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Relationships between spontaneous and stimulated emission from bound electrons 
(characterized by a discrete energy spectrum) are well known in quantum electrodynamics. We 
shall derive similar relationships for free electrons with a continuous energy spectrum, which are 
assumed to be traveling across a high-Q resonator with a discrete energy spectrum. An analysis is 
made of these relationships written in the classical and quantum forms, and examples of their 
applications are given. 

INTRODUCTION 

Stimulated emission of radiation from electrons moving 
in vacuum under the influence of static fields is related in 
several recent papers to their spontaneous emission, i.e., to 
the emission of radiation in the absence of alternating 
fields,'-" but a sufficiently full and general analysis of this 
topic is still lacking. We shall try to fill this gap in the case of 
resonant spontaneous oscillators, i.e., cavity or open resona- 
tors, traversed by electron fluxes. We shall first consider rec- 
tilinear electron fluxes and use them as a simple example to 
demonstrate the relationship between stimulated and spon- 
taneous emission, on the one hand, and the relationship 
between the classical and quantum theories of emission and 
absorption, on the other. More general results (for curvilin- 
ear electron fluxes) will be obtained using quantum theory. 

Application of quantum theory to the essentially classi- 
cal problems of vacuum electronics is justified because all 
three processes of spontaneous emission, stimulated emis- 
sion, and absorption are related firmly but simply in quan- 
tum electrodynamics, which is not true of the classical theo- 
ry; moreover, quantum theory allows ready averaging, 
which in the classical approach requires cumbersome proce- 
dures. Since only the classical limit is important in the resul- 
tant quantum formulas, there is no need to apply the Dirac 
equation to relativistic electrons, but it is sufficient to em- 
ploy the relativistic Schrodinger equation for zero-spin par- 
ticles (or, which is equivalent, the Klein-Gordon or Klein- 
Fock equation), which simplifies the procedure very signifi- 
cantly. Further simplification is achieved by ignoring the 
interaction between electrons (in particular, by ignoring the 
space-charge field). However, the bunching of electrons in 
the resonator field is allowed for although only one electron 
is considered. In fact, an electron is ascribed a random initial 
phase and averaging is carried out over this phase. This 
makes it possible to calculate the coefficient representing the 
damping or growth of oscillations in a resonator with a con- 
tinuous electron beam (Sec. 2).  

1. CLASSICAL CALCULATION IN THE CASE OF 
RECTILINEAR ELECTRON TRAJECTORIES 

the similar Smith-Purcell radiation (in the case of resona- 
tors with a periodic structure) is then generated. In all cases 
the radiation can be calculated using a theory of excitation of 
resonators. 

We shall assume that an electron moving uniformly 
along the z axis excites a cavity resonator in a section 
0 < z <  L, i.e., it generally excites all the natural oscillations 
of the resonator. We shall consider a specific oscillation with 
a complex eigenfrequency w, = w: - iw,;, where the attenu- 
ation coefficient w:' is governed by the ohmic losses in the 
casing and by the transfer of energy to the load: when the Q 
factor Q, = w,i/2w:' is sufficiently high, the influence of 
these circumstances on the field distributions can be ignored 
and the complex vector amplitudes E, ( r )  and H ,  ( r )  are the 
same as if the sth natural oscillation had been undamped. 

An electron moving uniformly along the z axis creates a 
current of density which has a single component 

jz=ev6 ( x )  6  ( y )  6 [ z - v ( t - t o )  1 
m 

e z 
= - 6  ( x )  6  (y) Re 5 erp [-i, (1- to  ->)I  ( 1 ) 

n 0 

where e is the electron charge; u  is the velocity of the elec- 
tron; t,, is the moment when the electron is at the point z = 0, 
i.e., it enters the resonator (Fig. 1 ). Using the orthogonality 
of the natural oscillations 

where 

is the norm of the sth oscillation, we can discuss such oscilla- 
tions in the form of traveling waves, as is usual in quantum 
electrodynamics. The electric field of the sth oscillation de- 
duced from the theory of excitation of resonators (see, for 
example, Ref. 6)  is given by the expression 

m 

As is known, an electron moving uniformly and recti- The energy transferred by the current of Eq. ( 1 ) to the 
linearly in free space (vacuum) does not emit radiation. field of the sth oscillation during the whole transit time 
However, when an electron crosses a resonator, it excites T =  L 1, is 
wave fields and leaves behind some of its energy in the reso- ~ O + T  

nator. Both transition radiation and Vavilov-Cherenkov ra- A,W.=- 1 dV j,E, d t .  (5 )  
diation (in the case of resonators filled with an insulator) or 10 
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FIG. 1. Electron in a cavity resonator (part of its casing may be in the 
form of a periodic structure). 

Elementary transformations make it possible to write down 
A,, W,  in the form 

eo 

A0W7,= 3 R , ( o ) F . ( o ) d o ,  
0 

where 

is the resonator function which in the limit w: -0 becomes 
S(w - w:), whereas F, ( w )  is the electron function which 
has the following form in the case of uniform motion along 
the z  axis: 

L 

where E,,, is taken along the z axis (x = y = 0 ) .  
Since 
m 

J R. ( o ) d w = l  for Q,BI. 
0 

application of the theorem on averages to the integral of Eq. 
(6 )  gives a simple expression 

A,IY,=F, ( o ) ,  (10) 

where w-co: in the limit when w:T-0; if w:T< 1, the func- 
tion R,  (w) varies much more slowly than the function 
R ,  (a) [see Fig. 21. The condition w:T< 1 means that up to 
the moment when the electron leaves the resonator only a 
slight fraction of the energy supplied to a given oscillation is 
lost. Therefore, such an oscillation can be regarded as a loss- 
free harmonic oscillator. 

The quantity A,, W, describes spontaneous radiation 
emitted by an electron in the absence of a field inside the 
resonator. Applying the same reasoning to arbitrary motion 
characterized by r = r ( t )  in a resonator (in the time interval 
0 < t < T),  we obtain the same Eqs. ( 6 ) ,  ( 8 ) ,  and ( l o ) ,  ex- 
cept now that the integral I, (w) becomes 

T 

I s  ( a )  = I E~ (r  ( t )  ) ( t )  e - ' ~ '  dt. 
0 

FIG. 2. Functions R, and F, in the limit myT< 1 
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Therefore, if we know the electron motion due to static 
fields, we find that the calculation in the case of spontaneous 
emission reduces to quadratures provided we ignore the re- 
action of a spontaneously emitted field on the motion of an 
electron. Estimates indicate that A,, W, represents a negligi- 
ble fraction of 1 eV so that the reaction of the radiation can 
be ignored. 

If there is always a weak field inside the resonator 

it may change the motion of an electron and give rise to an 
additional exchange of energy between the electron and the 
field. We shall assume that in alternating fields the electron 
moves along the z axis (which is the usual assumption for 
type 0 devices and is justified by the presence of a strong 
magnetostatic field or periodic focusing). Then, assuming 
that t = t,, + Z/U + St, we find that the function St (z)  is de- 
scribed by the following equationh: 

where the right-hand side is calculated for unperturbed uni- 
form motion along the Z axis because of the smallness of the 
amplitude C,y. Subject to the initial conditions St = 0, dSt / 
dz = 0 at z = 0, we obtain the following expression: 

s t  (z) = - L R ~ ' C ~  exp(- iwt , )  5 (z-af)E., , .  
muS 0 

The refined value of E, at the point z  is given by Eq. 
(12) in which we have to allow for St. Then, in the second 
approximation with respect to the small amplitude C,, we 
find the average field 

Zn 

1 6 ~ _ =  - J G E . ~ ( w ~ . ) ,  
2n ,I 

in the form 

which is obtained because of phase bunching in accordance 
with Eq. ( 13). The corresponding energy increment W, for 
the field of Eq. ( 12) can be calculated from 

1. 

A, w.=-eJ z2. h; (14) 
0 

it is assumed to be equal to the work done (relative to an 
initial phase wt,,) by the field on one electron in the segment 
0 < z  < L, but the sign of the work has to be reversed. We thus 
obtain 
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where the function F, (w)  is given by Eq. (8 ) .  The quantity 
A ,  W , ,  proportional to the energy of an oscillation 
W, = IIC, IZNT, gives the induced radiation emitted by an 
electron (averaged over its initial random phase at,) in the 
first nonvanishing approximation of perturbation theory. 
The total increment in the energy found in this approxima- 
tion is equal to the sum 

2. MAIN RELATIONSHIP IN CLASSICAL AND QUANTUM 
FORMS 

The relationship ( 15) between stimulated and sponta- 
neous processes of emission of radiation can be simplified 
bearing in mind that the function F, depends not only on the 
frequency, but also on the energy of an electron g = $mu2. 
Writing down F\ in the form F, (w, %') and using Eq. (8 ) ,  we 
can readily transform Eq. ( 15) to 

d F  
AiWe=-WsL (o, 8) 

dB 

In this form it applies also to relativistic electrons because in 
Eq. ( 15) we need to replace m with my' (longitudinal mass) 
and in Eq. ( 16) we have to assume that Z? = mc'y, where 
y = ( 1 - "'/C2) - '1 ' .  

We shall show later that the relationship ( 16) applies 
also to electrons which cross a resonator along an arbitrary 
trajectory. The quantum form of Eq. (16) is 

where n ,  is the number of photons in the sth oscillation and 
Y /  is the energy of an electron in static fields shaping its 
trajectory; t7 = const applies in the absence of alternating 
fields. In the limit Em-0 the quantum relationship ( 17) re- 
duces to the classical relationships ( 10) and ( 16) if we bear 
in mind that W, = n , k .  Using Eq. (16) and the general 
expression ( 11 ), we can find the stimulated emission (or  
absorption, if b'F, / d g  > 0 )  without going into details of the 
interaction of an electron with the field. 

In electronics Eq. (16) can be used to calculate the 
threshold current. If we multiply both sides of Eq. (16) by 
the number J ,  of electrons reaching a resonator per unit time 
and characterized by random phases (J, = J / e ,  where J is 
the current from a continuously operating electron gun),  we 
find the power transferred by an electron beam to a given 
oscillation. Since the power dissipated in the casing and in 
the load is 2w:'W,, the energy attenuation coefficient of the 
sth oscillation in the presence of an electron beam is 

Lasing is possible if x, <O because then the oscillation 
grows. The condition x, = 0 determines the threshold cur- 
rent. 

A theory of excitation of oscillations in open resonators 
is formally the same (see Ref. 7 )  as the above theory for 
closed (cavity) resonators. Therefore, all the results can be 
applied to electrons in open resonators. We must simply bear 
in mind that the damping is governed also by the emission of 
radiation in the lateral directions and that the norm given by 

Eq. ( 3 )  is due to the field between the mirrors. In  particular, 
the above relationships can be applied to an orotron.' 

The classical theory predicts spontaneous emission in 
the constant-current approximation [Eq. ( 1 ) ] and stimulat- 
ed emission in the constant-field approximation [Eq. ( 1 1 ) 1. 
The quantum theory, i.e., Eq. ( 17) describes the combined 
spontaneous and stimulated radiation. 

3. QUANTUM THEORY FOR A ONE-DIMENSIONAL MODEL 

If the trajectory is fixed, then in classical mechanics the 
motion of an electron along this trajectory (apart from its 
direction) is governed by its energy f?, as if it had one degree 
of freedom. In quantum mechanics the corresponding elec- 
tron state is denoted by 1 8 ) .  A multidimensional model in 
which one can allow not only for the energy but also for 
other parameters is discussed in Sec. 5. 

We shall consider a resonator casing impermeable to an 
alternating current, but completely transparent to electrons. 
We shall discuss an interaction between an electron and an 
sth oscillation with n, phonons at  a moment t = 0. Then, if 
t > 0, the state of the electron-field system is given by the 
following expression (if we limit our analysis to the first 
approximation of perturbation theory) 

where C = 1 and C+ = C- = 0 at t ='0, and the coefficients 
C+ and C _  are obtained from the equation 

The matrix elements on the right-hand side of Eq. ( 19) are 
independent of time since the states on the right-hand side of 
Eq. ( 18) have the same ehergy. The Hamiltonian of the in- 
teraction of an electron with the wave field can be written in 
the form - (e/mc)p,A, where A = a,A, + a: AT is the 
vector potential operator of this field, 

% is the energy of an electron in static (classical) fields with 
a vector potential A,,(r) and a scalar potential @(r ) ,  where 
p = - ifigrad is the momentum operator; in the case of non- 
relativistic electrons the expression for p, should include 

= mc2. 
The problem of emission of radiation by a free electron 

differs from the corresponding problem for a bound electron 
because the field now has a discrete energy spectrum and an 
electron has a continuous spectrum; moreover, the interac- 
tion occurs during a finite time T taken by an electron to 
cross the resonator. 

The probability that as a result of the interaction an 
oscillation acquires (loses) one photon will be described by 
P+ ( P  ). It follows from the system ( 19) that 
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eT 
n (-1 1 (8  1 peAA.' / b + h o )  ., mch 

and, if we assume that 

P+= (n,+I)F, (o ,  8 ) l h o ,  P-=n,F,(o, 8+ho)l f io ,  (21 

we obtain the main relationship of Eq. (17) because the 
average increment is 

We shall apply Eqs. (20) and (21 ) to a cylindrical reso- 
nator with cross-section area S and length L along the z axis, 
and we shall assume that 

la>= (LS)-'I' exp [ i k ( 8 )  z ] ,  ( 8 )  = ( 2 ) ' h / h .  (23) 

Then, at each moment there is inside the resonator a charge 
e, and during an interval T = L /u ( u  is the electron velocity 
l / u  = M k  / d g )  the same charge e crosses each z = const 
cross section. The function F, is described by the first 
expression in Eq. ( 8)  where 

1 - - J E,,, exp ( - i t  z )  d~ for ho-O. 
S 

We obtain the classical expression (8 )  by assuming / Z?) to 
be not the plane wave of Eq. (23),  but a thin wave beam 
localized near the z axis within the resonator. This can be 
done because of the smallness of the de Broglie wavelength 
27~/k( %' ) . In the case of relativistic electrons we can use Eq. 
(24) if we assume that k (  EF) = ( 1/fi) (%"/c2 - m2c') "'. 

In addition to the relationship between the stimulated 
and spontaneous radiations, Madey2 deduced the relation- 
ship (see also Ref. 5 )  

between the change in the average energy of an electron and 
the variance of its energy. Here, %' is the final value of the 
electron energy and the superior bar represents averaging 
over wt,, (see Sec. 1 ) . 

The relationship (25) is readily deduced from the ex- 
pressions in Eq. ( 2  1 ). We shall use P = 1 - P+ - P- for the 
probability that the number of photons does not change. 
Then, 

which gives the energy conservation law 

6%-ZT=A W,. (26) 

Since 

8,2=8'~+ ( 8 - h a )  'p++ (&+ha)) 2 ~ - = 8 2 + 2 8  (FT-8) 
+ [ (n.+l) F. (w,  8 )  +n,F, (o, 8 + h o ) ]  h o ,  

it follows that 

(&-a) '= [ (%+I) F, (o ,  6%') +n,F, (o,  8+ h o ) ]  h o  (27) 

or, in the classical limit 

(8T--8)2=2W2' ,  ( a ,  8 ) .  

Differentiating the above expression with respect to and 
using Eqs. ( 16) and (26),  we obtain Eq. (25) .  

All these relationships are naturally valid in the first 
approximation of perturbation theory when the probabilities 
P+ and P- are small and we have P=: 1. 

4. UNDULATOR RADIATION IN AN OPEN RESONATOR AND 
OTHER TOPICS 

We shall consider an open resonator formed by two 
mirrors separated by a distance Z from one another. The 
field of a natural oscillation near the z axis will be taken in 
the form of a circularly polarized plane wave: 

E.,,=iE,exp ( : )  i-z +... (E,>O), 

where the three dots denote the opposite wave which hardly 
interacts with electrons but does influence the norm 
N ,  = T-'E;~S, where S is the effective transverse cross 
section of a Gaussian beam wave in the interaction space 
0 <z < L (Fig. 3 ) ;  in this segment the beam is assumed to be 
homogeneous along the z axis. 

An electron moves in an undulator where the electric 
field near the z axis is 

II,=Ho cos h,,z, H,=H, sin hoz (ho=2n/l) (30) 

along a helix 

V L  x ( t )  = - sin (hovt) , 
~ h o  

V L  
y ( t )  = - - ~ h o  cos (hovt) ,  z ( t )  =ut 

(see, for example, Ref. 9 ) ,  where 

and mc" is the energy of an electron. Apart from an impor- 
tant phase factor, we find from Eq. ( 11 ) that 

v, sin @/2 
I s = -  EoL- 

v 0 1 2  ' 

FIG. 3. Electron in an open resonator: 1 ) mirrors; 2 )  wave-beam caustic; 
3 )  electron trajectory; 4)  undulator. 
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L Kz eZh sin @/2 =nJT--- - 
L 1+R S ( @/2 ' 

where A = 2m/w is the wavelength corresponding to the 
frequency w; J'V" = L /I is the number of periods of the mag- 
netic field (30); it is assumed that v = c everywhere where 
this is possible (it is assumed that 7% 1 ) and a term in the 
expression for I,  characterized by a large phase @' = (w/ 
c + W / U  - h,)L is dropped. The derivative 

ap, L KZ e% d sin @/2 - aa = ~ " J T ' - ~ T ~ ~ ~ ( ~ )  (8=mc2r).  

where the relationship a@/% = 47rS,Y'/%' is included, de- 
termines the relative reduction in the energy of an oscillation 
because of its interaction with one electron. If Z = L, Eq. 
(32) agrees with Eq. (36) derived in Ref. 9; this last expres- 
sion is obtained directly, i.e., like the expression for A ,  W, in 
Sec. 1. 

It should be stressed that in these and similar problems 
it is not the emission of radiation in a free state which is 
important, but the radiation attuned to the natural oscilla- 
tions of the resonator. In the cited investigations'-4 the pres- 
ence of a resonator is practically ignored, so that in Ref. 1 an 
indirect expression is obtained for the gain (which is related 
simply to the threshold current, see Sec. 2).  

In many cases the field of a given oscillation differs radi- 
cally from the plane-wave field. For example, in the case of 
an orotron a plane-parallel electron beam passes above a 
comb located on a plane mirror of an open resonator.' The 
electric field of a natural oscillation has a component 

where y = 0 is the plane of the comb and I is the period of the 
comb (I<A); the three dots denote non-phase-matched 
fields which hardly interact with electrons; the norm for this 
oscillation will be written in the form N, = (1/4n-) E :  V,,, 
where Vo is a volume which is of the same order as the vol- 
ume occupied by the field. If we assume that electrons occu- 
py a volume 0 < x  < x,,, 0 < y <yo, and 0 < z < L in the interac- 
tion space, and if we use f( y )  for the distribution of a 
transient (alternating) current along they axis, then instead 
of Eq. (24) we obtain an expression 

sin Q / 2  I,=% --- e-'"2, X = J  j(y)e-hau dy, 
@/2 " 

and hence 

and 

where SO = xO yo is the transverse cross-sectional area of the 
electron beam and, I" = L / I  is the number of periods; in the 
case of an orotron, we have d@/d% = .rr. l" /$.  

The threshold current calculated using Eq. (32') agrees 
with the result of RusinX obtained ignoring the space charge. 
However, it is clear that there is a close analogy between 
undulator and orotron radiations, i.e., between Eqs. ( 3  1 ) 
and ( 3  l ' ) ,  and ( 32) and (32' ); the analogy is close (see also 
Ref. 9) .  

We shall give also without derivation the solutions of 
two problems obtained by a classical method. If an electron 
moves along a circle in a homogeneous magnetostatic field 
Ho at an angular frequency R = eHo/mcy and if the alter- 
nating field in the resonator is homogeneous within this cir- 
cle, the stimulated radiation of an electron which leaves the 
resonator after a time is related to a function F, (co,% ) gov- 
erning, in accordance with Eq. ( l o ) ,  the emission of sponta- 
neous radiation 

If a nonrelativistic electron oscillates in a potential well at a 
fundamental frequency wo and it interacts with a homoge- 
neous alternating field inside the resonator, then 

Here, the frequency o,, depends generally on the energy 6'; 
wO is independent of ?? only for a parabolic well when all the 
higher harmonics 2w0, 3w0, ... are absent from the motion. 

The two relationships (33) and (34) differ from the 
main relationship of Eq. ( 16).  From the practical point of 
view, the difference is slight: the relationship (33)  is usually 
applied at f2 z w  and the right-hand side of Eq. (33) has an 
additional term proportional to dw,,/d%', but small com- 
pared with the main term. However, this difference is of fun- 
damental importance: the motion is finite so that quantiza- 
tion leads to a discrete energy spectrum in which an electron 
cannot be regarded as free in accordance with the above de- 
finition. For nonrelativistic motion in a magnetic field and 
for harmonic oscillations in a parabolic well the energy lev- 
els are described by the same expressions 

&,= (n+'12)hQ and 8,= ( n f 1 l Z ) f i o ,  n=O, 1, 2,  . . . . 
(35) 

In more general cases the spectrum is nonequidistant but 
still discrete. 

Therefore, the classical theory "senses" that the energy 
spectrum is discrete, which leads to the modified relation- 
ships (33) and (34).  Gaponov'"demonstrated that the clas- 
sical theory is also unsuitable in the case of equidistant spec- 
tra of Eq. (35) used in generation of stimulated radiation. In 
fact, if R and wO are independent of %', then Eqs. (33) and 
(34) always yield A ,  W, < 0, because dF, / d d  > 0. 

5. QUANTUM THEORY FOR A MULTIDIMENSIONAL MODEL 

We shall use / %', a) to denote the state of an electron in 
a multidimensional model; here, a is a set of parameters 
which can vary under the influence of wave fields; J...da is 
understood to be integration (or  summation) over all possi- 
ble values of these parameters. 
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The examples of continuous parameters of a are as fol- 
lows: in the absence of static fields these parameters are the 
distance of a rectilinear trajectory from thez axis or  the angle 
it forms with this axis. In  type 0 devices a longitudinal mag- 
netic field or some other focusing system induces transla- 
tional motion and finite transverse motion, the energy levels 
of which are labeled by the parameters a (see end of Sec. 4 ) ;  
in the absence of a resonance, the transverse motion is pas- 
sive. In type M devices (with crossed fields) we understand a 
to be the quantum energy of orbital motion superimposed on 
the drift and not attaining a resonance with an alternating 
field. 

In the multidimensional model Eq. ( 18) should be re- 
placed with 

+ 1 . . -I) C- ( b ,  a )  lC+Rw,  b ) d b .  (36) 

where C = 1, C+ = 0 at t = 0, whereas for t = T, we have 

ieT 
C + ( b ,  a )  = (n ,+ l ) '" -@-Am,  b (p,A;IB, a), 

mch 
ieT 

C- ( b ,  a) =n.'" - < 8 + A o ,  b  1 p,A, 18, a). 
mc A 

Hence the probabilities (probability densities) 

describe transitions accompanied by the addition ( + ) or 
removal ( - ) of a photon and satisfying the relationship 

P - ( 1 8 ,  a>-  I 8 + A o ,  b)) P + ( l 8 + h a ,  b>-+ 18, a)) - - 
n, n,+l 

(38) 

Summation (integration) of all the final parameters b and 
averaging over all the possible initial parameters a shows 
that such double averaging gives the probabilities P+ and P - 
dependent only on w and and satisfying Eq. (21 ) .  In this 
way we obtain the quantum expression (17) and the classi- 
cal expression ( 16) in which the quantities A W, and A ,  W, 
are subjected to additional averaging. If initially an oscilla- 
tion in a resonator is not in a state In,) with a specific num- 
ber of photons, but in some other state, then after a further 
averaging the value of n ,  changes to E, , which is the average 
number of photons. 

Similar averaging is used in the theory of radiation 
emitted by bound electrons, which have a discrete energy 
spectrum (see, for example, Ref. 1 I ) ,  and the relationship 
(38) is similar to that between the coefficients A and B ob- 
tained by EinsteinI2 in 1916 and justified by Dirac," which 
represents the foundation of quantum electrodynamics. 

CONCLUSIONS 

In spite of the simplicity of our results, they are clearly 
novel. The difference between this investigation and the ear- 
lier ones is that we are not dealing with radiation emitted in 
free space but with radiation in a resonator (closed or open) 
with any structure of the field. This difference has important 
consequences, particularly negation ofall the laws of conser- 
vation in the electron + field system, apart from the energy 
conservation law. Our quantum treatment of the oscillations 
in a high-Q resonator has made it possible to treat from the 
same point of view the coupling between spontaneous and 
stimulated radiations in various systems, going over to the 
classical limit (h + 0) .  There is no classical way of deriving 
the corresponding general expression, as demonstrated by 
the last two examples in Sec. 4. 

The author is grateful to the late Ya. B. Zel'dovich for 
his interest and valuable advice. 
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