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A theory of stimulated scattering of light by trap-charging waves is proposed. Scattering is 
possible in electrooptic crystals in the presence of a constant electric field E, maintained by a 
voltage source or by the photovoltaic effect. The role of the stimulating force that builds up the 
charge-exchange wave is played by the inhomogeneous light intensity that modulates, in the 
course ofthe interference, the trap-photoionization rate. It is shown that the intensity Iof  this 
effect does not have the high threshold typical of other forms of stimulated scattering, since the 
scattered-wave gain is independent ofI. When the field Eo exceeds a critical value E,, the 
stationary regime of the spatial gain in a sample without a cavity should give way to a 
nonstationary emission regime that is not realizable in other types of stimulated scattering. As a 
result, the intensity of the anti-Stokes wave increases to values comparable with the intensity of 
the incident light, independently of the number of priming fluctuations. The theory explains a 
recently observed effect, that of self-waves of photoinduced scattered light, which does not agree 
with the heretofore considered scattering models. 

1. INTRODUCTION 

Nonlinear optical effects in photorefracting crystals, 
due to energy exchange between crossing light beams, are 
under active study in dynamic holography. The energy ex- 
change is the result of self-diffraction, or diffraction of light 
by a holographic phase grating formed in a crystal by inter- 
ference of light waves. ' The grating is formed via the linear 
electrooptic effect by the field of the space charge produced 
when photoexcited electrons are trapped by impurity 
centers. An example of such effects is photoinduced scatter- 
ing of light2-6 and, in particular, photoinduced refle~tion,~" 
whereby a light beam incident on an initially transparent 
crystal is almost completely converted into a reflected beam. 

It is well known that stationary energy exchange is pos- 
sible only in the case of a nonlocal response of the medium, 
i.e., in the presence of a ?r/2 phase shift between the light- 
intensity distribution and the grating. Physical nonlocal-re- 
sponse mechanisms are attributed to diffusion of electrons 
inhomogeneously excited by light',3,4,7 or to a circular pho- 
tovoltaic current. [In the latter case (see Refs. 9 and 10) the 
energy exchange takes place at a special geometry of the 
incidence and polarization of the light, which is not consid- 
ered in the present paper.] In theoretical investigations of 
these effects it is assumed that the diffraction gratings pro- 
duced in the crystal are immobile. It has been recently 
shown, however (see Refs. 1 1 and 12) that in the presence of 
a constant electric field Eo an important role is played in a 
number of effects observed in photorefracting crystals by 
weakly damped trap-charging waves, which were investigat- 
ed earlier in compensated semiconductors. In typical experi- 
ments, the field Eo is applied to a crystal with the aid of a 
voltage source, or is produced as a result of the linear photo- 
voltaic effect. It is remarkable that the trap-charging wave 
constitutes a diffraction grating moving along the field E,, 
since the low-frequency field of the wave modulates the re- 
fractive index of the crystal. 

We propose in this paper a theory of stimulated scatter- 

ing of light by trap-charging waves (see also Ref. 14). The 
role of the driving force that launches a trap-charging wave 
is the interference pattern of an incident light wave and a 
scattered one; this pattern modulates the rate of photoioni- 
zation of the traps. We show that this process should not 
have the high threshold of the light-intensity (I) typical of 
other types of stimulated scattering (e.g., Brillouin scatter- 
ing), since the gain a of the scattered wave, just as in pho- 
toinduced scattering by immobile gratings, does not depend 
on I. At sufficiently high values of the field E,, when the drift 
length of the free electrons exceeds the diffusion length, scat- 
tering by trap-charging waves should be much more effec- 
tive than scattering by immobile gratings. 

We show that the linear photovoltaic current accompa- 
nying the trap photoionization can increase the scattering 
substantially, since this current, according to Ref. 12, de- 
creases the damping of the trap-charging waves. 

If the gain a exceeds the reciprocal damping length of 
the trap-charging wave (if the field Eo exceeds a critical val- 
ue E,, ), the stationary-amplification regime should give 
way to a nonstationary emission regime, in which the back- 
scattered anti-Stokes wave and the trap-charging wave in- 
crease exponentially with time until the incident light is es- 
sentially depleted. Note that a similar regime is possible 
theoretically also for stimulated Brillouin ~ca t te r ing , '~ . '~  but 
it requires a light intensity higher by many orders than the 
amplification regime, and is therefore not realized in experi- 
ment. The positive sign of the frequency shift of the scattered 
light in the emission regime is due to the specific feature of 
the dispersion law w a K -' of a trap-charging wave with a 
wave vector K, wherein the group velocity is directed oppo- 
site to the phase velocity. 

The theory of the generation regime explains qualita- 
tively the effect of scattering self-wavesI7 recently observed 
in lithium niobate crystals and not interpreted theoretically 
so far. What makes the effect unusual is that the scattered 
light appears in a direction opposite to that expected theoret- 
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ically when immobile gratings are considered, and also that 
it is nonstationary. The conclusions of the present paper are 
in good agreement with the experimental results. 

2. PRINCIPAL EQUATIONS 

Let a noncentrosymmetric crystal be subject to coher- 
ent illumination in the presence of a constant electric field 
E,. We assume for the sake of argument that the crystal is 
uniaxial and that the field E, is directed along the optical 
axis. The field E, can be either the result of the photovoltaic 
effect,'' or due to connecting the crystal to a voltage source. 
We begin with the second of these variants, neglecting the 
photovoltaic current. We confine ourselves for simplicity to 
normal incidence of the light (see Fig. 1 ) through a trans- 
parent (negative) electrode and neglect the reflection from 
the crystal boundary. Assume that photoionization of impu- 
rity centers, electron transport in the conduction band, and 
their recapture by the free centers which act as traps, all take 
place in the crystal. Under these conditions there can propa- 
gate along the field E, weakly damped trap-charging waves. 
These waves are manifested by oscillations of the degree f of 
occupancy of the traps by electrons, the density n of the 
electrons in the conduction band, and of the electric field E: 

Let f,, no, E,,% f i ,  and be the mean values and the ampli- 
tudes of the oscillations of the corresponding quantities, and 
let the z axis be chosen along the direction of the field E,. 

In the case of uniform illumination, the electric fluctu- 
ations of the crystal contain trap-charging waves with a con- 
tinuous set of wave vectors K. The alternating field of each 
wave modulates the refractive index of the crystal n, with an 
amplitude 

where r is the component of the electrooptic-coefficients ten- 
sor and is determined by the direction of the applied field E,. 
The trap-charging waves are thus phase gratings from which 
the light propagating in the crystal is scattered. In the geom- 
etry considered (see the figure) the scattering is backward 
and in view of the Doppler effect the scattered wave is anti- 
Stokes, w, = w, + w, where w, w,, and 0, are respectively 
the frequencies of the trap-charging wave and of the incident 
and scattered light. Obviously, the main contribution to the 
scattering is made by trap-charging waves that satisfy the 

Bragg condition K = k, - k,, where k, and k, are the wave 
vectors of the incident and scattered light. Since w gw,, w,, 
we have k, = k,  = k = w,n,/c, K = 2k. 

From the Maxwell equations we get for the smoothly 
varying amplitudes 8, and 8, of the incident and scattered 
light, with absorption disregarded (see Ref. 15 ) 

The quantity ii, rn in these equations depends in turn on 
the distributions of 8, and $,, for in the case of interference 
between the incident and scattered waves the inhomogen- 
eous light intensity modulates the rate of electron emission 
into the conduction band and excites the trap-charging 
wave. It is this feedback which leads to the stimulated scat- 
tering. 

Let us determine the missing relation between n, , Z? ,, 
and $,, confining ourselves to weak scattering, 8,g Z?,. 
The trap-occupancy balance equation takes in the consid- 
ered model the form 

where N is the density of the impurity centers, S the pho- 
toionization cross section, r the coefficient of electron cap- 
ture by a trap, and 2 a random function that describes the 
fluctuation of the photoionization and capture rates. We ne- 
glect thermal emission, assuming the impurity level to be 
deep enough. For the mean values we have 

After linearization, in the case 

we obtain 

where T = [TN( 1 - f,) ] is the average electron lifetime 
in the conduction band and r, = f,(r'n,) - ' is the character- 
istic trap-occupancy relaxation time. Expression (5)  must 
be supplemented by the continuity and Poisson equations: 

d6n 1 
div j=O, j=ey (nO6E+E,6n) +eDVGn, (6) 

d t  e 
ee 

div 6E = - - (N6f+6n). 
4s  

(7)  

FIG. 1. Diagram of stimulated scattering of light by charge-trapping 
waves. The arrows show the directions of constant field E,,, of the wave 
vectors k ,  of the incident waves, kz ofthe scattered light, and K of the trap- 
charging wave, and also the direction of its group velocity v,. The thick 
line shows the distribution of the intensity of the scattered light during the 
earlier stage of the process. 

where SE = E - E,, E the low-frequency dielectric constant 
of the crystal, e the absolute value of the electron charge, p 
the electron mobility, and D the diffusion coefficient. 

We assume that the intensity I, is not too high: 
I, g N T (  1 - f,)'S -I. In this case no 4 N and the condition 
r4r1 necessary for the existence of trap-charging waves is 
met.I3 Since the frequency of these waves w gr-I, we can 
neglect n compared with NS f in Eq. (7) ,  as is clear from 
( 5 ) ,  i.e., the bulk of the space charge is bound to the traps. 

To facilitate the analysis we transform to dimensionless 
variables, using as the units the Maxwell relaxation time 
T~ = &(47repn0) - I ,  and the drift length I, = p7Eo, leaving 
the rest of the notation unchanged. Eliminating from Eqs. 
(5)-(7) the quantities Sn and 6 f we get 
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where 

and 1, is the diffusion length. For most photorefracting 
crystals we have b g  1. 

To describe stimulated scattering it is necessary to in- 
sert in (8) the intensity distribution produced by interfer- 
ence of the incident $ , exp( - ikz - iw,t) and scattered 
g, exp(ikz - io2t) light waves: 

where 

Accordingly, we seek the solution of (8) in the form 

assuming that the characteristic scale of the spatial and tem- 
poral variation of the amplitudes gand  j is  much larger than 
that of K -' and w-I. Since we assume that 8',< Z? ,, the 
amplitude g,  in (3)  and (9) should be regarded as a con- 
stant. Thus, equations (3)  and (8) form a close system upon 
substitution of ( I ) ,  (9),  and (10). 

3. STATIONARY AMPLIFICATION REGIME 

Let us analyze Eqs. (3) and (8),  assuming hereafter 
satisfaction of the condition 1 (K(a-', b -' which deter- 
mines the existence of weakly damped trap-charging 
wavesL3 We assume to start with that the amplitudes of 2 
and g, vary so slowly that all the derivatives of these quanti- 
ties can be neglected in (8).  Using the boundary condition 
8, = 0 at z = 0 (see the figure), we get 

E-E, csp ( a z )  , &?=iYo [exp ( a z )  - l ]  , 8 0  

=irn,281KEo/Sa,  (11) 

a=' /4rn,2EoiI i ( l - t iaK)  [ o K - l + i ( o + b K + a o K 2 ) ]  -'. (12) 

The amplitude of the priming trap-charging wave Eo is 
determined by the noise level in the crystal and can be ex- 
pressed in terms of the spectral density of the random func- 
tion gm,. Note that in addition tog  it would be necessary to 
introduce in ( 6 )  a Johnson-noise source, but at a g 1 its con- 
tribution can be shown to be small compared with the gener- 
ation-recombination contribution. For a consistent calcula- 
tion of go, account must be taken of small deviations of the 
wave vector from the value corresponding to the Bragg con- 
dition. We eschew such a calculation, for besides the noise 
due to the random generation and recombination acts at 
I = const, the quantity g,, is determined also by the fluctu- 
ations of the intensity I,  which are produced by the light 
source and whose level depends strongly on the experimen- 
tal conditions. 

It follows from ( 12) that a', the real part of a, which 
determines the gain of the scattered light, has a clearly pro- 
nounced maximum 

at w = R = K - I .  The imaginary part is a" = 0 at o = R. 
This effect is physically due to resonant excitation of the 
charge-trapping waves: the relation R(K)  = K -' coincides 
with the dispersion law for these waves.I3 The fact that a ( R )  
is real means that at resonance the charge-trapping wave, 
propagating at a phase velocity vf = K -2, lags by ?r/2 the 
moving interference pattern that plays the role of the period- 
ic driving force. 

In the more general case the dispersion law of the trap- 
charging waves, with allowance for their damping, can be 
obtained by equating to zero the denominator of ( 12) and 
assuming w to be complex. Substituting w = R + iw", we get 
R = K -' and w" = y. The quantity y [see Eq. (13)]  is thus 
the damping rate of the trap-charging wave. If the condition 
1 gKga - ' ,  b -' used above is met, the characteristic dis- 
tance negotiated by trap-charging wave during its damping 
time 

turns out to be much greater than its length A = 27i-K -I. 
It follows from ( 12) and ( 13) that the gain a is inde- 

pendent of the light intensity I. This is true if, as we assume, 
the photoconductivity exceeds substantially the conductiv- 
ity in the dark. The result has a simple physical meaning. 
The amplitude of the trap-charging wave is proportional to 
the driving force I and also to the wave damping time 
y-' a I - I .  Therefore the amplitude of the oscillations that 
build up, and hence the gain, does not depend on I. On the 
contrary, for ordinary forms of stimulated scattering such as 
Brillouin scattering, the relaxation time of the natural oscil- 
lations of the scattering medium is practically independent 
of I, therefore the gain is proportional to I. 

For w = 0, Eq. (12) leads to a known result1" that de- 
scribes the amplification of scattering light interacting with 
an immobile grating produced by diffusion of photoexcited 
electrons. In dimensional units we have 

where Tis the crystal temperature in energy units. Compar- 
ing Eqs. ( 13) and ( 15), we conclude that for a 4 1, i.e., for 
1, %ID, the trap-charging waves make the predominant con- 
tribution to the light scattering. 

We emphasize that, in the discussed light-incidence ge- 
ometry, amplification is possible if r > 0. On the contrary, if 
the directions of k, and Eo coincide, the condition a, > 0 is 
met at r < 0 and the backscattered light is a Stokes wave. 

Note that an expression similar to (12) was derived 
earlierI9 for a description of the experimentally observed pa- 
rametric amplification of the weak optical signal applied to a 
crystal simultaneously with a pump wave shifted in frequen- 
cy (see also Ref. 20). However, the connection between this 
effect and the natural oscillations of the crystal-the trap- 
charging waves-were not discussed. The possibility of light 
scattering when dynamic noise is amplified in the crystal was 
not considered in these references. 

Let us determine the region in which Eqs. ( 11 )-( 13) 
are valid. Substituting ( 11) in (8)  we can verify that it is 
bounded by the inequality a <x-  I. 
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4. EMISSION REGIME 

The approximation used in the preceding section pre- 
supposes a local character of the connection between the 
trap-charging wave amplitude B and the light intensity 
ja  f?,. Let us examine qualitatively the results that should 
ensue from absence of locality at a -x- ' or a > x- ' 

It is well known under inhomogeneous excitation the 
distribution of the amplitude (of the smooth envelope) of 
the wave is shifted relative to the distribution of the driving 
force in a direction determined by the group velocity of the 
wave. In our problem the amplitude g,, which plays the role 
of the driving force, is zero near the rear face of the crystal 
(at z  = 0)  and increases along the z axis (see the figure). In 
accordance with the dispersion law, the group velocity 
v, = K - 2  = - u,- of the trap-charging wave is directed 
counter to the field E, (along the electron drift). Thus, the 
distribution of the amplitude B should be shifted relative to 
the distribution of the positive electrode-into the region of 
minimum intensity of the scattered light. Increasing the am- 
plitude near z  = 0 causes the scattered-light intensity to 
increase in the entire volume of the crystal. This leads in turn 
to further increase of E near z  = 0, owing to transfer of the 
amplitude, etc. As a result, if this transfer is effective 
enough, the gain turns out to be unstable and an emission 
regime is produced in which the backscattered anti-Stokes 
wave and the trap-charging wave increase exponentially 
with time. 

The conditions for the appearance of emission can be 
easily understood from the following considerations. As- 
sume that when the light is turned on there is present in the 
crystal an extremely small trap-charging wave produced by 
the fluctuations. The scattered line has here a distribution 
$ , a z  (see the figure, thick line). According to the local 
theory, the priming wave should be damped in the region of 
small z  and grow in the region of large z, where a sufficiently 
strong driving force $, acts. The plane separating these re- 
gions is located at z = z' -a; '. Obviously, if the distancez is 
shorter than the characteristic transport length 
x = Iv, I y- ' ,  see ( 14), the transfer of the amplitude E from 
the region z > z' into the region z < z' causes the oscillations 
to grow in the entire crystal. The emission condition takes 
thus, apart from a numerical factor, the form a, x > 1. 

We proceed now to describe the emission regime on the 
basis of Eqs. ( 3 )  and (8).  Substituting ( l ) ,  (9 ) ,  and ( l o )  
and using the condition 1 K(<aP' ,  b - ', we obtain at reso- 
nance (at w = K - ') the simplified equations 

where 

82r=8a,,, (irnP2KZt ) - ' 8 2 .  

We choose the initial and boundary conditions in ( 16) and 
(17) in the form 

where L is the crystal thickness. The meaning of the first two 
conditions is obvious. The reason for the third is that growth 
of a trap-charging wave at a given direction of its group ve- 
locity is possible only at a finite distance from the front face 

z  = L of the crystal, where the driving force can act on it. 
Expressions ( 16) and ( 17) are formally analogous to 

the equations that describe stimulated Brillouin scattering, 
see Refs. 15 and 16. The solution can be obtained by taking a 
Laplace transform with respect to time. For a, L$1 the 
transformed solution has a pole 

In the case s > 0 the solution turns out to be unstable and 
emission sets in. The conditions for the transition to the 
emission regime take thus the form a, x > 1/4, the result 
obtained above from qualitative considerations. On substi- 
tuting ( 13) and ( 14), this condition takes the form 

Expression (18) determines the critical field E,, . For 
E,, > E,, [if ( 18) is satisfied] the scattered-light intensity 
ircreases like 

until the incident wave is depleted. As a result, the light- 
reflection coefficient should increase to a value on the order 
of unity independently of the level of the priming fluctu- 
ations. 

We note that, in contrast to the amplification regime, 
emission is possible only when k ,  and E, are antiparallel and 
r > 0, since its onset requires, besides the condition a, > 0, 
also that the group velocity v, be antiparallel to the gradient 
of the intensity 4. The Doppler shift of the scattered light, 
determined by the phase velocity uJ, is then positive. 

5. FEATURES OF LIGHT SCATTERING UNDER 
PHOTOVOLTAIC-EFFECT CONDITIONS 

In a crystal without an inversion center the photoioni- 
zation of the impurity centers is accompanied by a photovol- 
taic current J = GSZNA where G is the Glass constant." In 
an isolated crystal this current leads to photovoltaic effects 
and maintains the field E, needed for trap-charging waves to 
exist in the absence of an externa' voltage source. This, how- 
ever, is not the only role played by the current J. When the 
trap-charging wave propagates this current becomes non- 
uniform because of the oscillations of the occupancy factor 
f and causes redistribution of the space charge. The current 
Jcan therefore decrease the damping rate of the trap-charg- 
ing waves, and under certain conditions it can even amplify 
them.'' We confine ourselves in the present paper to weakly 
damped waves. 

To describe light scattering under conditions of the 
photovoltaic effect, the current J must enter in the continu- 
ity equation (6 )  with a minus sign, since J is antiparallel to 
the field E,. It can be shown that allowance for this current 
reduces to the substitutions 

in Eqs. (13)-(19). Here 

is the field acting in an isolated crystal under conditions of 
mutual cancellation of the current Jand the conduction cur- 
rent. Since the electric insulation of the crystal is usually not 
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perfect, the field E, turns out to be somewhat weaker than its 
possible maximum Es . 

It follows from ( 13) and (20) that in the presence of the 
photovoltaic effect the amplification condition a, > 0 is 
met, in contrast to the case considered in the preceding sec- 
tions, if k, and E, are antiparallel and r < 0, or if k, and E, 
are parallel and r > 0. Emission is possible only if k, and E, 
are antiparallel and r < 0. These equations show also that the 
current Jcan decrease the damping rate y. The gain is there- 
fore increased and satisfaction of the emission criterion ( 18) 
is facilitated. 

6. COMPARISON OF THEORY WITH EXPERIMENT 

Let us consider the feasibility of emission under experi- 
mental conditions." In the cited study, a laser beam of wave- 
length i l ~ 0 . 4 4  pm was focused on an LiNb0,:Fe crystal 
along the c optical axis." Periodic light scattering was ob- 
served in the form of cones directed towards the pump, and 
called by the authors of Ref. 17 scattering self-waves. The 
effect is critically dependent on the pump frequency and is 
unobservable when the pump wave vector k ,  is directed 
counter to the c axis. 

These results contradict drastically the theory of pho- 
toinduced scattering by immobile gratings. lS4,' According to 
these references, stationary backscattering that depends lit- 
tle on the pump frequency should take place if k ,  and c are 
antiparallel, but if, on the contrary, k, and c are parallel 
bleaching of the crystal is predicted. Indeed, in the latter 
case it follows from Eq. (15), obtained under the assump- 
tion w = 0, that a, < 0, since we must put in this equation 
r < 0 for parallel k, and c. 

Let us discuss now the possibility of scattering by trap- 
charging waves, recognizing that in the experiments of Ref. 
17 a photovoltaic current J flowed through the crystal. It is 
remarkable that the wavelength of the effect in Ref. 17 corre- 
sponds to the maximum value of J, see Ref. 18. It is known 
that in LiNb0,:Fe the current J is directed along c and con- 
sequently E, and c are antiparallel. We see accordingly that 
the effect of Ref. 17 occurs only if k ,  and E, are antiparallel 
and r < 0, the same geometry as the emission in a crystal with 
a photovoltaic current (see Sec. 5 ) .  

Let us examine, finally, the feasibility of satisfying the 
quantitative criterion ( 18). Using typical parameters 
r-3.10-9 VP'.cm, N-,5.10I9 crnp3, fo-1, n , - 2 , 3 ,  
E-30, p ~ -  10W9 V-'.cm2 and Es - lo5 V.cm-' we find 
from ( 18) and (20) that the emission criterion can be satis- 
fied at Eo-E,. 

The effect observed in Ref. 17 can thus be interpreted as 
stimulated scattering of light by trap-charging waves in the 
emission regime. The sensitivity of the effect to the light 
wavelength il is probably due to the fact that a change of ll 
decreases the current J and condition ( 18 ) no longer holds. 
The trap-charging-wave frequency w which determines the 
frequency shift of the scattering light should be small under 
the conditions of Ref. 17, w 5 1 Hz. 

It should be noted that the proposed theory does not 

describe the case of strong scattering 8,- 8, and can there- 
fore not explain the transition observed in Ref. 17 from a 
periodic to a stochastic regime when the pump intensity I i s  
decreased. The theory yields only a criterion for the nonsta- 
tionary scattering regime and can describe the initial stage of 
its development [Eq. (19) 1. Nonetheless, since the time 
scale in the initial equations is T~ -I - I ,  it can be concluded 
that the period of the scattered-light intensity fluctuations 
should also be proportional to I -', as indeed observed in 
Ref. 17. 

We note also that to describe the scattered-light angu- 
lar-distribution dynamics investigated in Ref. 17 it is nece- 
sary to take into account trap-charging waves propagating at 
different angles to the field E,. This, just as the case of 
8, - 8 ,, is outside the scope of the present article. 
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and also V. V. Lemanov, V. V. Lemeshko, V. V. Obuk- 
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