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Order-of-magnitude values of the main parameters of a streamer in a semiconductor are obtained 
from qualitative considerations. These are: the propagation velocity, the radius and conductivity 
of the channel, the fields ahead of the front and inside the channel, and the maximum streamer 
length. 

1. INTRODUCTION 

The streamer mechanism of electric discharge in gases 
was proposed about 50 years ago by Loeb, Meek, and 
Raether (for a survey of these and later studies see Refs. 1- 
5). A streamer is a thin highly conducting plasma filament 
that grows at high speed through ionization in the strong 
electric field near its head. Streamer discharges in gases, in- 
cluding lightning, were the subject of many investigations. 
Streamers are observed also in solids-dielectrics and semi- 
c o n d u c t o r ~ . ~ - ~  

Although the physical processes connected with 
streamer propagation are well known, there exists at present 
neither a quantitative nor even a satisfactory qualitative the- 
ory of this phenomenon. Inadequately founded models and 
various semi-empirical equations are customarily used. 

The present paper is devoted to a streamer in a semicon- 
ductor. Using qualitative considerations, we obtain order- 
of-magnitude values of the most significant parameters of a 
streamer. Although the main ideas of our calculations are 
applicable also to gases (note that some of these ideas were 
advanced already by Cravath and Loeb," we shall take ex- 
plicitly into account the specific features of semiconductors, 
viz., the relatively small difference between the properties of 
the positive and negative carriers, and the saturation of the 
drift velocity in a strong field. 

A streamer discharge in a dielectric or  in a high-resistiv- 
ity semiconductor is usually produced in the following man- 
ner. A metal tip to which a voltage is applied is pressed 
against the surface of the crystal. When the voltage is raised 
rapidly enough, an electric discharge is observed in the form 
of thin glowing filaments that grow into the interior of the 
crystal at a velocity v- lo7-lo9 cm/s. This velocity is as a 
rule much higher than the saturated carrier drift velocity u, 
lo7 cm/s in a strong field. 

The most substantial process responsible for the dis- 
charge propagation is generation of electron-hole pairs in 
the strong electric field at the head of the streamer. We as- 
sume that the carriers are generated by impact ionization at 
a frequency o( E) that increases rapidly (exponentially ) 
with increase of the field E and saturates on a level at  
E - E,. The expression usually employed is 

,3 ( E )  =ssp (-E,/LS) Po. 

Another possible mechanism of carrier generation may be 
interband tunneling. The dependence of this process on the 
electric field is qualitatively of the same nature as for impact 
ionization. The qualitative considerations that follow can 
therefore be applied, with slight modification, also to the 
tunneling mechanism of generation. 

Carrier generation ahead of the streamer front contin- 
ues until the field is crowded out as a result of the increased 
conductivity. The charge of the head then moves to the 
boundary of the high-conductivity region. Thus, the con- 
ducting region moves forward, and its newly produced sec- 
tions are charged by the current flowing in the streamer 
channel from the metallic tip. What remains behind the 
front is a charged conducting filament whose evolution is 
determined by carrier recombination, by the diffuse broad- 
ening of the plasma, and also by the radial scatter of the 
charges through their electrostatic repulsion. 

Streamer propagation is described by a system of equa- 
tions consisting of the Poisson equation and the continuity 
equations for the electrons and holes. I t  is impossible to ob- 
tain an analytic solution of these equations in view of their 
nonlinearity and the non-one-dimensional character of the 
problem. Using qualitative considerations, however, it is 
possible to express, accurate to numerical constants, the 
main characteristics of a streamer in terms of the potential of 
the tip and the parameters of the material. 

We assume hereafter that the drift velocities and the 
impact-ionization coefficients of the electrons and holes are 
approximately equal. We neglect the anisotropy of these 
quantities, which leads to an experimentally 
propagation of the streamers in definite crystallographic di- 
rections. The streamer will be represented as a conducting 
filament with a radius rO of the order of the rounded end of 
the head (this representation wil be made more specific in 
Sec. 1 1 ) .  I t  is assumed next that the density no of the free or 
weakly bound carriers in the crystal is high enough to enable 
the volume - r: ahead of the streamer front to contain carri- 
ers capable of becoming multiplied by impact ionization 
(nor: % 1 ) . These carriers can also be produced through ioni- 
zation by the streamer radiation. If the photoionization is 
substantial, the analysis that follows will be valid under the 
assumption that the radiation-absorption length is larger 
than or of the order of rO. 

2. FIELD AHEAD OF STREAMER FRONT 

Let us show that stable propagation of the streamer re- 
quires that the maximum field strength Em on the front be of 
the order of the field Eo at  which the frequency o(E) of 
impact ionization reaches saturation. In fact, we assume that 
Em SE,, at a certain instant. Since the field of the charged 
filament falls off with distance like l/r, it is obvious that the 
size of region in which B(E) -Do is of the order of 

(see Fig. l a ) .  Carriers will be generated in this region, so 
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FIG. 1.  Diagram explaining the relation Em - E;. The shaded region is the 
streamer head. The impact-ionization region is bounded by the dashed 
line: a-Em S E,, b--Em (E,, c-Em - E;. 

that the radius of the head increases rapidly, and the field on 
the front decreases. 

If, however, Em <Eo then, owing to the strong P ( E )  
dependence, the size of that region near the front in which 
P ( E )  -B( Em ) and noticeable generation takes place will be 

(Fig. lb ) .  The radius of the head is then decreased so that 
the field on the front increases. 

The radius of the head must thus be such that the field 
on the front be of the order of Eo (Fig. lc) :  

Such a field exists in a region with dimension of order r, 
ahead of the front, and the frequency of impact ionization in 
this region is of the order of Do. Similar arguments were 
contained in the earlier paper by Cravath and Loeb. l 0  They 
were used, however, neither by them (see Ref. 1) nor by 
others, and the field on the front was estimated from experi- 
mental data. 

The result ( 1 ) can be generalized to include the case 
when the rapid growth ofD(E) in a weak field is replaced by 
a smoother variation in a strong field. Arguments similar to 
the foregoing lead to the conclusion that the field ahead of 
the front should be determined from the condition d P /  
dE-fl /E. In this case Em is of the order of field at the point 
of inflection of the o ( E )  plot. 

3. CONNECTION BETWEEN THE PROPAGATION VELOCITY 
AND THE HEAD RADIUS 

The streamer velocity u can be expressed in the form 
u-ro/r, where 7 is the time during which the front is dis- 
placed a distance on the order of the heat radius rO. This 
displacement proceeds as follows. Owing to the strongD(E) 
dependence, substantial carrier generation is initiated at a 
certain point when its distance to the front decreases to a 
value on the order of r,,. The density increases subsequently 
at a rate 

where no is the carrier density far from the front. This in- 
crease continues until the field at the considered point be- 
comes noticeably weaker than Eo. The quantity r is the char- 
acteristic time required to crowd the field out of a region of 
order r,,. 

We consider for simplicity first a case when the drift 

velocity is not saturated up to the field E,,. In this case the 
density stops increasing when the Maxwell time becomes of 
the order of the time constant ( B ; I) of this growth, i.e., 

o=epno exp ( Po7) -PO, ( 2 )  

where p is the mobility. 
Determining from this the time r ,  we obtain the connec- 

tion between the propagation velocity and the radius of the 
head: 

where N = &/(ep).  In the logarithm, the ratio of the carrier 
density behind the front ( N )  to the density ahead of it (no) 
amounts to several orders of magnitude; the logarithm is 
therefore large. 

In semiconductors, as a rule, the drift velocity reaches 
the saturation value u, in a characteristic field E, substan- 
tially weaker than EO. In this case, the field is crowded out of 
a region of size on the order of ro ahead of the front in a 
somewhat different manner than in Maxwell relaxation. The 
time 7 to crowd out the field can be determined from the 
condition that the total charge flowing during that time be 
equal to the charge on the front. The surface density of the 
charge on the front is obviously of the order of E,,, and the 
current density in the region where the carriers are genera- 
ted is ev,n(t), where n ( t )  = no exp( O(,t). Thus, 

From this we get 

With the aid of (5 )  we obtain again the relation ( 3 )  between 
the velocity and the radius, but the density N behind the 
front is now given by 

Note that the expressions for the velocity differ in the two 
considered cases only by a factor under the logarithm sign. 

Relation (3 )  is very important for the understanding of 
the development of a streamer discharge. It is valid indepen- 
dently of the character of the variation of the head radius r,, 
with time (provided the time of the change is long compared 
with 7). 

An equation of type ( 3 )  was first obtained by Loeb,' but 
contained in place the head radius the front width, which 
remained unknown. In addition, the carrier density N in the 
channel was not obtained, so that the value of N /n,, under 
the logarithm sign was not determined. Equation ( 3 )  with- 
out the logarithmic factor was used in Ref. 7. 

4. MINIMUM VALUE OF STREAMER VELOCITY 

Owing to the electrostatic repulsion, charges on the 
front of the streamer should scatter at a velocity v. Obvious- 
ly, for a streamer to develop it is necessary that the front 
velocity exceed the rate of this scatter. Otherwise the charge 
would become detached from the conducting region and the 
growth of the latter would cease. Thus, the streamer velocity 
is bounded from below by a certain threshold on the order of 
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Us : 

u>u,. (7)  

It should be borne in mind that this inequality must contain 
a numerical factor, which we shall not determine. In view of 
relation (3)  between v and r,, the inequality (7) means also 
the existence of a minimum radius of the streamer head. 

The fact that the streamer velocity in the experiments is 
always larger than the saturated velocity of the carrier drift 
was noted in Ref. 8. 

5. CONDUCTIVITY OF STREAMER CHANNEL 

Directly behind the front, the conductivity is deter- 
mined by the electron density N = n ( 7 ) .  In the first of the 
cases analyzed here, when no saturation of the drift velocity 
takes place, it can be seen from (2)  that a-Po. If, however, 
the drift velocity saturates in a field Es 4 E,, we obtain, after 
substituting N from ( 6 )  in the expression a-epN for the 
conductivity, 

We have used here the relation u, -pE,. 
It will be shown below that the field in the streamer 

channel is weak compared with E,, so that the conductivity 
is ohmic. 

If carrier recombination and diffusion are neglected, 
Eq. (8)  determines the conductivity over the entire length of 
the channel. The role of the conductivity will be considered 
in Sec. 10. As to the diffusion spreading of the channel, it 
leads, of course, to a decrease of the conductivity, but the 
quantity essential for streamer development, the resistance 
per unit channel length, obviously remains unchanged. We 
note that in crystals, as a rule, no noticeable diffusive spread- 
ing of the channel takes place during the propagation time to. 
Using for r, and to the estimates given below, it can be shown 
that the parameter (Dt,) '"/r, that describes the diffusive 
spreading is smaller than or of the order of unity (D is the 
diffusion coefficient). 

6. FRONT WIDTH 

Since the characteristic time of density growth in the 
strong-field region is P ; ', it is obvious that the front width 
in the streamer head is S - u/&. Using Eq. ( 3 )  for u, we get 

Thus, the characteristic distance S over which the carrier 
density is decreased by several times is substantially shorter 
than the heat radius rO (the density decreases over the dis- 
tance r, to the value no, i.e., by several orders). Consequent- 
ly, the conducting region has a very abrupt boundary. The 
space charge on the front is concentrated in a region whose 
width is also of the order of 6. In fact, if the drift velocity is 
not saturated, the charge in the conducting region decreases 
with time like exp( - 4 m t ) ,  where a-P according to (2) .  
For a point at a distance z behind the front we have t = z/u. It 
is from this that we get the statement above. It can be shown 
that it is valid also for saturation of the drift velocity. 

The statements made in this section pertain to the 
streamer head. The charge distribution and density in the 
channel will be considered in Sec. 11. 

7. STREAMER PROPAGATION 

The streamer parameters and the very possibility of its 
propagation are determined by the potential of the metallic 
tip and by the character of variation of this potential with 
time. The velocity u and the radius roof the head are connect- 
ed by relation ( 3 )  and the radius, as indicated in Sec. 2, 
should be such that the field ahead of the front be of the order 
ofE,. The problem reduces thus to establishing a connection 
between the tip potential U, the head radius r,, and the field 
ahead of the front. This connection depends generally speak- 
ing on the form of the function U(t) and on the character of 
the prior development of the streamer. We confine ourselves 
to the simplest case, when the potential drop over the length 
of the streamer is small, so that the head potential practically 
coincides with the potential Uof the metallic tip. This condi- 
tion is met provided that the streamer length is not too long 
and that, furthermore, the potential varies sufficiently slow- 
ly with time. The appropriate criteria will be given below. 

In this case, the charge distribution over the streamer 
channel is determined by solving the electrostatic problem of 
a thin metallic filament with a given potential U. It is known 
that the charge is distributed along the filament practically 
uniformly, with a linear density 

where I is the filament length (IBr,). The field ahead of the 
front is obviously of the order ofp,/r,. Equating this quanti- 
ty to E,, using (3) ,  and putting A, = ln(IE,/U), we get 

The streamer velocity and the head radius are thus propor- 
tional during the initial stage to the tip potential U. 

8. FIELD IN CHANNEL AND MAXIMUM STREAMER LENGTH 

As the streamer grows at a rate u, its newly produced 
sections acquire charge with a linear density p, - Eoro. Con- 
sequently, a current I = plu should flow through the con- 
ducting channel of the streamer. Maintenance of such a cur- 
rent in the channel requires a longitudinal field E, 
determined from the condition I - U E , ~ .  Using Eqs. ( 3 )  
and (8)  we get 

Owing to the large value of the logarithm A,, the field E, is 
substantially weaker than E,, so that the drift velocity in the 
channel is not saturated. 

We can now indicate the condition, used in the deriva- 
tion of ( 11 ), that the change of potential over the length of 
the streamer be small: 

For the corresponding time t-l/u we get with the aid of 
( 11 ) and ( 13 ) the restriction t < to, where 

Note that the time to does not depend on the potential U. 
As the streamer propagates, the head potential de- 

creases and, in accordance with ( 11 ), its velocity and radius 
should decrease. When the streamer velocity becomes of the 
order of us, its development should cease (see Sec. 4). The 
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total length of the streamer at the instant of its stopping is 
apparently of the order of I,. This conclusion can be drawn 
from the following considerations. The spreading of the 
charge along a conducting filament is diffusi~e,".'~ with 
04 A, acting as the diffusion coefficient. Therefore the char- 
acteristic spreading time of the charge (and of the potential) 
over a length I is 12(u4A2) -'. For 1-1, this quantity is just 
of the order of the propagation time to- l,/v. At I > I ,  the 
head potential decreases strongly compared with the tip pa- 
rameter, so that the radius r, is decreased. The "diffusion 
coefficient" is then also decreased and the spreading of the 
charge slows down even more. Calculation shows that at 
I > I, the velocity decreases exponentially, with a character- 
istic time to. 

These arguments, however, do not take into account the 
recovery of the head potential after the stopping of the 
streamer, and the possible broadening of the channel by im- 
pact ionization in the region 1 > 1,. The question of streamer 
development at t k to is therefore not fully understood and 
calls for further research. 

The fact that the streamer can stop growing when the 
potential over its entire length is the total potential applied 
to the tip was noted earlier.',I3 The field in the channel and 
the maximum length I,, however, have not been theoretically 
estimated. 

9. ROLE OF CONDUCTIVITY OFTHE SURROUNDING MEDIUM 

It was established by that streamers are 
observed only in samples of sufficiently high resistivity. 
With increase of the crystal conductivity 0, the streamers 
become shorter and eventually vanish. 

The finite conductivity of the medium surrounding the 
streamer leads to the appearance of a radial current whose 
density per unit length is of the order of uoE,r-u,p,, where 
E ,  -p,/r is the radial component of the electric field. Main- 
tenance of radial currents in the streamer channel requires 
an additional (on top of the one calculated in Sec. 8) longitu- 
dinal current 1 such that 

This current is connected with an additional longitudinal 
field gz - i / u r i .  Thus, the presence of a finite sample con- 
ductivity leads to an increase of the field in the channel and 
to a faster decrease of the potential along the streamer. 

We denote by 1, the characteristic length over which the 
potential drop due to the radial current takes place. The lon- 
gitudinal current ?and the field g fall off, obviously, over the 
same length. The total radial current on this length is of the 
order of u,p,l,, which coincides with the average value of 
the longitudinal current i. Therefore the characteristic value 
of the longitudinal field is given by the expression 

We have used here Eq. ( 10) for p,. We can now determine 
the length 1, from the condition gzio- U. Hence 

where the channel conductivity u and the radius r, are given 
by Eqs. (8)  and ( 11). Using also expressions ( 13) and ( 14), 
we obtain the relation between 1, and I,: 

Thus, the role of the conductivity of the medium is deter- 
mined by the parameter u,t,, where t ,  is given by Eq. ( 14). If 
uoto< 1, the conductivity of the medium can be neglected 
and the streamer length is of the order of I ,  [see Eq. ( 13) 1. In 
the opposite limiting case got,, 1, the streamer length is of 
the order of 1, and it decreases, with increase of the conduc- 
tivity of the medium, in proportion to 0; ' I2 .  In this case the 
characteristic propagation time is of the order of (t,/u,) 'I2. 
Note that at goto& 1 the streamer propagation time to is sub- 
stantially longer than the Maxwell time CT; '. This is due to 
the presence of the current that maintains the streamer 
charge. 

10. INFLUENCE OF CARRIER RECOMBINATION 

At a certain distance behind the streamer front, carrier 
recombination becomes substantial and leads to a lowering 
of their density and to a corresponding decrease of the chan- 
nel conductivity. As a result, the longitudinal electric field 
needed to maintain the current in the channel is increased. 
This leads in turn to a fast decrease of the potential along the 
streamer, and its propagation distance decreases. 

Carrier recombination in the channel is described by 
the usual equation 

For a point located at a distancez behind the front, the time 
elapsed from the instant of generation is z/v.  Solving Eq. 
( 18) with the initial condition n (0) = N, we obtain for 
u(z)  = epn (z) the expression 

where u = epN is the value of the conductivity directly be- 
hind the front [Eq. (8) ], and t ,  = (yN) - ' is the character- 
istic recombination time. 

It follows from (19) that with increase of the distance 
from the front the longitudinal field in the channel increases 
linearly from the value ( 12). The characteristic length 1, 
over which the potential drop takes place can be easily calcu- 
lated in analogy with the procedure used in Sec. 9. It is deter- 
mined by the relation 

where I ,  and t, are given by Eqs. (13) and (14). The ratio 
I ,  /I, depends on the parameter t,/t, , if t ,  4 t ,  , the recombi- 
nation is insignificant and I ,  -Io. For t ,  <to we obtain from 
(20) 

i.e., the distance over which the streamer propagates is sub- 
stantially decreased by the recombination in comparison 
with I,. Note that the propagation time I ,  / v -  ( to t ,  ) ' I 2  ex- 
ceeds in this case noticeably the recombination time. 

The results of this and of the preceding two items show 
that the distance negotiated by the streamer is limited either 
by an increase of the channel resistance or by leakage of the 
charge into the surrounding medium, or else by carrier re- 
combination. We have accordingly three lengths, ?,,, ?,, and 
I ,  which are proportional to the tip potential U [Eqs. ( 13 ), 
( 17), and (2 1 ) 1. The shortest of these lengths is the one 
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which determines the maximum streamer length. cy the form of the charged surface: 
Note that these three lengths can also be obtained by 

equating the characteristic charge flow time 1 2(u2,A2) - ' of r-ro In (zjr,) , (23) 

the charge along the conducting filament either to the Max- where z 2 ro. It can be shown that the result (23 ) remains 
well relaxation time ~ / U O  in the medium, Or to the recombi- valid, with the same accuracy, also when the drift velocity is 
nation time t, . saturated. 

11. DISTRIBUTION OF CHARGE AND OF CARRIER DENSITY 
IN STREAMER CHANNEL 

So far, we have regarded the streamer channel as a thin 
conducting uniformly charged filament having a radius ap- 
proximately equal to the radius ro of the rounded head. This 
representation calls for some elaboration. Actually, the radi- 
al field near the surface of such a filament is of the same order 
as the field Eo at the head. The conducting region should 
therefore broaden by impact ionization. '' The charge would 
go to the newly produced conducting region, and this would 
decrease the radial field. 

The actual distribution of the charge and density in the 
streamer channel can qualitatively be determined from the 
following considerations. The radial field at a distance r > ro 
from the channel axis is 

(if the distance to the charge is less than r) .  The impact- 
ionization frequency in such a field is 

For a point with coordinates r and z, the impact ionization 
continues for a time z/v. The conductivity at the considered 
point is therefore 

o-epno esp (P(E,)z/u). 

This expression is valid for points outside the surface on 
which the charge is located (see Fig. 2a). Inside this surface, 
there is practically no field and no impact ionization pro- 
duced. For a given r the density and conductivity increase 
thus up to a certain value of z (section AB in Fig. 2a), and 
remain unchanged beyond (until the recombination be- 
comes substantial). Let us determine the form of the 
charged surface for the simplest case when the drift velocity 
is not saturated. Reasoning as in Sec. 3, we arrive at the 
conclusion that the charge should be located at a point where 
u-fl( E, ). Consequently, 

epn, exp (v-'poz esp (-rlr,)) -Po esp  (-rlr,). (22) 

From this, using Eq. (3  ) , we obtain with logarithmic accura- 

Thus, the radius of the charged surface surrounding the 
streamer channel increases slowly with increasing distance 
from its head. As to the radial distribution of the conductiv- 
ity, its characteristic scale coincides with the head radius rO. 
Indeed, on the charged surface we have 

if the drift velocity saturates), and inside the surface the 
conductivity at constant r is unchanged. 

In the derivation of (23) it was assumed that the change 
of the charge density with time is due to the conduction cur- 
rent flowing in the conducting quasineutral region. With in- 
creasing distance from the channel axis, however, the carrier 
density decreases exponentially, whereas the charge density 
decreases like l/r. At a certain distance from the axis the 
quasineutrality condition is therefore violated and the cur- 
rent is determined not by the conduction current but by the 
electrostatic repulsion of the charges. The radial velocity of 
the charged surface is then equal to u,. This circumstance 
becomes significant when us turns out to exceed the radial 
velocity vdr/dz determined from (23), i.e., at z > zO, where 
z,-r,v/v,. At z>z, Eq. (23) no longer holds and the 
charged surface takes the form of a cone r-zv,/u. When the 
field on this surface decreases below the saturation field E,, 
the drift velocity decreases and the broadening slows down. 

The charge and carrier-density distributions in the 
streamer channel are shown schematically in Fig. 2. The 
conducting region that contains the bulk of the carriers is a 
cylinder of radius on the order of the head radius r,. With 
increasing distance from the axis, all the way to the charged 
surface, the density decreases like exp( - r/ro)." At the 
same time, everywhere with the exception of the streamer 
head, the charge is located outside the high-conductivity re- 
gion, and the radius of the charged surface increases with 
increase of the distance from the head, as described above. 

The charge distribution is essential for the solution of 
the electrostatic problem of the connection between the tip 
potential and the field ahead of the front. For a thin conduct- 
ing filament of constant radius r,, this connection is given by 

FIG. 2. Distribution of the conductivity uand  of the charge density 
p in a streamer channel at u $ u , :  a-schematic diagram of the con- 
ducting region ( 1 )  and of the region where the charge is located 
( 2 ) .  The carrier density on an arbitrary straight line parallel to the 
axis increases on section AB and remains unchanged to the left of 
the point B; b--radial dependences of the conductivity ( 1 )  and of 
the charge density ( 2 )  in the streamer channel at r,, < z  <z,,. 
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the first of Eqs. ( 1 1 ). Obviously, at v )  v, the charged surface 
is strongly elongated in the streamer propagation direction 
and the aperture angle dr/dz is small everywhere. In this 
case the difference between the streamer and a charged fila- 
ment can be neglected. If v- v,, however, this difference be- 
comes quite substantial, and this is indeed why a streamer 
with v < v, cannot propagate (see Sec. 4).  

12. THRESHOLD CONDITIONS FOR STREAMER INITIATION 

It has been established by that for a 
streamer to start the potential of the tip must increase with 
time rapidly enough, i.e., a threshold (dU/dt) ,, exists. If, 
however, a rectangular voltage pulse is applied to the tip 
[the slope of the leading front is much larger than 
(dU/dt) ,, 1, the streamer is produced only at a sufficient 
pulse amplitude U> U,, . Let us obtain estimates of the 
threshold values of U,, and (dU/dt) ,, . 

We consider first the case when the tip potential in- 
creases jumpwise to a certain value U. We assume that the 
field E- U/R near the tip is such that E, (E(Eo (R is the 
radius of the rounded part of the tip). Carriers will then be 
generated mainly in a region having a width on the order of 
RE /Eo near the vertex of the tip (see Sec. 2 and Fig. lb, in 
which the shaded region must now be taken to be the picture 
of the tip). The time needed to crowd the field out of this 
region is T -p - ' (E )  A I (see Sec. 3 1, and the rate of displace- 
ment of the boundary of the conducting region is3' 

v(E)-p (E)R(EIEo)Al-l. (24) 

As shown in Sec. 2, the radius of the conducting region 
should decrease, the field on the front should increase, and a 
streamer should be formed. The competing process is the 
scatter of the charge with velocity v,, which leads to a de- 
crease of the field at the front (see Sec. 4). Thus, the thresh- 
old field El, - U,,/R is determined by the condition v(E,, ) - v, or, with logarithmic accuracy 

We turn now to an estimate of the threshold value 
(dU/dt) ,, . Let the tip potential increase linearly with time: 
U = At. The carrier density near the tip increases like 

t 

where E-At /R. When the field is crowded out of the pro- 
duced conducting region, the density reaches a definite value 
N. The time needed for this depends on the potential growth 
rate A. If the field at the tip is at the instant stronger than El,, 
a streamer is produced. The threshold value A is therefore 
determined from the condition E-El, at the instant when 
the density N is reached. 

Using the steep growth ofp(E) at E<Eo, we can calcu- 
late the integral in (26): 

1 (E) dt- p (E) E2R/EoA, (27) 

where the value of E in the right-hand side is taken at the 
instant t. For N ( t )  = N wehave 

p (E) E2R/E,A-]Il. (28) 

Putting E = E,, in (28), and using Eq. (24) and the relation 
v(E,, ) -us, we obtain the threshold value A,, = v,E,, . With 
the aid of (25) we get ultimately 

(dUldt)  t~-Eov,lln(poR/v,). (29) 

Note that (dU/dt) ,, , just as El, depends very little on 
the tip radius. 

13. ESTIMATES AND COMPARISON WITH EXPERIMENT 

The results above establish the dependence of the 
streamer parameters on the properties of the material and on 
the potential of the tip. For streamers in crystals, however, 
these relations have been little investigated in experiment. It 
appears that no experiments were performed in which the tip 
potential remained constant during the streamer propaga- 
tion, as proposed in our calculations. It is therefore impossi- 
ble to verify whether the radius of the head, the propagation 
velocity, and the streamer length are indeed proportional to 
potential, as follows from Eqs. ( 1 1 ) and ( 13). 

Streamer discharges in semiconductors were investigat- 
ed in greatest detail in Refs. 7 and 8. Let us compare our 
estimates of the streamer parameters with the results of these 
experiments. It must be borne in mind here that the numeri- 
cal coefficients of our equations are unknown, thatb0 and Eo 
are known with large errors, and in addition, under the con- 
ditions of Refs. 7 and 8, the tip potential increased substan- 
tially during the streamer propagation. 

We use the CdS parameters cited in Ref. 7: Po = 6. 10l2 
s- ', E, = 10 V/cm, v, = lo7 cm/s, and p = 200 cm2/V.s. 
From the equations derived above, at a typical potential val- 
ue U = 10 kV, we obtain then ro- lOpm, v-  lo9 cm/s, lo- 1 
cm, and N -  10" ~ m - ~ .  The experimental values7 of these 
parameters are ro- 1 pm, v = ( 1-5). 10' cm/s, and 1,s 3 
cm. Equation (29) yieldsan estimate (dU/dt) ,, - loL2 V/S, 
whereas experiment 8 gives 6.10" V/s. Our estimates and 
experiment are thus in reasonable agreement. 

We are grateful to M. E. Levinshtein and A. N. Pe- 
chenov for helpful discussions. 

"The diffusion broadening is negligible (see Sec. 5 ) .  
2'It can be shown that at z<z, this behavior is replaced on the charged 

surface by a steeper decrease of characteristic scale S [Eq. (9)  1. The bulk 
charge is also concentrated in a layer of thickness 6. 

"Here, as in ( 3 ) ,  A, = In (N/n,), where Ncan be shown to be obtainable 
from Eq. (6)  by replacing &To by P(E)E2/E,.  Note that the quantity 
A, is immaterial in the sequel. 
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