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An analysis is made of the growth of a dendrite in a channel under the influence of an anisotropic 
surface tension. A preferred growth rate is found by considering the surface energy of a singular 
perturbation in the equation for the shape of a growing dendrite. It is shown that the dependence 
of the growth rate v on the supercooling A and on the channel width R is double-valued. In the 
limit R + w the upper branch of the v (  A) dependence tends to a curve representing growth of a 
free dendrite. It is shown that growth is not possible for all the values of the supercooling, but only 
beginning from a certain minimum value A,. An analysis is made of the selection of the growth 
rate of a free dendrite due to an anisotropic kinetics of the crystallization front. If the surface 
tension is ignored, the growth rate obeys v a v5I4A2 (vis the anisotropy parameter of the kinetic 
growth coefficent; v,A 4 1 ). 

1. INTRODUCTION 

The problem of selection and formation of a structure in 
nonlinear systems is currently the subject of intensive inves- 
tigations. Problems of this kind are encountered, in particu- 
lar, in studies of crystallization1 and viscous flow. The most 
significant progress has been made in solving the Saffman- 
Taylor problem (for a review see Ref. 2 and the literature 
cited there) and the problem of growth of a free 

An analysis of heat transport during the growth of a free 
needle-shaped dendrite in a supercooled melt shows that the 
surface of a growing needle is parabolic and the axial growth 
rate u is related to the radius of curvaturep of the tip and to 
the dimensionless supercooling A by an expression of the 
type 

where D is the thermal diffusivity of the melt.'' This depen- 
dence does not allow us to determine separately the values of 
v andp. However, the experimental results'2213 show that for 
a given supercooling there are unique values of u andp. It has 
been shown n ~ m e r i c a l l y ~ ~ ~ . ~ , ~  and analytically5.7v8p10 that the 
parameters v and p (and also the growth directionlo) are 
selected allowing for the anisotropic surface tension. The 
preferred velocity in the two-dimensional case is v a a7'4A4 
( a <  1 is the anisotropy parameter and it is assumed that 
A < l ) .  

An analysis of the growth of a needle-shaped crystal in a 
channel (Fig. 1 ) is faced with an analogous problem of selec- 
tion. If the channel walls are thermally insulating, this prob- 
lem is equivalent to one of growth of a periodic cellular 
structure. (The simplest experimental realization of such 
growth in a channel is observed not in the case of crystalliza- 
tion of a melt but during growth from a supersaturated solu- 
tion in a capillary.) The problem of selection of the preferred 
growth rate in a channel has been studied less than that of 
crystallization of a free dendrite. It is shown in Ref. 14 in that 
the limit corresponding to the PCclet numberp = vR /2D-0 
( u  is the steady-state growth rate and A is the channel width) 
this problem is formally equivalent to the Saffman-Taylor 
problem. The following results are obtained in Ref. 15 in the 
limitp -0. In the presence of an isotropic surface tension the 
growth of a crystal is possible only when the dimensionless 

supercooling obeys A> 1/2. and we have v a R  -'(A - 1/ 
2)  -3'2 (a similar result was obtained in solving the Saffman- 
Taylor problem in Ref. 16). When an allowance is made for 
the surface tension anisotropy, a crystal can grow even when 
A < 1/2. Moreover, it is concluded in Ref. 15 that, as in the 
problem of a free dendrite, there is a discrete spectrum of 
growth rates. This spectrun is investigated numerically in 
Ref. 17 for the case when A = 1. 

Naturally, in the problem of growth in a channel when 
the channel width approaches R -. there should be a tran- 
sition to the case of a free dendrite. However, the growth rate 
v (A ) obtained in Ref. 15 decreases on increase in the super- 
cooling A (which is unimportant in the case of crystalliza- 
tion processes) and does not reduce to u(A) for a free den- 
drite. In considering the growth of a dendrite in a channel we 
shall obtain below the other branch of the solution giving 
u( A). For this new branch the growth rate is higher and it 
increases with supercooling A. It is this branch that reduces 
in the limit A+ w to the solution corresponding to a free 
dendrite. We shall show that growth is possible not for all 
values of the supercooling, but only beginning from a certain 
minimum A,, which decreases on increase in the channel 
width (this conclusion is also reached in Ref. 15). 

An analytic theory of the spectrum of the growth rates 
of an isolated dendrite is developed in Refs. 5, 7, and 10. In 
these theories an allowance is made for the circumstance 
that the surface tension plays the role of a singular perturba- 
tion. The preferred growth rate is selected on the basis of the 
condition of solvability of the problem in the presence of this 
singular perturbation. Different solvability conditions are 
given by different authors. In Ref. 5 this condition is present- 
ed in an integral form as the condition of existence of the 
solution of an inhomogeneous linear integrodifferential 
equation for the correction to the shape of the interface. In 
Ref. 7 a nonlinear differential equation for the correction to 
the shape near a singularity is discussed. The solvability con- 
dition used in Ref. 10 is the condition for a finite solution of 
an inhomogeneous linear differential equation determined 
in the complex plane near a singularity. All these approaches 
give literally identical expressions for the growth rate of a 
free dendrite. The numerical spectral parameter is found in 
Refs. 7 and 10. Analytic expressions for this parameter in the 
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they  axis (Fig. 1); P ( 6 )  is an anisotropic kinetic growth 
coefficient; 

FIG. I. Schematic representation of the growth of a needle shaped crystal 
in a channel. 

far part of the spectrum, obtained in the WKB approxima- 
tion, are in fact identical in Refs. 7 and 10. 

We shall analyze the growth of a needle-shaped crystal 
in a two-dimensional channel, adopting the approach de- 
scribed in Ref. 10. Moreover, we shall consider the selection 
of the growth rate of a free dendrite due to an anisotropic 
kinetics of the crystallization front. When this effect is al- 
lowed for, there is a preferred growth rate even when the 
surface tension is ignored completely. We shall show that in 
the two-dimensional case the preferred rate is v cc J I4A2 if 
A g 1 (here, Y is the anisotropy parameter of surface kinet- 
ics) and a needle grows in the direction of the maximum 
kinetic coefficient. 

2. EQUATIONS FOR THE GROWTH OF A NEEDLE IN A 
CHANNEL 

We shall consider the two-dimensional problem of the 
growth of a needle-shaped crystal in a channel (Fig. 1 ). The 
steady-state distribution of the temperature in the melt and 
in the growing crystal is described by the heat conduction 
equation 

where v is the g;owth rate along they axis (Fig. 1 ). Far from 
the front in the limit y- cc the melt is supercooled and its 
temperature To is below the melting point T,,, . If the channel 
walls are thermally insulating and are located at x = + R /2, 
we have dT/dx = 0. The following heat balance equation is 
satisfied at the phase boundary y = c (x ) :  

Here, T, and T, are the temperatures of the melt and solid 
(crystal), respectively; c, and D are the specific heat and the 
thermal diffusivity assumed to be the same for both phases; 
L is the latent heat of crystallization; n is a unit vector of the 
outward normal to the phase boundary; u ,  is the growth rate 
along the normal. Allowing for the Gibbs-Thomson effect 
on the growth kinetics, we find that the temperature at the 
crystallization front is 

T (x, l;(x))=Tn,+Tm(~(0)lL)K(x)-unlP(O). (2.3) 

Here,P(B) = y(B) +d2y(B)/dB2,wherey(B) istheaniso- 
tropic surface energy; B is the angle between the normal and 

are the curvature of the crystallization front and the normal 
growth rate. 

Using the Green function for Eqs. (2.1 ) and (2.2), and 
applying the condition (2.3), we obtain the following inte- 
grodifferential equation for the shape of the front: 

~exp{-p[b(x)-b(x') l-p~1+(2nn/p)21'"~ b(x)-% (x') I ) .  
(2.5) 

Here, KO ( z )  is a Macdonald function. In Eq. (2.5) all the 
lengths (x,x1,[) are measured in units of the channel width 
A; 

is the dimensionless value of the supercoo1ing;p = uR /2D is 
the PCclet number; 

is the capillary length; k (x)  is the dimensionless curvature; 
the quantity 

has the dimensions of velocity. As in Refs. 3 and 5, the an- 
isotropy of the capillary length is described by 

d,(e)=d,(l-a cos 40) =doA,(0), tg 0=%'(z) (2.6a) 

and the anisotropy of the kinetic growth coefficient is 

l /w,(0)=(1/~,)  ( l -v  cos 48) 5 ( l /~ , )A , (0 ) .  (2.6b) 

We shall assume that the anisotropy parameters a and Y are 
small. Integration in the system (2.5) is carried out with 
respect to the the coordinate x' inside a growing needle. As 
shown in Ref. 14, the needle width depends on the supercool- 
ing and is equal to RA for A( 1 (Fig. 1 ) .  In the absence of a 
surface tension (do = 0 )  and for infinitely fast growth kinet- 
ics (w, + cc ), the surface of the phase boundary is isother- 
mal, whereas the shape of the boundary is y = [,(x) and 
this, as shown in Ref. 14, is described in the limitp - 0 by the 
familiar Saffman-Taylor equation'': 

( 1 4 )  nx 
%o (x) = --- In cos - . 

n A 

In the limit x - A/2, the value off, tends to - cc and Eq. 
(2.7) yields 
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( A D - x )  - e x p [ n t o l ( l - A )  I .  
The exponential form of the asymptote is retained also in the 
general case: 

(A12-x)  -exp ( s f ) ,  (2.8) 

where the parameter s is governed by the transcendental 
equation 

Here, do and w, are calculated as the values of do (6 ' )  and 
w, (8) corresponding to 6' = ~ / 2 .  Equation (2.9) can be ob- 
tained, by analogy with Ref. 15, from Eqs. (2.1 )-(2.3) if the 
asymptote of the temperature field is sought in the exponen- 
tial form: 

TL(s)  (5 ,  Y) =Tm-BL(s) ( 5 )  exp ( s y )  . 
A convenient model for the description of the shape of 

the crystallization front is the general expression similar to 
Eq. (2.7): 

where s corresponds to the exact asymptotic equation (2.9). 
For example, such a shape of the crystallization front was 
used as the zeroth approximation in the numerical solution 
reported in Ref. 15. When allowance is made for the effects 
of the surface energy and kinetics in Eq. (2.5), it is found 
that the shape of the front differs from fo (x): 

The linear equation for c, (x) in the limit of small PCclet 
numbers, p g 1, is 

x { 1  + sh 2 x  [ to ( x )  -to (x')  I 
ch 2 n  [ f o ( x )  -to ( X I )  1 -COS 2 n  (x -XI )  

b0"t.o' Av60' 

1 
+ati"-30 

I+ (to') " ti' + - ti' 
Asp, 

Here, 

whereas A ,  is given by the same expression as A ,  but with a 
replaced by v. 

The regular correction f ,  (x) is of the order of a (or 
l/p, ) and can be found as a solution of Eq. (2.12) ignoring 
the derivatives of the function f ,  . It is clear from Eq. (2.12) 
that this regular correction has a singularity in the complex 
plane at f  (x) = f i. The derivatives must be allowed for 
in the vicinity of such singularities. The singular perturba- 

tion associated with the derivatives has the effect that Eq. 
(2.12) is solvable only for certain values of the parameters. 
The final result is the spectrum of permissible values of the 
growth rate. 

3. EQUATION NEAR A SINGULARITY 

We shall consider Eq. (2.12) near the singularity 
f  ;, = i, where the contribution of the derivatives is impor- 
tant. Near this singularity Eq. (2.12) becomes purely differ- 
ential. This is due to the fact that the integral term contain- 
ing f ,  (x') is of the order of a, i.e., it is of the same order as 
the values of the function f ,  (x) elsewhere outside the singu- 
larity. On the other hand, near the singularity we find that 
6, (x) %a, because-as demonstrated by the subsequent 
analysis-we find that f ,  (x) is proportional to a lower pow- 
er of the small parameter a. Therefore, the integral term 
with f ,  (x') can be dropped, which makes the equation in 
question differential. The coefficient in front of f ,  (x) in this 
equation can be obtained by calculating the corresponding 
integral in Eq. (2.12) for values of x close to a singularity. 
This calculation can be carried out by a method similar to 
that described in Refs. 15 and 10. Use is made simply of the 
analytic properties of fo  (x) and the integral is calculated 
from the residues at the poles of the integrand. For x in the 
vicinity of the singularity f ; ,  (x) = i there are two closely 
spaced poles and we therefore obtain 
A12 

dx' 1 + sh 2~ (50  (XI -50 ( X I )  ) 1 [ ch Zn ( 5 .  ( x )  -to (x ' )  ) -COS 2n (x-x ' )  -1112 

Therefore, near this singularity Eq. (2.12) becomes 

Changing from a variable x to a new variable tin accordance 
with the relationship 

we find from Eq. (3.2) allowing for the smallness o f t  that 
near the singularity we have 

Here, A,,,, and 5;; are functions of t. According to Eq. 
(2.13) (when a,v< 1), we have 

It is assumed that the function f  &' has a simple zero near the 
singularity, i.e., that it can be represented in the form 

In the case of the Saffman-Taylor profile of Eq. (2.7) we find 
that 
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bx4n, e ~ 4 ( A - ' 1 , )  for ( A - - ' / , ) ~ l .  (3.7) 

If the profile of the crystallization boundary lo (x)  differs 
from Eq. (2.7 because of the finite growth rate, the values of 
b and E depend also on the PCclet numberp. 

4. PREFERRED GROWTH RATE IN THE CASE OF INFINITELY 
FAST KINETICS 

In the limitp, - a,, Eq. (3.4) can be transformed by the 
substitution 

to the following equation which does not contain the first 
derivative: 

The system (4.2) is defined in a complex plane t. 'I'he 
function q2(t) has the following singularities: at t = 0 there 
is branching and a second-order pole; at t = E there is a sec- 
ond-order pole; at t = & (2a)  ' I2  there are simple poles. The 
behavior of the solution of the system (4.2) depends strong- 
ly on the mutual positions of the poles at t = E and 
t = (2a)  ' I2  . We shall consider several limiting cases. 
a. Weak anisotropy of the surface energy: all2 4 E 1 

In this case if It I %all2 , we find from the system (4.2) 
that 

where q, = - C3I4$. T = t /E, and the small parameters a 
and E are eliminated by introducing 

The solution of Eq. (4.3) in the case when  IT^ % 1 can be 
reduced to the regular solution obtained ignoring the deriva- 
tive and can thus be matched to the solution in the region far 
from a singularity. However, this is possible only for certain 
values of the parameter p,, and it is this which determines 
the spectrum of permissible growth rates. In fact, the asymp- 
tote for the general solution of Eq. (4.3) in the case when 
171 >) 1 is of the form 

This solution rises exponentially along a ray arg T = 0 and it 
grows in accordance with a power law oscillating along rays 
arg T = & 2 ~ / 3  . The required solution becomes a power- 
law fall q, = rp3I4, which follows from Eq. (4.3) when the 
derivative is ignored, if this behavior along such three rays is 
suppressed. The relevant three conditions can be satisfied if 
we select suitably not only the two integration constants, but 
also the parameter p,. We shall demonstrate this and find 
the spectrum of p, in the WKB approximation assuming 
formally that p, $1. 

Instead of the whole plane of the complex variable T, we 
shall consider only the region where Im r > O  and assume 
that q, is real for real values of T > 1. Then, in view of the 
symmetry, the finite nature of the solution q, along a ray 
arg T = - 2 ~ / 3  follows asymptotically from the condition 
that it is finite along a ray arg T = 2 ~ / 3 .  

The spectrum ofp, can be described if we, firstly, solve 
the equation in the range / T I  4 1 , satisfying then the bound- 
ary condition corresponding to the absence of oscillations 
along a ray arg T = 2 ~ / 3 ;  secondly, we solve the equation for 
I T  - 1 I < 1, satisfying the requirement of finite and real solu- 
tion if T > 1; thirdly, we match these solutions in the region 
0 < T < 1. Equation (4.3) for the case described by  IT^< 1 is 

The general solution of this equation can be written in the 
form of a series 

w 

The first two terms representing the solutions of the homo- 
geneous equation can also be expressed in terms of Bessel 
functions. A ray arg r = 2 ~ / 3  in the range 171 % 1 corre- 
sponds to a ray arg r = 6 ~ / 7  in the range / T I <  1, but we now 
have 171 'I4 % 1. Therefore, the constants C, and C, are 
determined from the requirement of the absence of oscilla- 
tions along a ray arg T = 6 ~ / 7 .  We can then use the follow- 
ing expression for the asymptote of the series at for ~ $ 1 :  

After determination of the constants C, and C,, the 
solution of Eq. (4.6) for real values of r satisfying 
pr/2r7/4> 1 has the following asymptote: 

A real numerical factor has been omitted. 
We shall now consider Eq. (4.3) in the vicinity of T = 1, 

17 - 11 4 1. We then find from Eq. (4.4) that 

The solution which is real and decreasing in the range u > 0 
has the form 

with a real constant C. Therefore, in bypassing the point 
T = 1, i.e., in going over from u < 0 to u > 0, an additional 
phase factor e x p [ ~ i ( p ~ / ~  - i )  ] is acquired. Allowing for the 
phase factor in Eq. (4.7), we find that in the range u > 0 the 
function q, contains the following phase factor: 
e x p [ ~ i ( p i / ~  - 4 )  1 .  Since the function q, should be real, we 
obtain the following spectrum ofp,: 
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A similar spectrum is reported in Ref. 7. 
Equations (4.10) and (4.4) determine the spectrum of 

the growth rates. However, in order to find the growth rates, 
we have to specify the parameters E and b. We recall that 
these parameters depend on the shape of the phase boundary 
go (x)  found ignoring the surface tension and they determine 
the behavior of <: in the vicinity of a singularity [see Eq. 
(3.6) 1. In the case of the Saffman-Taylor profile of Eq. (2.7) 
the parameters b and E are given by Eq. (3.7). Combining 
these relationships with Eqs. (4.4) and (4. lo ) ,  we obtain the 
spectrum of growth rates: 

where V = u d , / 2 ~  and A = il /do represent, respectively, 
the dimensionless growth rate and the dimensionless chan- 
nel width. These results are obtained on the assumption that 

using the Saffman-Taylor solution which is valid ifp < 1. All 
these conditions can be combined in the following inequal- 
ities: 

A result similar to Eq. (4.11) is obtained in Ref. 16 in the 
specific case of the Saffman-Taylor problem and it is refor- 
mulated for the case of crystallization in Ref. 15. It  should be 
noted that, according to Eq. (4.11 ), the growth rate falls on 
increase in the supercooling A. This is in general unimpor- 
tant for the crystallization kinetics. However, it was found 
that in addition to this branch of the solution, there is always 
a second branch on which the growth rate is higher and in- 
creases with the supercooling. The existence of this branch is 
associated with the fact that the profile 5, ( x )  differs from 
the Saffman-Taylor profile because of the finite growth rate. 
It is this branch that describes the transition to the growth of 
an isolated dendrite in the limit il - cc and seems to us physi- 
cally realizable, whereas the lower branch is clearly unsta- 
ble. In an investigation of this new branch and of the qualita- 
tive behavior in a wide range of parameters we need to know 
the needle shape go (x)  in situations other than that covered 
by the Saffman-Taylor approximation. Since the exact solu- 
tion lo (x )  is not available for arbitrary values of the param- 
eters, we shall describe f o  (x )  by a model expression of Eq. 
(2. lo) ,  which reduces to the exact expression (2.7) in the 
limit p-0 and which gives an accurate asymptote for the 
shape of the boundary at x- _+ A/2. We shall find the pa- 
rameters E and b for this model shape: 

where 

and it satisfies Eq. (2.9) for do = 0 and w, = cc . Using these 
relationships and Eq. (4.4), we find the dependence V( A,A) 
which can be repesented conveniently in the following para- 
metric form: 

where 

This last condition may be satisfied only if 4 < A < 1. The 
requirement a''* < E  1 leads to an additional restriction on 
the value of s: 

The V( A) dependences for a fixed value of A and V( A) for a 
fixed A are plotted in Fig. 2 for the case when p , ,  = $. 
These dependences are double-valued, i.e., they have two 
branches. An analytic expression for the lower branch is ob- 
tained from Eq. (4.15) in the limits- n / (  1 - A) : the rate V 
is described by Eq. (4.11 ) when the conditions of Eq. (4.12) 
are satisfied. 

An explicit expression for the growth rate correspond- 
ing to the upper branch is found from Eq. (4.15) when s is 
close to n/A: 

for 

For a given channel width A, it follows from Eq. (4.15) that 
the solutions are obtained beginning from a certain mini- 
mum supercooling A, (Fig. 2b), which depends on A: 

In the limit (A - I )  < 1, the PCclet number is, in accor- 
dance with Eq. (4.16), also smal1:pr VA < 1. In this case the 
correction to E associated with the finite value of p can be 
calculated exactly (see the Appendix). Then according to 
Eq. (A.7), we have 

FIG. 2. Dependences of the growth rate Yon the channel width A ( a )  and 
on the supercooling A (b) in the absence of the surface tension anisotropy 
(a = 0) .  The continuous curves are plotted using Eq. (4.1 5 )  the dash-dot 
line in Fig. 2a and the crosses enclosed by circles in Fig. 2b are the numeri- 
cal results from Ref. 17; the dotted curves in Fig. 2b is the proposed inter- 
polation of the curves in the range A > 1/2, which is outside the frame- 
work of the adopted approximations. 
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8=4 (A-'I2) -pn.-' In 2. where 0 < s < m i n { ~ / A , ~ / (  1 - A)). Moreover, we have an 
On the other hand, the model equations (4.13) and (4.14) additional restriction on the parameters which follows from 
give the requirement J E J  %a1'': 

Therefore, the final answer for the growth rate differs from 
the results given by Eq. (4.16) in the limit A-4 only by 
numerical factors: 

This expression is valid under the same conditions as Eq. 
(4.16) and in the limit we have ( A  - 1) (1. 
6. Selection of thegrowth rate on the basis of the surface ener- 
gy anisotropy. 

If we allow for a ,  we can simplify Eq. (4.2) if E < 0, but 
I E ~  &a'/ '  , when we can ignore t compared with E. In this 
case it follows from Eq. (4.2) that if we make the substitu- 
tions 

we obtain 

Here, 

Equation (4.19) is considered in Ref. 10 in the specific case 
of crystallization of an isolated dendrite. The spectrum val- 
ues ofp,,, is calculated there and this spectrum determines 
the spectrum of the growth rates ( p a ,  =: 0.48). The relation- 
ships for the growth rate are obtained by solving simulta- 
neously Eqs. (4.20), (4.13), and (4.14). The required 
V(A,A) dependence can again be readily represented in the 
parametric form: 

The V(A) and V(A) dependences are plotted in Fig. 3. The 
V(A) curves either have two branches described by the sys- 
tem (4.21) or one branch. If A < 1/2 there are always two 
branches which go on to the region A - co . The lower branch 
corresponds to continuation of the Saffman-Taylor solution 
in the range A < 1/2, associated with the surface tension an- 
isotropy. This branch is discussed in Ref. 15. The asymptote 
for this solution is obtained from Eq. (4.21 ) assuming that 
S - ~ / ( 1  -A): 

if A4a7I4A) 1 and a"'( (1  - A) g ~ a ' ' ~ .  The growth rate 
on the upper branch tends to a finite limit on increase in A 
and this limit can be found from Eq. (4.21 ) by substituting s 

In this limit (A- co ) we are dealing in fact with the growth 
of a dendrite. The relationship (4.23) for the case A 4  1 
differs only by a numerical factor from the exact expression 
applicable to a free This difference is due to the 
following circumstance. In the case of a free dendrite charac- 
terized by a parabolic shape in the case when 2, = 0 and w ,  - a, we have" 

m 

where Po = vp/2D is the Peclet number andp is the radius of 
curvature of the dendrite tip. The model Eq. (2.10) derived 
for the tip also describes a parabolic shape with a radius 

. 1 ( ~ ) = 2 ~ , ,  .a -7 '~[n2/~2-~2]2 / ,~ [n2/ (1 -A)2-~2] ,  (4.21a) p/h=- I/<," (0) =A2s/nZ. 
It follows from Eq. (4.14) in the limit p -  co (i.e., when 

~ ( s ) = [ n ~ / ( l - A ) ~ - ~ ~ ] / 2 ~ 1 ~ ( ~ ) .  (4.21b) A -. co ) that s = 7?/2p( 1 - A )  *, which yields 

FIG. 3. Dependences of the growth rate Von the channel width 
A (a)  and on the supercooling A (b) for a = 0.01. The contin- 
uous curves are the results obtained in the present study, the 
points corresponding to A are the results from Ref. 17 (@) and 
from Ref. 19 (0). The dotted curves represent interpolation. 
Outside the range a-c the continuous curves are plotted using 
Eq. (4.21), whereas in the range b-c they are plotted using Eq. 
(4.11 ); in the range a the curves correspond to the intermediate 
case characterized by E < a"'. - 

70 lo8 A 
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Po=A2/2 ( I - A ) ' .  

If A  < 1 ,  it follows from this expression that Po = A2/2 ,  so 
that the only difference from the exact relationship Po = A2/ 
P is a numerical factor. We must stress however that in the 
other limit when 1 - A )  < 1 the dependence 
Vo: ( 1  - A ) - 4  deduced from Eq. ( 4 . 23 )  is invalid. This is 
because the model expression gives 

instead of the exact expression 

On the other hand, Eq. ( 4 . 23 )  represented as the depen- 
dence of v on Po, 

is identical with the exact expression which, as shown in 
Refs. 8 and 10, is valid for values of Po which need not be 
small. The range of validity of Eq. ( 4 . 25 )  is given in Ref. 10: 

It should be pointed out that, according to Eq. ( 4 . 2 5 ) ,  the 
growth rate V  diverges in the limit A -  1. A model of a 
boundary layer is used in Ref. 19 to show that the growth 
rate remains finite in the limit A  - 1: 

In the limit of the range of validity of Eq. ( 4 . 2 5 ) ,  i.e., when 
Poa"2- 1, Eqs. ( 4 . 2 5 )  and ( 4 . 26 )  give values of the same 
order of magnitude. 

It is clear from Fig. 3b that the growth becomes possible 
beginning from the minimum supercooling A,,  which in the 
Aa7I4$ 1 case is 

and for this supercooling the growth rate is V,,, = P / ~ ' / ~ A .  
In the limit A  - co the values of A ,  and V,,, tend to zero. On 
the upper branch the rate V ( A )  is described by a curve de- 
rived for a free dendrite, whereas for the lower curve we have 
v- 0 .  

5. SELECTION OFTHE GROWTH RATE ON THE BASISOFTHE 
ANISOTROPY OFTHE KINETIC GROWTH COEFFICIENT 

For the sake of simplicity, we shall consider the kinetic 
effects in the case of a free dendrite (A - cu ) with a negligibly 
small surface energy (2 ,  = 0 ) .  The anisotropy of the kinetic 
growth coefficient w, ( 8 )  is described by Eq. ( 2 . 6 b ) .  In the 
limit of infinitely fast kinetics, w, - C O ,  the crystallization 
front is parabolic: 

Lo(.) = -x2 /2p ,  
where p is the radius of curvature of the tip of the needle 
shaped dendrite, and the Peclet number 

is related to the supercooling A  by Eq. ( 4 . 2 4 ) .  
Allowing for the finite nature of the kinetic growth co- 

efficient, we find that Eq. ( 3 . 2 )  for the correction to the 
shape [, (x) corresponding to u = 0  is 

d f ,  p,(1+x2)" 
2 - -  f 1 = -  ( 1 + x 2 ) ,  

a x  2-4, 

where 

Here, all the lengths are measured in units ofp;  p, = E,p/ 
2 0 ;  vis the anisotropy parameter assumed to be small so that 
v< 1 .  

Near a singularity x = i on the assumption that 
I X  - il< 1 and after the substitution of 

we obtain the following equation for q, in the case when 
?T1"< 1: 

where 

The selection of the growth rate and of the parameterp 
is due to the fact that Eq. ( 5 . 2 )  has the required solution 
when the numerical parameter p, assumes discrete values 
p,,, . It then follows from Eq. ( 5 . 3 )  that 

and 

where Po ( A )  is the solution of the transcendental equation 
( 4 . 2 4 ) .  In the two limiting cases of A  < 1 and ( 1 - A )  < 1, we 
have, respectively, Po = A 2 / a  and Po = ( 4 )  ( 1 - A )  - I .  The 
direction of the dendrite growth is the same as the direction 
along which the kinetic growth coefficient is maximal. In the 
case of a free dendrite the transition from the selection on the 
basis of the surface energy described by Eq. ( 4 . 25 )  to the 
selection on the basis of the kinetics defined by Eq. ( 5 . 5 )  
occurs at a certain supercooling when both rates become of 
the same order of magnitude. At this supercooling we have 

The selection on the basis of the kinetics occurs in the case of 
stronger supercooling. Therefore, for A  close to 1 ,  where the 
parameter Po is sufficiently large, the selection is always on 
the basis of the kinetics. However, it then follows from Eq. 
( 5 . 5 )  that the rate u rises without limit when A  -- 1 .  This 
divergence is nonphysical and it is obviously related to the 
following. I t  is said in Ref. 10 that Eq. ( 4 . 25 )  is valid also for 
Po which is not small, but still obeys ~ , , a ' / ~ <  1 .  Similarly, 
Eq. ( 5 . 5 )  is valid when P , v ' / ~ <  1. There is as yet no analytic 
theory for the case when A+ 1 and ~ , v ' / ~ ,  1 .  On the other 
hand, it follows from physical considerations that in the lim- 
it A - 1 the growth rate remains finite and this confirms the 
results of a numerical modeling reported in Ref. 20. 

We shall conclude this section by calculating the spec- 
trum of values o f p ,  on the assumption that p, $ 1 .  Such a 
calculation is similar to the calculation of the spectrum ofp. 
made in the preceding section. 
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If r g  1, the general solution of Eq. (5.2) is 
'I 

q ( 7 )  =erp (2"p,r0'z/9) [ c + J t exp ( -2k"p . t v~ /9 )  d t ]  . 

The integration constant C is found on the assumption that 
the solution is finite along a ray arg T = 477-/9. [When we go 
over from the values of I T I  4 1 to the range I T )  % 1, we find 
that arg T = 4 ~ / 9  corresponds to arg T = 2 ~ / 5  for which 
the general solution of Eq. (5.2) 

rises exponentially.] After determination of this constant 
for real values of T such that p; 9/2 < T &  1, we find that 

rp-exp ( l 7 n i l I 8 )  exp ( 2 ' ! a p , ~ v ~ / 9 ) .  (5.8) 

A real numerical factor is omitted from the above expres- 
sion. 

Near the point T = 21/2 the solution of Eq. (5.2) is 

It follows from the above expression that on going from 
T < 21/2 to T > 21/2 an additional phase factor e ~ ~ ( 2 ~ ~ ~ p ~ 7 7 - i )  
appears in the solution. Using the phase factor in Eq. (5.8) 
we find that in the T > 21/2 case we finally obtain the phase 
factor of the function p ( r ) :  

The spectrum ofp, is obtained by requiring that p be real in 
the range T > 2l/': 

y,, ,=2-"(n+'/18), n=O, 1,  2 , .  . . . (5.10) 

We shall conclude by noting that in the case of a free 
dendrite we find from the numerical results4 that the only 
stable solution corresponds to the maximum growth rate in 
the discrete spectrum found above. The other solution are 
unstable against splitting of the tip of a growing needle- 
shaped crystal. 

APPENDIX 
Calculation of the correction to E 

In the limit ( A  - 4) ( 1 the value of E is given by Eq. 
(3.7). A correction linear inp to this equation can be found if 
we consider a linear (with respect t o p )  correction to the 
shape go (x) .  We shall describe the shape of the front in the 
form 

where gs, is the Saffman-Taylor solution given by Eq. (2.7). 
It follows from the definition of Eq. (3.6) that E is that value 
oft in Eq. (3.3) for which we have 5 (x)  = 0. Therefore, we 
can determine E from two relationships: 

When the shape of the front is described by the Saffman- 
Taylor expression c,, (x) ,  it follows from Eq. (A.2) that 

In the case when the shape is described by Eq. (A. 1 ) and we 

havep 4 1, the correction to E,, is proportional top, which is 
small. After linearization of the system (A.2), we obtain 

Therefore, we can find E from the correction to the shape 
near a singularity. 

The linear equation for 77(x) is 
'I, 

cos2 2nx-cos2 2n5' 

- I14 2 s i n y n  (x-x ' )  

1 J 
cos 2nx  1 sin 2 n  (2-x' )  sin 2 n  ( x + x f )  1 =- dx' ln - In 

4n2 -Ii, cos 2 n x f  cos2 2 n x f  

This equation is derived from Eq. (2.5) on the assumption 
that do = 0 and w k  + co in the limit A + 4. An allowance is 
made for the fact that the Saffman-Taylor profile C,,(x) 
satisfies Eq. (2.5) linearized with respect top.  Therefore, 
Eq. (A.5) corresponds to the expansion of Eq. (2.5) up to 
terms quadratic inp. The values ofx near x,, contain large 
imaginary contributions. For this reason the integral on the 
right-hand side of Eq. (2.5) is calculated and the kernel of 
the integral on the left-hand side simplifies and ceases to 
depend on x. We thus obtain 

'k 

An allowance is made here for the fact that 
1. 

( sin 2 n  (x-x' )  sin 2 n  ( x + x l )  I J dx' ln = 0. 
-'I, 

cos2 2nx  

Since 1x1 g 1, it follows from Eq. (A.6) that 
i ln2  

q ( x )  = - - 
n 

2, 

so that Eq. (A.4) yields 
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