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We study the geometry of attractors for various regimes of spin-wave turbulence in CsMnF,. In 
this experiment turbulence consists of temporally irregular sequences of bunching and 
rarefaction of magnons which are excited parametrically by microwave pumping. In the case of 
chaotic regimes which occur through the development of a period-doubling cascade (according 
to the Feigenbaum scenario), the attractors have a two-dimensional local structure with folding 
and branching and with subsequent layering. A feature of this class of chaotic regimes is that the 
complication of the motioa is accompanied by a complication of the topological structure of the 
attractor, while its embedding dimensionality is conserved. We obtain exact topological attractor 
structures. For chaotic regimes in the region ofstrong magnetic fields which occur in the Pomeau- 
Manneville scenario the attractors have a dimensionality which changes from 3 to 5 when chaos 
sets in. 

1. INTRODUCTION 

Experiments with parametric excitation of a rather 
large number of magnons in antiferromagnetic CsMnF, 
have revealed' a particular form of turbulence-a redistribu- 
tion, which is irregular in time, of the magnon density in the 
sample. The transition from the regime of a uniform station- 
ary magnon distribution in the sample volume to turbulence 
takes place via a periodic regime of bunching and rarefaction 
cycles, and after that according to a Feigenbaum or Pomeau- 
Manneville scenario. A detailed study of the transitional re- 
gimes was performed in Ref. 2. We gave there a diagram of 
different periodicity regimes and of chaotic regimes in the 
pumping-power-P-magnetic-field-H plane. Apparently, the 
bunching occurs due to the mutual attraction of the mag- 
nons and the non-stationarity of the process in time is con- 
nected with the depletion of magnons in the strong conden- 
sation region due to the non-linear damping and the 
overheating of the sample.'.* There are two chaotic regime 
regions which, following Ref. 2, we call "chaos 1" and "cha- 
os 2"; they correspond to different regions of Pand  H values. 
We described in Ref. 2 possible causes for chaotization in the 
transition to each of these. 

According to the modern approach to the problem of 
the onset of turbulence, the basis of the many forms of chao- 
tic motion in distributed systems is the change with time of 
only a few important variables which determine the dynam- 
ics of the system. Algorithms have been worked out which 
allow one directly to determine from experiments several 
"independent" variables which uniquely determine the po- 
tentially infinite dimensional motion of a dissipative contin- 
uous system, when the number of degrees of freedom which 
in actual fact is involved in the motion is not known apriori 
(we quote here Ref. 5 ) .  The number of these variables, 
whose values are unambiguously connected with the posi- 
tion of the system in its actual phase space, is called the 
dimensionality n, of the embedding."-" The aim of the pres- 
ent paper was in this connection to use the algorithms of 
Refs. 3-5 to establish the dimensionality of the embedding 
for the various regimes of spin-wave turbulence which are 
described in Refs. 1 and 2 and, if possible, to establish the 
topological structure of the attractors for those regimes. 

2. CONSTRUCTION OFTHE PHASE SPACE AND 
DIMENSIONALITY OFTHE EMBEDDING 

To construct a multidimensional phase portrait we use 
the method described in Refs. 3-5. Examples of its realiza- 
tion for an analysis of experimental data are given, in partic- 
ular, in Refs. 5-8. According to this method one can take for 
the equivalent phase coordinates at time t the variables 
x ,  = a [ t  + ~ ( i  - I ) ] ,  where a ( t )  is the only measurable 
quantity (one of the actual phase coordinates or a function 
of the position in the actual phase space), and T is an arbi- 
trary time shift. In order that the position in the equivalent 
phase space be in an unambiguous one-to-one correspon- 
dence with the position in the real phase space it is sufficient 
that the number of variables x ,  be not less than 2n,, + 1, 
where n ,  is the Hausdorff dimensionality of the attractor in 
the real phase space.4 In those cases where the geometry of 
the attractor is simple and its mapping into the space of 
equivalent variables has no self-intersections, the number n ,  
can be lowered down to n,, . 

If the number of important variables is not known a 
priori, as is the case in most experiments with distributed 
systems, we must also determine from the experiment how 
many coordinates describe the evolution of the system. To 
do that we use a convenient geometric criterion, formulated 
in Ref. 5, which is equivalent to the criterion of the simulta- 
neous probability distribution.' If n > n , ,  any measurable 
quantity y ( t )  must be a function of the n phase variables 
which we have constructed: y ( t )  = f (x  ,,..., x,, ) .  If n < n , ,  
the variable y is in the general case not a function of x , ,  ..., x,, 
and one must add it as an n + 1st coordinate. Starting from 
n = 1 one must thus add one coordinate by the method de- 
scribed above and test it on whether it is functionally inde- 
pendent of the previous ones. When the point x ( t )  moves the 
recurrence of the vector x does or does not lead to the recur- 
rence ofy, depending on whether or not there is a functional 
dependence. 

It is convenient to check this fact graphically. To do this 
in a graph we plot along the abscissa the distance 
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from the moving position of a point on the attractor to some 
point xO fixed on it, and along the ordinate axis the quantity 

If there is a functional dependence as described above, d--0, 
as r,, -0. We call this manner of checking a functional de- 
pendence "criterion 1 ." To realize it there need be only a few 
points on the attractor in a n-dimensional sphere with a 
small radius, in contrast to the methods determining the 
Hausdorff dimensionality of the attractor. The authors of 
Ref. 5 have made the above described criterion even coarser 
by completely eliminating from it all small scales. According 
to the coarsened criterion the dimensionality n, is attained if 
the envelope trajectory in the r,, , d plane lies completely 
below the line d = kr,, , where k =: 1. We call this criterion 
"criterion 2"; it can be very useful to estimate large embed- 
ding dimensionalities when the number of experimental 
points on an attractor in the volume bounded by small linear 
dimensions is small. The dimensionality n ,  obtained by the 
criteria 1 and 2 can in some actual cases be lowered, for 
instance, using the procedure of additional sections, as is 
described below, or by using a rotated system of coordinates. 

3. EXPERIMENTAL RESULTS AND THEIR PROCESSING 

As the above-mentioned measurable quantity a ( t )  we 
shall use the microwave power passing through a cavity with 
a sample (see the experimental setup in Ref. 2) .  The value of 
the transmitted power is determined by its absorption in the 
sample and also by the value of the real part of the high- 
frequency susceptibility, and depends thus on the number of 
magnons, their damping, and other quantities changed by 
the spin-wave turbulence process. The experiment was car- 
ried out on the same CsMnF, sample and under the same 
experimental conditions as those described in Ref. 2: the fre- 
quency of the microwave source was 18 GHz, the tempera- 
ture 1.4 K, and so on. We studied the geometry of the attrac- 
tors for five chaotic regimes; the oscillograms of the 
microwave signal for those regimes are shown in Fig. 1, 
where we also show the oscillogram for the periodic redis- 
tribution regime. The oscillograms were recorded in numeri- 
cal form in the computer memory. For each of the regimes 
the record in the computer memory is 10 sections of 1024 

FIG. 1. Filtered oscillograms of microwave power passing through a cav- 
ity. The upper oscillogram is the periodic regime, 1-5 are chaotic regimes. 
The scanning time is 2 ms for the oscillograms 1-3 and the periodic re- 
gime, and 5 ms for the oscillograms 4 and 5. 

values separated by time intervals r, = T/1024, where T is 
the scanning time of each section. We show in Fig. 1 one 
section for each of the regimes, i.e., one tenth of the experi- 
mental data used to construct and to study the attractors. To  
suppress the noise of the receiver-amplifier circuit we sub- 
jected the function a ( t )  to a numerical Fourier filter cutting 
off the spectral components with frequencies exceeding 20J;,, 
wheref;, is the average frequency of the sequence of bunch- 
ing-rarefaction processes. Such a filter not only suppresses 
the noise, but also smoothes somewhat the peaks of the oscil- 
logram. The amplitude of the spikes of the microwave signal 
is decreased by about 20% in the filtering, but the part of the 
oscillogram which is the main one in duration is not distort- 
ed. The use of unfiltered functions a ( t )  gives the same values 
of n ,  for the regimes 1-4 in Fig. 1 as the unfiltered signal, but 
the elements of the fractal structure of the attractors are not 
resolved. For regime 5 the embedding dimensionality is not 
reached up to n = 8 when we use the unfiltered signal. The 
phase portraits in the x,, x, plane are given in Fig. 2. 

The regimes 1-3 of the present paper correspond to cha- 
os 1 in the diagrams of Fig. 3 of Ref. 2 and the regimes 5,8, 1 1 
in Fig. 5 in Ref. 2. The regimes 4 and 5 of the present paper 
correspond to chaos 2 in the regime diagram and correspond 
approximately to the regimes 3 and 5 in Fig. 4 of Ref. 2. The 
regime 4 is transitional from the main period cycle to chaos 
2. 

The construction of the trajectories in the r,, , d plane 
gives, according to criterion 1, the following embedding di- 
mensionalities: for the regimes 1-3, n ,  = 3, for regime 4, 
n, = 3, for regime 5, n, = 5 according to criterion 1 and 
n ,  = 6 according to criterion 2. The realization of the algo- 
rithm to determine n,  is illustrated for regime 5 in Fig. 3. To  
determine n ,  for each of the regimes the construction proce- 
dure in the r, ,  , d plane was carried out for not less than 20 
points xO located at different positions of the attractor and 
for different values of T in the interval ( 2  to 10) t , .  

The attractors embedded in three-dimensional space al- 
low a more detailed study of their form when planar sections 
are passed. We show in Fig. 4 a number of sections of the 
attractor corresponding to the regime 2. We see that the 
points in which the phase trajectory crosses the intersecting 
plane are positioned on line segments, i.e., the attractor is 
made up of a two-dimensional strip which forms line seg- 
ments when it crosses the intersecting planes. These plane 
strips from folds and also branches in the plane of the strip 
with a subsequent layering of the branch part on the main 
part. The process of the formation of a fold can be traced 
when we go from section 4 to section 3. The lower points of 
the right-hand branch of section 4 goes over into the lower 
part of the left-hand branch of the section 3. 

The construction of a large number of sections enables 
us to obtain unambiguously the topological structure of the 
attractor for each of the regimes 1-3. The topological equiv- 
alents of these attractors are drawn in Fig. 5. 

For the regime 1 the attractor is topologically equiva- 
lent to the Rossler attractor (see, e.g., Ref. 9 )  for the regime 
of motion in two chaotic zones-a two-loop spiral formed 
from a plane strip with folds. When the Rossler attractor 
evolves in the direction of increasing the region of chaotic 
change of the variables, the folds are embedded into one an- 
other, as a result of which one loop is formed from a plane 
strip with a fold. The chaotization of the motion is then due 
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FIG. 3 Scanning of the funct~onal dependence of 
then + 1st coord~nate on the preceding ones for the 
reglme 5; s = 5 t , ,  n = 1 to 9. 

to the divergence of the trajectories in the plane of the strip small plane band is branched off in the plane of the strip, 
and their mixing as the result of the embedding (the so- departs from the large loop, and is superposed on the trajec- 
called stretching and embedding). tory of the small loop when their planes gradually converge. 

The development of the attractor of spin-wave turbu- Such a chaotization of the trajectories occurs in the Lorenz 
lence proceeds differently. When we go over to regime 2 a a t t r a ~ t o r . ~  In the attractor of regime 3 there occurs a fusion 

FIG. 4 Sect~ons of the attractor for the reglme 2. The 
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plane of the section 8 is parallel to the plane of Fig 2 
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FIG. 5. Topological equivalents of the attractors for the regimes Nos 1-3. 
The arrows indicate the folds. 

of the edges of the strip at the large and small loops, and the 
band which branches off like a Lorenz attractor moves over 
from the interior to the exterior orbits, forming there one 
more fold. 

The attractors for the regimes corresponding to chaos 1 
can thus be constructed from elements of Rossler and Lor- 
enz attractors. They correspond to motion with the smallest 
chaotization in the sense that the phase trajectories in them 
diverge in only one direction (they possess only one positive 
Lyapunov exponent). Possible types of attractors for differ- 
ent flow dimensionalities, i.e., orders of the system of differ- 
ential equations determining the evolution of the dynamical 
system, are enumerated, e.g., in Ref. 10. We note that for 
three-dimensional flows only one more kind of locally two- 
dimensional attractors are possible apart from the ones de- 
scribed above-a torus, but it differs from a strange attractor 
with exponential divergence of trajectories because there is 
no continuous Fourier spectrum for the functions x ,  ( t ) .  

The sections described here demonstrate also the fea- 
tures of the fractal structure of the attractor-a layer, which 
with some finite accuracy can be assumed to be two-dimen- 
sional, is shown to contain additional layer when the scale of 
resolution is decreased, and these, in turn, also must consist 
of layers, and so on. For example, one sees in the section 5 the 
layered structure of an attractor strip which gives a section 
branch inclined to the vertical axis of the figure at an angle of 
approximately 45". 

The sections for the regimes 4 and 5 demonstrate the 

three-dimensional nature of the projections of the corre-c 
sponding attractors in three-dimensional space-the points 
where the trajectories intersect the section planes fill two- 
dimensional sectors. The mixing of the trajectories in the 
regime 4 thus occurs in a three-dimensional tube of trajec- 
tories (the divergence occurs in two directions and the flow 
dimensionality is not less than 4), while for the regime 5 the 
trajectories mix in a space of yet more dimensions, but its 
dimensionality is bounded and is not larger than 5. 

4. DETERMINATION OFTHE SCALING DlMENSlONALlTlES 

Nowadays several forms of scaling dimensionalities are 
defined for attractors."' Such a dimensionality is defined as 
the exponent of the function Cm Id, where C is a quantity 
connected with the small linear dimension I of a region on 
the attractor. Of greater interest is the Hausdorff definition 
of dimensionality, n,, as that quantity indicates not only the 
fact that the dimensionality of the process is finite, but also 
the fractal nature of the attractor. However, to determine n ,  
from experiment it is necessary that the number of experi- 
mental points in a small region of the attractor be of the 
order of 10"","." and so far this has been impossible to realize 
for n ,  2 4. The authors of Ref. 11 proposed to define a so- 
called correlation dimensionality v for which they chose as C 
the average number of points falling in a sphere of radius I: 

N 

where N is the number of points on the attractor over which 
we sum, H the Heaviside function, and r:f the distance be- 
tween points in the n-dimensional space. As we are summing 
over a large number of points, the demands on the density of 
points are here not so critical. The dimensionality v is the 
same as n,, for a uniform distribution of points along the 
attractor, and in the general case bounds n,, from below." 
For spin-wave turbulence the point.; are not distributed uni- 
formly as there is a part of the attractor along which the 
motion along the trajectories proceeds fast, and a part along 
which the majority of points is situated, where the motion is 
slow. In our case, the determinatkn of v gives thus informa- 
tion about the finite dimensionality of the attractor and 
bounds n,, from below. We carried out the determination of 
v similarly to Ref. 12 for 25 different i in ( 1 ) and 3 different 
values of 7. We give the dependence of In Con In I for regime 
5 in Fig. 7. From the slope of these curves for large dimen- 
sionalities n of the reconstructed phase space we determine 
v = 3.2 + 0.3. For regime 4, v = 2.2 f 0.2, and for regime 2, 
v = 2.0 + 0.2. 
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been studied the complication of the regime occurs 
through an increase in the number of degrees of freedom 
involved in the motion, while in chemical turbulence7 the 
complication takes place in the framework of a Rossler-type 
attractor with a simplified topological structure. 

There is also a region of the above-mentioned param- 
eters in which the number of effective degrees of freedom 
increases when we change to developed turbulence-for 
chaos 2 the embedding dimensionality of the attractor in- 
creases, starting from 3, but for advanced turbulence it re- 
mains not larger than 5. 

I am grateful to L. A. Prozorova for her constant inter- 
est in this work, to G. E. Fal'kovich for many discussions, 
and to E. R. Podolyak, Yu. M. Minkharskii, E. G. Astrak- 
harchik, and E. L. Kosarev for substantial cooperation. 

FIG. 7. Determination of the correlation dimensionality v for the regime 
5. 
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