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A novel class ofself-dual solutions in the O(3) umodel with half-integer topological charge 
Q = 1/2 is considered. The contribution of the corresponding fluctuations to ($$) is calculated. 
The result turns out to be finite, indicating spontaneous chiral symmetry breaking. Various 
possible descriptions of such fluctuations are considered, such as analytic continuation to 
complex space and the alternative description on orbifolds. 

1. INTRODUCTION bution to (A ') and can ensure nonzero values only for the 
At this time the best-known example of a nonperturba- correlator (A '(x) ,A '(0)) .' 

tive fluctuation is the instanton.Is2 The integral nature of the As will be shown below, analogous behavior occurs in 
topological charge Q is in that case related to the compactifi- the supersymmetric 0( 3 ) o model. In that case, as in SYM, 
cation of the space to a sphere, i.e., with the identification of there is present naive c h i d  symmetry $-+exp(ia~5)$,  
all infinitely distant points. The choice of other boundary which is broken by the anomaly 
conditions could result in fractional topological charges. In 1 1 d, ,~ , ,=4-  E,.F,,., Q = J E, , . ,F~, d2x .  
particular, in gluodynamics with the SU(N) gauge group h.rr 

(1 
- - -  

the introduction of so-called twisted boundary conditioni3 
permits solutions of the classical equations-torons4-with 
Q =  k/N, k =  0,1, ... and with act ions= (8a2/g2)Q. 

The possible physical manifestations of such fluctu- 
ations will be discussed below, for now we note3x4 that the 
admissibility of fractional topological charge in SU(N) 
gluodynamics is related to the existence of elements of the 
center Z, = exp(2n-ik /N), which belong to the group and 
leave invariant the fields of the adjoint representation, i.e., 
gluons: A ; = Z ; 'A,Z, = A,. Thus, in effect, the group 
isSU(N)/Z,, and the nontriviality of the map n-, [SU(N)/ 
Z, ] = Z, implies the existence of new (non-instanton) so- 
lutions of the classical equations. 

Introduction of the fields in the fundamental represen- 
tation (quarks) naively violates the SU(N)/Z, symmetry. 
However, in Ref. 5 the hypothesis was presented that for a 
class of theories fluctuations with fractional topological 
charge may be significant also in this case. It so happens that 
the O(3) u model belongs to this class of theories, and pre- 
sents therefore a perfect theoretical laboratory to help un- 

Here the discrete symmetry Z4 is conserved. The toron-like') 
solutions described in Sec. 4 ensure nonzero values for ($$), 
thus spontaneously breaking the discrete symmetry down to 
Z,: $-+ - $. This agrees with the value of the Witten index,x 
which equals two. 

We note that in this case, too, the instanton can only 
ensure nonzero value for the correlator ($$(x),$$(o) ).9.10 

The paper is organized as follows. In Sec. 2 the O(3) o 
model is formulated in terms of various fields: the unit vector 
field na, a = 1,2,3, nu na = 1; the complex field p, the unit 
complex spinor u,, a = 1,2, u'u = 1. The various formula- 
tions help to understand different aspects of the fluctuations 
with fractional Q. Section 3 carries a double load. On the one 
hand, we describe in it the well-known instanton calculation 
within the context of interest to us. On the other hand, we 
formulate (needed for later analy~is) the criteria for selec- 
tion of zero modes. Moreover, the connection between dif- 
ferent descriptions of zero modes will turn out to be useful in 
the corresponding analysis of the toron calculation. 

derstand the role of fractional Q in the analysis of more com- 2m THE 0(31 M ~ D E L  
plex gauge models. 

This is precisely the purpose of the current work-to 
find a means for the description of solutions with fractional 
Q in the O(3) u model and to calculate the contribution of 
the corresponding fluctuations to the functional integral. 

What physical effects arise due to fluctuations with 
fractional Q? These effects appear most glaringly in super- 

. . 

Before describing the toron solution we discuss the du- 
ality equations and the Lagrangian for the ordinary (not 
supersymmetric) O(3) u model. The modification due to 
introduction of fermions will be considered in later Sections. 
The action, the topological charge and the equations of dual- 
ity have the following form in terms of the fields na ': 

- - 

symmetric variants of the theory. In particular, in supersym- 8 = - 1 ~ d ' ~ ( a ~ n ~ ) ~ ,  nana= l ,  a = 1 , 2 , 3 ,  p=1 .2 .  
metric Yang-Mills theory (SYM) with the SU(2) gauge 4 f  
group, torons4 ensure spontaneous breaking of discrete 

Q = d 2 z  robc~,,,na8,.nb8.nc, 
(2)  

chiral symmetry. Indeed, the model possesses naive U( 1 ) 8n 
chiral symmetry with respect to the transformations A" d , , n " = - ~ ~ ~ ~ n ~ ~ , , ~ d ~ n ~ .  
-exp(ia)Aa (Aa is the gluino fleld), which is broken by the 
anomaly d, a, - G,, GP,. However, under this transforma- Here f is the bare coupling constant. 
tion the discrete symmetry Z4 is conserved. The torons gen- As usual, for the quasiclassical calculation it is neces- 
erate the condensate (A *) and break this symmetry down to sary to expand the field nu in the neighborhood of n:, , keep- 
Z, (A - - A).6 Let us note that instantons give zero contri- ing only the quadratic terms. Then the problem of diagona- 
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lizing the resultant bilinear form reduces to the following 
equation for the eigenvalue~".'~: 

R20,=hlq,, qla n:] = 0, 
.l 

where A, is the I th eigenvalue, and q, the corresponding ei- 
genfunction, orthogonal to the classical solution and nor- 
malized by the condition 

J e z  qyqlb(~wn:l 12= 1. (4 )  

We note that the supplementary condition qyn:, = Ois due to 
the constraint n2 = (n:, + q")' = 1. 

As usual, the transition amplitude is normalized rela- 
tive to vacuum, for which relations (3)  and (4)  are valid, the 
only difference being that the operator 2J?:,, in (3)  does not 
contain the constant term ( - 2). 

To avoid the complications due to the constraint 
n2 = 1, one often introduces (see, e.g., the review, Ref. 9) in 
place of the three fields na , which live on the unit sphere, two 
independent fields, p, and p2, by means of stereographic 
projection: 

Next one combines p, and p, into one complex field 
p = p, + ip, and introduces the complex variable 
z = x,  + ix, and then reformulates Eqs. (2 )  as follows: 

In the p-field language, taking into account quadratic devia- 
tions is connected with the problem of diagonalizing the fol- 
lowing operator: 

Any supplementary requirements on the modes p,, due to 
constraints, are now absent. 

As can be seen from Eq. ( 6 ) ,  the duality equations have 
their simplest form in the p language, while, as will be shown 
below, the quantum modes are most naturally described in 
terms of the original fields no. Regarding topological ideas, 
it turns out that for the closest analogy with gauge theories 
we need another formulation of the O(3) u model in which 
local gauge invariance is present. 

Namely, we define the action of a CP '-theory, equiva- 
lent to the O(3) a model, as  follow^'^,'^: 

Here ua is a two-component complex spinor, A, is an auxil- 
iary gauge field. In terms of (8)  local gauge invariance has 
the obvious form: 

Equivalence with the original formulation is verified 
with the help of the relations 

where a" are the usual Pauli matrices. We note that the dual- 
ity equations are written in the spinor language very simply: 

In the following Section we shall give a brief description 
of the instanton ca lc~la t ion~- '~  in the context of interest to 
us. Particular attention will be paid to zero modes and the 
requirements that these modes must satisfy. The discussion 
of this question will help us obtain in Sec. 5, practically with- 
out any calculations, the expression for the toron density in 
the supersymmetric O(3 ) a model. 

3. INSTANTONS IN THE 0(3) a MODEL. ZERO AND NONZERO 
MODES 

As is well known, the instanton solution1 

characterized by two complex parameters p and z,, has 
Q = 1 and action S = 21r/f. Without loss of generality we 
take in what follows p = 1, z, = 0. Here we have taken the 
boundary conditions in the form p (z+  co ) = 0, which cor- 
responds to directing n" (z- co ) strictly along the third axis: 
n3(z- C O )  = 1. 

To analyze quadratic deviations from the classical solu- 
tion ( 12) it is convenient to turn in Eq. (3)  and make the 
following change of variables: 

The meaning of 6 and a is obvious-they are the correspond- 
ing coordinates of the sphere obtained with the help of ster- 
eographic projection of the x1x2 plane. In this notation the 
instanton solution has a particularly clear form-the unit 
vector field n" (6,a)  has precisely the direction specified by 
the angles 6,a. 

In terms of the variables 7 ,a  the operator 2J12 in ( 3 ) ,  
subject to diagonalization, is expressible through the stan- 
dard angular momentum operator L ,: 

It follows that the eigenvalues A, of the operator 2J?' are 
1(1+ 1)  - 2.'','' We note that the weight with respect to 
which the eigenfunctions q, are normalized in (4)  is precise- 
ly the correct measure for spherical harmonics Y,, : 
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d a  =(a, n:] )212d2x-dxldx2/ (1+xI2+xz2) '-da sin Ode. ( 15 ) 

As was alrady discussed, similar calculations should be 
carried out for the vacuum field, i.e., for p = 0. In that case 
the operator tm2 in ( 14) does not have the term ( - 2). 
Therefore the vacuum eigenvalues are A, = 1(1+ 1 ), and 
the degree of degeneracy is g, = 2(21 + 1). The factor 
21 + 1 needs no explanation; the additional factor 2 is con- 
nected with the two possible orientations of qy, a = 1,2, or- 
thogonal to the classical vacuum solution nzl = P3, directed 
along the third axis. 

Thus the supplementary requirement qyn:] = 0, due to 
the constraint, is easily satisfied in empty space with 
nu = F 3 .  This requirement can be satisfied somewhat less 
trivially in the case of the instanton. Since the instantons 
describe a vector directed along the radius r, the existence of 
two independent vectors lying in the plane orthogonal to r is 
totally obvious. Consequently the degree of degeneracy is 
g, = 2(21+ 1) in the case of the instanton as well. As re- 
gards the explicit form of the eigenfunctions, they are easily 
constructed out of the Y,, ,"." which are eigenfunctions of 
(14): 

As expected, there are two types of independent modes or- 
thogonal to the instanton solution a r: 

We are now ready to count the zero modes. For the instanton 
this corresponds to the value I = 1, g = 2(21+ 1 ) = 6, 
il = 1(1+ 1 ) - 2 = 0. We note that to 1 = 0 correspond the 
modes ( 16), which vanish identically. 

For empty space the zero modes correspond to 1 = 0 
and have degree of degeneracy g = 2. These two modes cor- 
respond to the freedom in the choice of boundary conditions. 
Analogous two modes are present also in the instanton field 
and they were included in the g = 6 calculation. Conse- 
quently the number of nontrivial zero modes in the instanton 
field equals 6 - 2 = 4. What do these modes look like in the 
p-field [Eq. (S)] language? Upon substitution of 
n = n,, + f and p = p,, + f If2Spi, where q, is any of 
the zero modes (16) with 1 = 1, i = 1,6, we arrive with the 
help of ( 5  ) at the following connection between the modes qi 
in terms of the n-field (3), (4)  and the modes Sp  in terms of 
the p-field ( 7 1. 

When we substitute explicit expressions for q from ( 16) for 
I = 1, we readily see the four nontrivial modes are associated 
with Sg, a l/z, 1/z2; the two remaining modes, connected 
with changes in boundary conditions, are associated with the 
non-normalizable function Sp = c. How can these results be 
understood directly from Eq. ( 7 ) ?  Looking at (7),  one sees 
that to the solution il = 0 corresponds an arbitrary analytic 
function. By means of what criteria do we choose only 
Sp  cc l/z,l/z2? 

The answer is that we require that the modes be single- 
valued and the topological charge fixed.I5 This is satisfied 
only for the functions Sp  cr l/z, l/z2. Anticipating events, we 
also formulate requirements for fermionic zero modesI5: 

. . 

( I $ ) < C ( ~ ) ~ ~ ~ ~ - C / Z ~ ,  2-0. 

In the O(3) a model this requirement is satisfied by precisely 
two complex r n o d e ~ ~ . ' ~ :  

We also note that the normalization integral (7 )  diverges 
logarithmically for the mode Sp  cc l/z for large z. However, 
as noted in Ref. 15, this fact has no effect on the physical 
content of the theory. We shall run into analogous behavior 
also in the case of torons. 

We pause briefly to mention the contribution of the 
nonzero modes. To calculate this accurately requires knowl- 
edge of the eigenvalues 1(1+ 1) - 2, the degrees of their de- 
generacy 2 (21 + 1 ), taking into account the regulator fields, 
etc.",'' However, up to logarithmic accuracy, the total con- 
tribution of the nonzero modes can be easily calculated with 
the help of the usual Feynman diagrams, as was done for 
gauge theories in Ref. 16. In particular, for the O(3) amodel 
in terms of the p-field (6)  the effective addition to the action 
is determined by Fig. 1 and equals 

2n 
S=-+AS, f 

Here the factor 2 in front of the integral is connected with the 
four-point vertex in the Lagrangian 2d, pa,F(@); the up- 
per cut-off is determined by the regulator M g ,  the lower by 
characteristic field dimension - 1. Further, the operator 
)a, p 1' is complementary to the appropriate O(3)-invariant 
expression 18, p 1 2 / (  1 + $ 5 ~ )  *to within higher-order correc- 
tions in the coupling constant J Substituting in (21) 
f S,, = 2 a  we arrive at the well-known expression1'-" for 
the contribution of the nonzero modes: 

AS"O"zer0 = In M ;  (22) 
Collecting all factors together we obtain the following 
expression for the instanton density in the O(3) a mod- 
el'l,12: 

Z=exp (-2n/f) Mo'd2zod2p exp (-ln MoZ)/p2. (23) 

Here the factor exp( - 2a/f ) is connected with the classical 
action; d 'z,d 'p corresponds to integration over the four col- 
lective variables ( 12); M :  is the regulator contribution, cor- 
responding to the four zero modes mentioned above; l/p2 is 
reconstructed by dimensional arguments. 

For the supersymmetric variant of the O(3) amodel we 
have additionally the two complex fermion zero modes 
(20), so that the corresponding instanton density equals9.10 

In obtaining (24) we took into account the fact that the 
nonzero contributions cancel between bosons and fermions. 

FIG. 1. 

1097 Sov. Phys. JETP 67 (6), June 1988 A. R. Zhitnitskii 1097 



Further, each complex fermion zero mode is accompanied 
by the corresponding collective integral d 2~ and regulator 
contribution M ;  '. As was to be expected, there appears in 
Eq. (24) the renormalization-invariant combination: 

m'=MO2 exp [--2nlf ( M , ) ]  . (25) 

We have on purpose analyzed in detail the instanton 
zero modes and the requirements applicable to them. In the 
following Sections the corresponding criteria will help us 
choose the "correct" zero modes in the case of the toron. 
Moreover, the various formulations of the O(3)  u model 
described above, will help us to understand substantially dif- 
ferent aspects of the toron solution. 

4. TORONS IN THE 0(3) u MODEL 

We begin with the formulation of the O(3) u model in 
terms of the spinor field (8).  It is not hard to see in that case 
that the action is invariant not only with respect to global 
SU(2) transformations, but also with respect to local U( 1) 
transformations (9) .  However, as remarked in Ref. 5, the 
group of transformations is not simply SU(2) X U( 1 ), but 
G = SU(2) X U( 1 )/Z2, so that rr, (G) -Z2. This last cir- 
cumstance is connected with the fact that a simultaneous 
transformation from the SU(2) group of the form exp (ino, ) 
and rotation exp(in) by angle n from the U( 1) group leaves 
the form of the fields unchanged. Consequently the corre- 
sponding transformations should be identified with unity. 
This means, in turn,5 that the theory admits Q = 1/2 and 
consequently (as will be seen below) multivalued functions 
appear in the description of classical solutions. A geometric 
interpretation of this fact is given in the Appendix. 

Before beginning a consistent description of the toron 
solution we remark on some connections with other work. 
The existence of fluctuations with fractional Q in 2d-theories 
was first noted in Ref. 17 (see also Ref. 18) in solving U( 1 ) 
gauge theories with fermions in the fundamental representa- 
tion of the SU(N) group. Since, just as in the case described 
above, for the model of Ref. 17 G = SU(N) X U( 1 )/Z, and 
rr,(G) -Z,," this provides a formal argument in favor of 
existence of Q- 1/N. 

A second analogy is purely technical2' and connected 
with the recently discussed twisted states in string models 
(see, e.g., Refs. 19 and 20). In that case, too, multivalued 
functions appear in the theory. Single-valuedness is achieved 
by the introduction of covering spaces, analogously to the 
way in which the faction z'I2 is single-valued on two Rie- 
mann sheets. 

As is easily verified, the toron solution with Q = 1/2, to 
whose description we now pass, is a double-valued function. 
Indeed, it is easy to see from (8 ) ,  that the topological charge 
is determined by the phase acquired by the spinor upon com- 
pleting a circle of large radius: 

1 1 1 
= -5 d'x e,.F,. = - 9 A, dx, = --$drp, 

4n 2n,I,+m 2n 

To the standard instanton with Q = 1 corresponds the sin- 
gle-valued function 

Indeed, since u2/u, depends only on z, then, according to 
( 1 1 ), the duality equation is satisfied. Further, after travers- 
ing a large contour the spinor acquires the phase 2n, which 
in accordance with (26) corresponds to Q = 1. 

As was discussed above and in more detail in Ref. 5, we 
admit a larger class of solutions. Namely, upon completion 
of the contour we allow the appearance of an overall factor 
( - 1). Taking into account that a factor ( - 1) arises due 
to analytic functions of the type z1I2, we arrive at the follow- 
ing form of toron solution: 

z-a) 'Ix 
u=l im ( l z -a l - t l z -b ( ) - ' "  

a -b  
(27) 

This solution is defined on two Riemann sheets; real physical 
space corresponds to but one of them. Further, it is easily 
seen, that the duality equation d(u2/u, )/Z = 0 is automati- 
cally satisified; moreover, upon completion of the large cir- 
cle in the physical space the spinor acquires a phase n, which 
according to (26) corresponds to Q = 1/2. 

We note further that the solution (27) is defined in the 
sense of the limit a -  b. This ensures that a factor ( - 1) 
common to the entire spinor appears when either of the 
points a,b is enclosed. In terms of the field y, = u,/u ,, Eq. 
( 101, the solution (27) corresponds to the function 

cp = lim [ ( z -  b )  / (z-a)  1'" 
a+b 

with a cut, tending to zero as a-b, i.e, in terms of the field y, 
the limit a+ b means reestablishment of single-valuedness 
on one physical sheet. [We note that geometrically the pas- 
sage (a + b) is interpreted as regularization ( "blowing up") 
of the fixed points of the orbifold, see Appendix.] 

If one sets a = b from the beginning, then y, = 1, corre- 
sponding to the empty vacuum solution. At first sight this 
suggests that such a solution can lead to no physical effects. 
The analysis carried out above shows, however, that this is 
not so. We shall convince ourselves that in the supersymme- 
tric 0( 3 ) o model the solution ( 27 ) ensures nonzero value of 
the chiral condensate. Analogous behavior arises in the cal- 
culation of the toron contribution to the gluino condensate 
in supersymmetric gluodynamics. Although to the toron so- 
lution4 corresponds a field intensity G,," a 1/L 2 ,  which 
tends to zero everywhere with increasing system size, L + co , 
the condensate turns out to be finite.' 

We return to the analysis of the solution (27). To this 
end, instead of 

cp = lim [ (2-b) / (z-a)  I", 
a-b 

corresponding to the boundary conditions y, + 1 (n '  - 1 ) as 
I z ~  + co, we consider the solution 

cp = lim [ A /  (z-a)  I", 
A-.O 

satisfying the standard boundary conditions p ( z -  w ) = 0, 
n3 = 1 and differing from the original by an overall rotation. 
Now the evaluation of the action (6)  is quite simple: 
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(28) 
As expected, the classical action decreased in comparison 
with the instantion value (2 1 ) by a factor 2. The next stage in 
the calculation of toron density consists, as usual, of an anal- 
ysis of quantum fluctuations. However, as was clarified in 
Sec. 3, the resultant contribution of nonzero modes can be 
written down to logarithmic accuracy immediately, without 
detailed analysis [see (2 1 ) 1 : 

Thus, in passing from the instanton solution to the toron 
solution not only does the classical action decrease (as is 
natural), but also the contribution of nonzero modes is 
smaller by a factor of two. 

In order to reach a deeper understanding of this impor- 
tant3' fact, a detailed analysis is needed of the operator (3) ,  
responsible for quadratic fluctuations. We consider this 
problem next. 

5. EVALUATION OFTORON MEASURE 

We pass now to the analysis of quantum fluctuations, 
surrounding the classical solution (28). To this end it is nec- 
essary to solve the eigenvalue problem (3).  Without loss of 
generality we set, as in the instanton case, a = 0, A = 1. In 
the final relations the corresponding dependence can be easi- 
ly restored by dimensional considerations. 

For further analysis the following change of variables is 
critical: 

In terms of the variables *,a the operator (3)  of interest to us 
becomes the much-studied equation for Legendre polynomi- 
als: 

!DI2=L2-2, 

The difference as compared to the instanton case is two-fold: 
in the first place the expression for 5j in terms of the physical 
coordinates x,,x2 in (30) differs from ( 13). In the second 
place, there appears in (3  1 ) an additional factor 4 in front of 
the term d 2/da2. This last remark turns out to be of principal 
importance in the explanation of the additional factor of 1/2, 
noted at the end of the previous Section. Indeed, the eigen- 
values of the operator !Dl2 (3 1 ), as in the instanton case, 
equal A, = 1(1+ 1) - 2. However the degree of degeneracy 
differs from the instanton case. Thus, the single-valuedness 
of the eigenfunctions fixes the polar angle dependence as 
-exp(ima) .4' After that the eigenvalue problem reduces to 
an analysis of the operator L 2, which contains 2m (where 
- 192m91) in place of the usual integer. Roughly speaking, 

for large I this reduces the degree of degeneracy by a factor 2 
as compared to the instanton case. But In M i  arises precise- 
ly due to summing over large I. Therefore the decrease in the 
degree of degeneracy by two for IB1 gives rise to the appear- 
ance of the factor 1/2 in front of In M i .  Indeed, integration 

over quadratic fluctuations gives rise to the following gen- 
eral relation (vacuum and regular contributions are under- 
stood) : 

Since the values ofA, for the toron and instanton coincide, it 
is seen from (32b) that when gl is reduced by a factor of two 
the logarithmic part of A S  is reduced by the same factor 
relative to the instanton calculation. This confirms the result 
(29), previously obtained by simpler means. 

Our problem, however, was not the derivation of Eq. 
(29) by yet another method. Rather we wanted to demon- 
strate the important criterion for selection of modes, which 
must be taken into account in relations of the type (32). 
Namely, only single-valued modes pl must be included in 
expansions of the form 

It is precisely this requirement that ensures the correct result 
(29). In the instanton case the problem does not arise-in 
the single-valued classical field all modes are automatically 
single-valued. For the toron this is not so. If we were to admit 
in (3  1) functions of the type exp(ima/2), then the degree of 
degeneracy relative to the instanton case would be un- 
changed and we would obtain the wrong answer. 

How should one interpret the fact that p,, 
= lim,,,(A/z)1/2 is not single-valued on the physical 

sheet, while we require the fluctuations p, to be single-val- 
ued? The point is that p,, is defined in the sense of a limit and 
we arbitrarily make it single-valued as A-0 .  The quantum 
fluctuations cannot be influenced in this manner; they are 
created and annihilated with definite probability regardless 
of any outside knowledge. The geometric treatment of this 
requirement is contained in the Appendix. 

We pass to the analysis of the zero modes. They corre- 
spond to the value I = 1, and their number equals 4 (see 
footnote 4) rather than 6 as for the instanton. Since there are 
two zero modes in empty space, the number of nontrivial 
toron modes equals 4 - 2 = 2 (for the instanton 6 - 2 = 4).  
Making use of relation ( 18) we write the toron zero modes in 
terms of the p-field: 

Although this mode, as in the case of the instanton, is logar- 
ithmically divergent for z-. 03 ,  this fact has no bearing on 
the physical content of the theory.I5 Infrared regularization 
is usually achieved by introduction of the factori0 
R = ( 1 + x2/R 2)-1, R + W ,  or by cutting the integral off 
from above9: 

R 

In the following relations infrared regularization is under- 
stood, although not explicitly indicated. 

Were we to attempt to find zero modes directly in terms 
of the p-field, as in the instanton case, we would obtain the 

1099 Sov. Phys. JETP 67 (6), June 1988 A. R. Zhitnitskii 1099 



result that any analytic function satisfies Eq. (7) .  However 
just one function, namely (33), satisfies the additional re- 
quirements discussed in Sec. 3. 

We pass to the discussion of the supersymmetric variant 
of the O(3) u model. As is known, supersymmetric models 
differ conveniently from ordinary ones in that only zero 
modes need be considered. In the bosonic sector we found 
two modes, written in the form of one complex mode (33). 
In the fermionic sector any spinor of the form y5; = 0, 
$: = f(z), automatically satisfies the equation for zero 
modes9 However only one complex fermion zero mode sat- 
isfies the requirement ( 19), namely: 

$ c 1 2 = l / z .  z-fo. 

6$20=0, 6$, '=~f, f=c /z ,  (35 

Here E is some Grassmann number, 1 and 2 are spinor in- 
dices and c is a constant. 

With the above considerations taken into account the 
toron measure acquires the following form: 

d2 e 
2- MoZd2a - exp 

Mo 

m=Mo exp [-nlf ( M , ) ]  . (36) 

Here the factor M i d  2a is due to the single complex bosonic 
zero mode; d 2a is the corresponding integral over the collec- 
tive variable; the factor d 2 ~ / M o  is connected with the single 
complex fermion zero mode (35); lastly, exp( - ~ / f )  is the 
contribution of the classical toron action. 

As in the case of the instanton (25), the expression ( 36) 
for the toron measure has precisely the renormalization-in- 
variant form. It is easy to trace this phenomenon: While the 
action decreased by a factor two, the number of zero modes 
decreased by the same factor, which exactly restored the cor- 
rect renormalization-invariant relation. 

Now all is ready for the calculation of the chiral con- 
densate in the O(3) u model. Following Refs. 9 and 10 we 
introduce to this end the appropriate operator 

which is invariant with respect to O(3) rotations and nonin- 
variant with respect to chiral rotations. Substituting in place 
of 11, their zero modes (35), and recalling that integration 
over the collective fermionic variables exactly satisfies 
S ~Zd&a% = 1, we verify that 

In the last step we used the value of the normalization inte- 
gral (35). As is well kn~wn,~-'O the nonvanishing of the con- 
densate (38) indicates spontaneous breaking of discrete 
chiral symmetry: $4 + y5$, which does not take place in 
any order of perturbation theory. We note that the instanton 
can only ensure a nonvanishing value for the correlator 
( O ( X ) , O ( O ) ) , ~ ~ ' ~  in accordance with the fact that the solu- 
tion with Q = 1 changes the chiral charge AQ, by four units 
[the four zero modes (20) express this fact]. The toron solu- 
tion with Q = 1/2 changes the chiral charge by two units and 
has two zero modes (35). Therefore the corresponding 
vacuum transition is necessarily accompanied by the pro- 

duction of a $$ pair, as the explicit calculation of (38) also 
demonstrated. 

Conceptually, this calculation is analogous to the evalu- 
tion6 of the gluino condensate (A ') in supersymmetric gluo- 
dynamics. In both cases the presence of the condensate re- 
flects the violation of just the discrete symmetry. The 
difference is that in Ref. 6 only fields in the adjoint represen- 
tation occur; in our formulation (27) spinor fields trans- 
forming according to the fundamental representation of 
SU(2) are present. Moreover, in the calculation in Ref. 6 use 
was made of the standard quasiclassical approximation, 
which is not valid when the cell size L is increased: L - co , 
g ( L )  - C O .  In our calculation the characteristic scales are: 
z - A - 0, g2 (z) -+ 0, and the quasiclassical calculation is un- 
der control. 

Now a few words about the choice of the value Q = 1/2 
as compared to other fractional values. As was already ex- 
plained, in the formulation ( 8),  which includes local U( 1 ) 
gauge invariance, the value Q = 1/2 is already singled out at 
the classical level. Thus we note that a superposition of 
transformations from the center of S U ( 2 )  and rotation by 
the angle exp(i.rr) from U( 1)  leaves the fields invariant. 
Consequently the corresponding transformations should be 
identified with unity, and this results in Q = 1/2." 

In terms of the p- and na -fields this singling out is not 
apparent, since any solution ( A/z) becomes single-valued 
as A-0 for any Q. Therefore, in terms of the n" -fields the 
special nature of Q = 1/2 only appears at the quantum level 
in solving the eigenvalue problem ( 3  ). It turns out that the 
single-valued zero mode exists only for Q = 1/2. In other 
cases neither the zero mode, satisfying the single-valuedness 
criterion, nor the integral over the collective coordinate de- 
scribing the location of the toron, exists. 

In terms of the field p the special nature of Q = 1/2 
does not appear even when Eqs. (7 )  are solved for the zero 
modes. Any analytic function is a solution of (7)  with A = 0. 
Only the additional requirements of the type of ( 19) single 
out the value Q = 1/2 an thus ensure the existence of a sin- 
gle-valued zero mode. 

We also note that only for Q = 1/2 is the correct renor- 
malization-group dependence restored. The geometrical 
treatment of the special nature of Q = 1/2 is described in the 
Appendix. 

6. CONCLUSION 

The main point of this work is an analysis of the phys- 
ical consequences of the existence of fractional charge 
Q = 1/2 in the supersymmetric variant of the 0( 3) 0 model. 
I t  is shown that the corresponding fluctuations ensure spon- 
taneous breaking of discrete chiral symmetry and give a non- 
zero contribution to the chiral condensate. From our point 
of view this is a new independent contribution, which should 
be taken into account along with the instanton calcula- 
t i o n ~ . ~ . ' ~  This point of view does not contradict the old idea 
that the calculation of any quantity requires the summation 
over all topological classes (although it is not clear with 
what weight). An alternate point of view is also possible, 
going back to Ref. 21, according to which the instanton is the 
superposition of two objects with half-integer topological 
charge. In Ref. 21 such an object with Q = 1/2 was the 
m e r ~ n , ~ ~  possessing infinite action. In a certain sense our 
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solution is similar to the meron: both have zero measure. 
There is also a difference: the toron has finite action, the 
meron infinite. We also note that the solution proposed here 
with Q = 1/2, which is self-dual and minimizes the action 
S =  2nQ/f = r/J; admits a simple generalization to a 
C p -  ' theory with Q = k/N and action S = (2n/f) ( k  / 
N ) .  

Further, it turns out, that the corresponding construc- 
tion can also be generalized to gauge theories. For the super- 
symmetric variant of the Yang-Mills theory one can also 
calculate the gluino condensate in complete analogy with the 
discussed above calculations in the O(3) a model. 

In conclusion the author expresses gratitude to P. B. 
Vigman, A. I. Vainshtein, A. Yu. Morozov, V. L. Chernyak 
and M. A. Shifman for useful discussions and critical re- 
marks. 

APPENDIX 

Geometrical interpretation of fractional charge: orbifolds 

We wish to make clear at the outset that this Appendix 
has a purely auxiliary character and contains no new asser- 
tions. Thus the aim of this Appendix is strictly illustrative, 
namely a geometrical description of the ideas given in the 
text. 

We compactify the complex planez into the sphere S, in 
accord with transformation (30) : 

cos B=fl=(l-lzl)/(l+lzl), a=arctg(x,/xl). ( A l )  

We note (even though this is irrelevant from the topological 
point of view) that in comparison with the standard projec- 
tive transformation (13) the quantity lzl enters to first or- 
der, and not to second, so that the projection lines are not 
straight lines, see Fig. 2. Thus 8 ,a  have the meaning of co- 
ordinates of the sphere S,. Next we make a cut in the z-plane 
from 0 to w corresponding to the double-valued nature of 
our classical solution (A/z) ' I 2 ,  Eq. (28). On the sphere S, 
this cut joins the north and south poles. With the help of the 
cut we open up the sphere and uniformly squeeze it to a half- 
sphere. We then glue to the half-sphere a second copy, corre- 
sponding to the second Riemann surface. In this manner we 
construct the sphereS (Fig. 3), which may be understood as 
the compactification of the two Riemann sheets, or, in other 
words, as the compactification of the complex planei, where 

We are now ready to give a geometric interpretation of 
the toron solution (p,,, = z- "'). But first let us recall the 
situation for the instanton, for which pi,,, = l/z. If this so- 
lution is expressed in terms of n", Eq. (5) ,  then this is 
"hedgehog" with the directions na ($,a) specified by the an- 
gles 8, a obtained by the compactification (13) of coordi- 
nate space. 

FIG. 2. 

FIG. 3. 

The toron solution p ,,, = z - ~ "  = 5 I looks in terms of 
n u  ( 8 , ~ )  precisely like the instanton but in terms of another 
sphere, 3 ( 8 , ~ ) .  Thus the toron is a hedgehog defined on the 
above constructed sphere 3. 

We have discussed the geometry of the classical solu- 
tion. We now discuss the geometrical interpretation of the 
single-valuedness criterion of the quantum fluctuations [see 
the text following formula (32) 1 .  But first we give several 
formal  definition^.'^.^^ Let there be a certain manifold 3, on 
which the action of a discrete group G is defined. We consid- 
er the factor-space 

Suppose that we want to describe the system on the 
space S. We may proceed in two ways: first, we may directly 
describe states on S, second, we may describe states on the 
larger space 3: and demand that physical states be invariant 
with respect to the transformations G, i.e. 

physical physical 
Istate ) = Istate ) 

Then states, defined on 3 but satisfying the requirement 
(A4),  are acceptable states on S. 

We note that the selection criterion of single-valued 
modes in (32) means that the eigenfunctions on the two 
Riemann sheets coincide. Therefore values of the functions 
at opposite points of the sphere 3 (Fig. 3)  coincide, i.e., un- 
der the transformation 

single-valued functions remain unchanged and satisfy (A4) .  
In particular, the zero modes l/z = 1/g2 satisfy the require- 
ment (A5) and are therefore acceptable states on S. 

We note that the transformation 5- - 5 has two fixed 
points-the north and south poles. These points remain in 
place under 5- - 5. Such manifolds S/G, possessing fixed 
points, are called orbifolds. 19*20 

At each fixed point there is a conic singularity with an- 
gular defect equal to T. That is precisely the angle (26), 
ensuring Q = a/277 = 1/2. For this value of the angle the 
two copies of the cone exactly cover the plane, so states sym- 
metric with respect to (A5)  are acceptable states on the 
cone. This is precisely the content of our criterion of mode 
selection. 

In this fashion the manifold that we are dealing with is, 
in essence, an orbifold. Such manifolds are singular at the 
fixed points. To regularize them one usually introduces a 
free parameter (measure). In our case this role is played by 
the parameter A, Eq. (28). 

We also note that the nontriviality of the homotopic 
group a,  in superstring theoriesI9 and in our case (see Ref. 5 
and the text at the beginning of Sec. 4 )  is due to the existence 
of the fixed points. It is precisely when they are enclosed that 
the Wilson line integral acquires a nontrivial value. In super- 
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string theories this guarantees spontaneous breaking of E,- 
symmetry and yields a reasonable number of generations.19 
In the case of the O(3 1 umodel it gives rise to the existence of 
the condensate. 

We should like to call attention with this Appendix to 
the close analogy between the description of solutions with 
fractional topological charge and the twisted states in string 
theories. 

"We keep the term "toron", introduced in Ref. 4, for the self-dual solution 
in the O(3) omodel as well. By this means weemphasize the fact that the 
solution minimizes the action S =  ( 2 d f  )Q and carries topological 
charge Q = 1/2, i.e., possesses all of the characteristics ascribed to the 
t ~ r o n . ~  

"Which does not prevent one from intensely exploiting the indicated anal- 
ogy, see Appendix. 

"The importance of the indicated fact has to do with the circumstance, 
that it is precisely the additional factor 1/2 in (29) that automatically 
ensures the correct renormalization-group dependence (25), see Sec. 5. 

4'The explanation given here is somewhat simplified. The correct require- 
ment consists of single-valuedness of the physical modes ( 16), orthogo- 
nal to the classical solution. The conceptual aspect of the problem is not 
affected, however, by this simplification and therefore, omitting techni- 
cal details, we state the results. For the toron / I I  = I ( / +  1) - 2; 
g, = 2(1+ 1 ) for odd I, g, = 21 for even I; for the vacuum 1, = I(/ + 1 ); 
g, = 2(1+ I )  for even 1, g, = 21 for odd I. As was explained in the text 
for 1% 1 we haveg, = 21, which is two times smaller than in the instanton 
case, where g, = 2(21+ 1 ) .  
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