ( 10) picks out fields defined only on that surface. The 
volume element d 4~ is replaced by d '7 glJ2S2, where S is the 
size of the cells that R is divided into when evaluating the 
functional integral in ( 1 ). Correspondingly we redefine the 
field and charge in ( 12): A 7 + A  :S, e-e/S=&, as is dictated 
by the requirement that the action S eff be dimensionless (it 
is understood that no physical quantities can depend on S 9).  

Here and above it is understood that 

The variation SS "/SA q = 0 gives rise to the equations of 
motion for A'' (7) on I;: 

and the boundary conditon on dZ = r :  

[g"'G".'a(q(~))ei,+~T"(~)6.h]]a=0, (14) 

where T a  ( y )  is the color spin of the quark and e, is the 
antisymmetric unit tensor. Equation ( 13) has a solution, 
which spontaneously breaks the original gauge symmetry 
down to the local SU(N - 1 ) subgroup: 

G"1 i k ( q )  =eeiVLh(q)P(q)  for DiabIb(q) =U. ( 15) 

It follows from Eq. ( 14) that the square of the covariantly- 
constant vector P (7) is equal to the square of the color spin 
of the quark: 

As a result of condition ( 14) the potential A'', correspond- 
ing to ( 15 ), reduces on dB = r in essence to an abelian U( 1 ) 
field, which ensures topological quantization of the phase 
c' ( y )  in Eq. (8)  (see Ref. 9, Sec. 4).  At the extremum S '* 
reduces to the well-known action for string and quarks. 

Here k, = E ~ I  2/2 is the bare string tension coefficient. As a 
result of current quantization the action S,, [ A ]  in (12) 
and ( 17) is also quantized9: 

The index Q [the number of "windings" of the phase 
c' (7) ] has a gauge-invariant representation in terms of the 
first Chern class 

and defines the different topological sectors. 
As a result the string field A" (7) is stable against small 

fluctuations SA." [In the gauge in which I" = const, the 
field A'' has the form9 

where g, is the metric of constant curvature R = - 2~~ on 
2. I 

The calculation of the contribution of Gaussian fluctu- 
ations SA to S '"' for N s  1 was performed by the author and 
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will be described in a separate paper. Here we just give the 
answer (for conformal coordinates 7, = U, u): 

Since IR I -e2- 1/N, [a, ln(g;l2) ] '- l/NZ, the contribu- 
tion of the fluctuations is AS '' - 1/N, i.e., small for N) 1, as 
it should be in line with the logic of the quasiclassical expan- 
sion in the 1/N parameter. 

The expressions ( 15)-(20) describe for Q # O  the non- 
perturbative phase (or the confinement phase), the sector 
with Q = 0 corresponds to the perturbative phase. 

The inverse of the number of colors 1/N plays in our 
approach the same role as the constant fi  in the usual quasi- 
classical approach or the temperature Tin statistical physics 
(this last can be seen from the analogy between the func- 
tional integral and the statistical sum). 

The appearance of the nonperturbative phase is con- 
nected with the lowering of the original symmetry, so that 
we have a phenomenon analogous to second order phase 
transition in statistical physics. The role of the order param- 
eters is here played by the quantity p = (PP ) 'I2. In the 
standard theory of phase transitions3 the temperature de- 
pendence of the order parameter near the transition point Tc 
to the nonsymmetric phase has the formp - ( Tc - T) 'I2. In 
our case the same behavior occurs near Tc [see ( 16) 1, with 
Tc = l/Nc = 1. In this manner, in passing to the abelian the- 
ory ( N  = 1 ) the confinement phase automatically disap- 
pears. 

The appearance of several characteristic features 
[quantization of the action ( 18),  constancy of the curvature 
R  of the surface I;, the additional Jacobian in ( 11 ) ] permit 
one to hope that the present approach will be free of the well- 
known difficulties that beset quantum string theories (un- 
physical dimension of the space R d ,  appearance of ta- 
chyons). 

The author is grateful to M. V. Terent'ev, M. A. Shif- 
man and V. S. Popov for useful discussions. 
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