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An "explosive" growth of the power of acoustic emission occurs after a finite time when two non- 
coaxial point vortex dipoles (infinitesimally small vortex rings) approach one another. 

Onsager' was apparently the first to mention the funda- 
mental problem of spontaneous singularities in three-dimen- 
sional turbulence; this problem has been studied intensively 
from various angles in present-day  hydrodynamic^.^-^ In 
particular, the author6 has obtained an exact solution of the 
dynamics of point vortex dipoles (infinitesimally small vor- 
tex rings) corresponding to an unbounded explosive growth 
of the localized vorticity in a finite time upon collapse (con- 
vergence into a single point) of two non-coaxial vortex di- 
poles. A particularly stimulating role is played here by ex- 
periments by the Stanford group of Klein7 and by others,' 
(see also Ref. 3) who observed "bursts" of localized vorti- 
city in turbulent boundary layers. The recorded finite (albeit 
relatively large) amplitude of the vorticity in Refs. 7, 8 dur- 
ing the time of the explosions is, apparently, caused by some 
dissipative mechanisms. For instance, the emission of acous- 
tic waves by the t u rbu l en~e~ . ' ~  may be such a factor limiting 
the explosive growth of the local vortex field. 

In the present paper we consider the possibility of an 
anomalously strong sound generation in a weakly compress- 
ible medium during the collapse of a pair of non-coaxial 
point vortex dipoles. In principle we define more precisely 
the existing ideas (see Refs. 9,lO) about the weak efficiency 
of turbulence as a sound emitter in the limit of small Mach 
numbers. 

1. To sove the problem of the generation of vortex sound 
we use the method of the joining of asymptotic expan- 
sionsl~.~2 ~n . which the Mach number Ma = v/cg 1 is the 
small parameter, where v(t) is the velocity of approach 
(along a logarithmic spiral trajectory6) non-coaxial vortex 
dipoles, and c the sound velocity in the weakly compressible 
medium. 

Let the two non-coaxial vortex dipoles have Lamb mo- 
menta which are equal in absolute magnitude, but which 
have opposite directions, p,y, ( t )  = - p,,y,(t) -p,y ( t ) ,  
and let they be at time t at a distance I r  111 = Ix, - x21 from 
one another, where x, ( t )  and x,(t) are the Cartesian coordi- 
nates of the first and the second vortex dipole, satisfying 
[like y ( t ) ]  the dynamic set of equations given in Ref. 6. If 
initially at t = 0 the vectors 1 and y lie in the same (x, y )  
plane, it follows from the angular momentum conservation 
law M =p,[yl] = const (p, is the unperturbed density of 
the medium) that they remain in the same plane also for any 
other t> 0. We shall start from this assumption about the 
initial conditions and characterize the direction of the vec- 
tors y and 1 in the (x, y )  plane by the polar angles q,, ( t )  and 
q,,(r), respectively. 

The motion of the fluid outside the vortex dipoles is 
potential and is described by the velocity potential 

Choosing the origin of the spherical coordinate system (r, 8, 
q,) at the point 

B= [x, ( t )  +xz(t)] /2=const 

(into which the vortex dipoles collapse6) we get x, = l(t)/2, 
x2 = - l(t)/2, and for the potential @ we have in the limit 
r % l  the expression 

where Y,,, (0, q,) are spherical functions, y ( t )  = 1 y 1, 
2 = x 2  +y2 +z2. 

Under the influence of the non-stationary pressure field 
corresponding to ( 1 ) the point vortex dipoles can generate 
acoustic oscillations Y, the propagation of which in the wave 
zone r%A (A is the wavelength of Y) is described by the 
equation cC2d 2Y/dt - AY = 0, where \V is the sound po- 
tential and A the three-dimensional Laplace operator. We 
shall apply a standard technique,".I2 which uses an expan- 
sion of Y in a series in the spherical functions Y,,, and the 
radial Hankel functions H ,,, (r/A), to look for a solution 
Y of this equation which satisfies the emission conditions as 
r- co and which is the same as the potential ( 1 ) in the vortex 
zoneA%r%I (as A-O(I/Ma) when M a g l ) .  We then get 
from the equationp = - p,dY/dt for the oscillations of the 
pressure in the acoustic wave which is emitted by the pair of 
vortex dipoles in the wave zone r%A 

+A2 (t) sin 2 (9-cp, ( t )  ) 1, 
(2) 

where 

M HE- , A , = - 4 H M +  M [W2-65  (71) '1 
PO 1on15 (t) ' 

T ' 
H s - ,  

Po 

T' = -- 
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is the invariant interaction energy of the vortex dipoles. In 
agreement with Ref. 6 

3 
7l=5Ht+7,l0,  y2 ( t )  =4nH13 + - (71) ', l2 

There is therefore in this approximation with respect to the 
small parameter Ma & 1 no emission in the direction 19 = 0 
[i.e., in the ( x ,  y )  plane] and the frequency of thep oscilla- 
tions increases without bounds in the time of the collapse of 
the vortex dipoles, i.e., w(t) + cs as l ( t )  +O. 

2. In particular, for almost coaxial merging vortex di- 
poles the energy flux of the acoustic emission 

(see Ref. 10) through the surface of a sphere of radius rgA  
has, in accordance with ( 2 ) ,  the form (in the limit as t+ to) 

where p04 1, but p,#O when 

Ma, = v d c 4  1, v0 = ydl;,  E = p o v ; l ~ p  :/60tr7 is the mag- 
nitude of the vortex energy flux. In this limit Ma = Iv(t) i /  
c=: Mao( 1 - t /to) -3'5 and the applicability of ( 3 )  is clearly 
justified under the condition 

( I - t / t o ) ' ' 60Ma ( t )  <1 

(i.e., Ma:/3 & 11 - t /tol 5 Ma:/12), when the acoustic effi- 
ciency 

I Ma5 ( t )  K G - - -  
E ( I - t l t o ) g l  

corresponding to (3)  becomes already close to unity. The 
situation is not changed quantitatively for larger p,, since we 
have, for instance for po = ~ / 2 ,  

At the same time we have for coaxial vortex dipoles (p, = 0 
or p, = a) already I=:O(May). We note that the estimate 
I=:O(Ma5) in Ref. 11 (see also Ref. 9)  for the sound emis- 
sion intensity of two coaxial vortex rings offinite radius R ( t )  
is obtained in the limit when l ( t )  <R (t)-of small distances 
l ( t )  between the centers of the rings-and is determined by 
the effect of the periodic time dependence of R( t )  in the 
"vortex leap-frogging" process. In the present paper, how- 
ever, we consider essentially the opposite limit l( t )  ) R ( t )  , 

(e.g., when R -loMa;/3=Ro, since 11 - t /tol g Ma:" and 
l ( t )  =:0( ( 1 - t ) simulated by thedynamicsofpoint 
vortex dipoles which do not change their structure even as 
l ( t )  +0.6 

Equation (3)  thus shows that the emission of vortex 
sound at times t close to to can be very efficient notwithstand- 
ing that the magnitude of the acoustic efficiency 
KzO(Ma5), as is usually the case for sound emission by 
turbulence in a weakly compressible The possi- 
bility of similar, although appreciably weaker, effects for the 
magnification of K was obtained for point vortices in two- 
dimensional hydrodynamics,13 and also in Ref. 14 for vorton 
dynamics (vorton dynamics itself, however, does not satisfy 
all conservation laws of the three-dimensional equations of 
hydrodynamics, in contrast to the dynamics of point vortex 
dipoles6). 

In connection with the results obtained above there is 
interest in developing experimental studies related to those 
described in Ref. 15: of acoustic radiation by small vortex 
rings (with R-R, and po#O) which collide at a nonzero 
angle, and also the realization of acoustic time measure- 
ments of the vorticity bursts observed in a turbulent bound- 
ary layer.3~7~8 
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