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The decay of a level into a continuum corresponding to an infinite random motion of a quantum- 
mechanical particle is analyzed. All the interference effects which result from returns of the 
particle to its initial state in the course of the random walk are taken into account exactly by an 
ensemble-average method, without any appeal to renormalization-group considerations or 
requirements of spatial uniformity "on the average." The level decay laws are found for long times 
for the cases of random walks which do and do not involve a return. The conditions for an 
"incomplete" decay of the level are determined. In other words, the conditions for the existence of 
a localized component of the population, consisting of the requirement that the random walk 
return and the requirement that the correlation timebe finite, are determined. The time required 
for the population of the level to reach its asymptotic value is estimated. A possible mechanism for 
the formation of a "cold" ensemble during the excitation of polyatomic molecules by a resonant 
electromagnetic method is discussed. The process by which the motion becomes stochastic (by 
which the quantum numbers are destroyed) in quantum-mechanical systems of large 
dimensionality is also discussed. 

1. STATEMENT OFTHE PROBLEM AND BASIC RESULTS 

The problem of the decay of an isolated level into a 
continuum is encountered in many fields of Al- 
though this problem does have a formal solution in quadra- 
tures, it is generally not possible to draw any really meaning- 
ful conclusions about the nature of the decay. Even the 
answer to the qualitative question of whether the level de- 
cays completely depends substantially on the details of the 
spectral density and the matrix elements which couple it 
with the continuum. 

In this paper we wish to examine the problem-not of 
universal applicability but a fairly general particular case- 
of the decay of a level into a continuum, in which it is possi- 
ble to reach some substantial conclusions. This analysis ap- 
plies to systems in which an isolated level interacts directly 
with a relatively small fraction of the quantum-mechanical 
states of the continuum ( a  large finite or countable subset), 
which, not being eigenenergy states, interact in turn with all 
the other states and thereby indirectly with each other. 

We will analyze the asymptotic behavior after a long 
time-longer than any of the temporal parameters in the 
problem. The asymptotic behavior of such a system is related 
to the well-known problem of locali~ationl~~-'" which arises 
in a study of one-electron states in solids with randomly dis- 
tributed impurities. The approach taken in the present paper 
is significantly different from the approaches which are cus- 
tomarily taken in solid state physics to solve problems of this 
sort. We wish to formulate several rather general assertions 
regarding the nature of the motion in the system. Thereafter 
we will make no assumptions of the nature of the existence of 
a renormalization group. Our approach is thus valid for 
studying systems of arbitrary spatial dimensionality, and 
there is no requirement that the systems be spatially uniform 
"on the average." 

The physical processes which can be described by the 

level-continuum model (or the model of a level and a dense 
band) are extremely diverse. They include processes which 
correspond to the complete decay of states which are initial- 
ly filled [spontaneous emi~s ion ,~  many-photon ionization of 

and the formation of an absorption line during the 
interaction of electronic configurations in atoms5 (autoion- 
ization)] and processes in which the decay of the states is 
incomplete (the excitation of low-lying levels of polyatomic 
molecules by a resonant field,6 the formation of localized 
states in Anderson insulators,' etc. ). Problems involving the 
destruction of quantum numbers and the appearance of 
quantum chaos, which are usually studied numerically for 
simple systems,'.' 19'' can also be reduced to level-continuum 
systems and studied analytically. This comment also applies 
to complex systems, if physically reasonable assumptions 
are made regarding the random walk in the stochastic layer. 

The nature of the decay of a level into a dense band 
(continuum) of course depends on the statistics of the ener- 
gy levels of the band and the size of the matrix elements of 
the operator representing the interaction of the level with the 
band. The statistics are in turn determined by the particular 
features of the dynamic process which resulted in the forma- 
tion of the band. We believe that the most convenient way to 
incorporate the statistics is to use the method of ensemble 
averaging,l3.I4 which can be used successfully in problems 
involving randomly inhomogeneous systems. l 5  The analytic 
expressions can be made insensitive to the microstructure of 
the spectrum by appropriately choosing the ensemble of sys- 
tems having identical average values of the characteristics 
important to the process under consideration, and then aver- 
aging the perturbation series for the level population over 
this ensemble. The procedure of ensemble-averaging is 
closed by a test to see whether the variances of these expres- 
sions are small. 

In this paper we will apply the procedure of ensemble- 
averaging only to that fraction of the continuum states 

856 Sov. Phys. JETP 67 (4), April 1988 0038-5646/88/040856-10$04.00 @ 1988 American Institute of Physics 856 



which are directly coupled to the level. We assume that the 
distribution function of the values of the interaction matrix 
elements is given, and we assume that the energy position of 
each of the states selected is statistically independent of the 
positions of all of the other states selected. The interaction of 
the states with each other, mediated by all the other states of 
the dense band, is assumed to be complex and to have the 
characteristics of a random walk. The probability for the 
transfer of population from one state to another over a fixed 
time t is determined exclusively by the relative energy posi- 
tions of the levels. 

In other words, we are dealing with the dynamics of the 
filling of state 0 (which we will sometimes refer to below as 
the "ground state") in a system described by the Schro- 
dinger equation 

with respect to which we adopt the following assumptions. 
1. The energy position A, of each of the levels k is statis- 

tically independent of the positions of all the other levels of 
this set, {k) (we assume that it is equally probable over the 
interval from - r to r; we will later take the limit r - w ) 
and also statistically independent of the value of the matrix 
element V,, . 

2 .  The state density of the band, {a), is so high that the 
band can be regarded as infinitely dense. 

3. The matrix elements V,, are random quantities, such 
that the only nonzero ensemble averages of sums are of the 
type 2, V,, V,,X(a), where X ( a )  is an arbitrary smooth 
function of the level energy, while averages of the type 
2, V,, V :.,X(a) vanish. 

4. The ensemble average of the quantity 

aa' 

which is proportional to the population flux from one level 
( k )  to another (k  '), does not depend on the particular levels 
k and k ' which it couples.It is equal to some function f ( ~ , l )  
which is identical for all pairs. 

5. The ensemble average of the decay rate of the band 
levels {k) into the band ( a ) ,  given by 
2,  V,, V,, (E - A, ) - I ,  does not depend on the index k. We 
denote this value by y ( ~ ) .  

In other words, we have singled out from the entire 
dense band those states {k) which interact directly with lev- 
el 0, and we diagonalize the Hamiltonian in terms of all the 
other states of the band. As a result of the latter procedure, 
we form a set of levels {a}, which is related to the levels {k) 
by the random matrix elements V,, . The rate at which popu- 
lation flows from one level k to another level from the same 
set in the course of a process similar to a random walk is 

determined by--only the function f(e,g), which is identical 
for all pairs. In other words, all the levels of band {k) are 
equivalent from the standpoint of the redistribution of popu- 
lation among states of the continuum. 

To avoid any misunderstanding, we wish to stress that 
the interaction of levels {k) with continuum states {a) gen- 
erally does not have to lead to a complete and irreversible 
(exponential) decay of these levels. In other words, the in- 
teraction of some level with a dense set of other states can be 
described in by no means all situations by introducing a de- 
cay-a corresponding imaginary increment in the energy of 
this level. Under conditions such that this interaction is 
complicated, irregular, and even a discontinuous function of 
the energy of the state in the continuum, the dynamics of the 
decay of a noneigen state will generally not be exponential. 
In a problem of this sort, the particular function f(e , l )  is 
responsible for this irregularity, as it is for the nature of the 
decay process. 

A distinction is drawn between two types of motions, 
depending on the nature of the behavior of the function 
f ( ~ , l )  in the limit ~ - 5 .  The motion is a "returning" motion 
if we have f-. oo as E-.{, or it is a "nonreturning" motion if 
we have f-0 as E+{. For a nonreturning motion, a quan- 
tum-mechanical particle which is in one of the band levels 
{k) at the time t = 0 will leave this level, and in the limit of 
large t it will not return to any of the other levels of this band. 
In this case, the decay of level of the band {k) to states of the 
band {a) is irreversible. In the case of a returning random 
walk, we are dealing with a different situation. This type of 
motion corresponds to a repeated return of the quantum- 
mechanical particle to levels of band {k); i.e., the integral of 
the total population of all these levels over time diverges at 
the upper limit. If the probability for the particle to be in the 
states {k) is calculated by a path-sum method, the implica- 
tion is that in the limit of interest here (long times) the situa- 
tion is dominated by paths which undergo repeated self-in- 
tersections at the levels of the band {k). We are actually 
talking about incorporating an interference among the wave 
functions which arise as a result of the repeated returns of 
the particles to the given group of states. 

Incorporating the effect of path self-intersections is the 
basic problem in carrying out a summation. Although the 
topology of the Feynman diagrams which arise in the course 
of the calculations is considerably more complex than usual 
(trees, ladders, etc.), it nevertheless turns out that these dia- 
grams can be summed. The procedure required here, which 
is based on certain methods of graph theory, is extremely 
laborious; we will present it in the following section of this 
paper. At this point we think it is worthwhile to preview the 
results which are found as a result of this summation and to 
list the characteristics of the system which are responsible 
for the decay of the ground state. 

The most important results are two in number. First, a 
nonreturning random walk leads to a complete decay. Long 
times correspond to a decay law of the type 
p, a exp( - const t ' I 2 )  (slower than exponential) for the 
population of state 0. The reason for this decay law is the 
existence in the selected ensemble of some improbable real- 
izations of bands which do not have levels k which are suffi- 
ciently close to state 0. In this case, self-intersections of paths 
are inconsequential. 

The second important result refers to the case of a re- 
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turn random walk. If a particle repeatedly returns to the 
levels of band {k), all the paths will intersect repeatedly, 
thereby leading to a substantial change in the pattern as a 
result of interference effects. In such a situation, a return 
random walk leads to an incomplete decay of the level. In the 
limit of long times, an exponentially small fraction 
exp{ - VigZ const) of the population remains at this level; 
here g is the state density of band {k), and Vi is the mean 
square value of the interaction matrix element I VOk 1 2 .  

An important role is played here by the characteristic 
correlation time of the random walk, T, : the time over which 
the wave functions of the states of band {k) are changed by 
the nondiagonal matrix elements V,, of the Hamiltonian. 
Although this time does not appear explicitly in the result, it 
determines just when the asymptotic distribution of popula- 
tions is established. This event occurs when the number of 
returns in the random walk exceeds the number of levels in 
band {k) which fall within a T; ' neighborhood of the energy 
of level 0. If the correlation time is exceedingly small, T, - 0, 
on the other hand, and the asymptotic valuep is not reached 
over the time intervals of interest, then the random walk may 
be regarded a? noncorrelated. Correspondingly, we would 
have f ( ~ , l )  cc f ( ~  - 6).  As a result we have the intermediate 
asymptotic behavior p, oc exp ( - const t 2 1 3 ) .  This func- 
tional dependence, as in the case of a nonreturning random 
walk, results from the influence of improbable realizations of 
the system. Consequently, the asymptotic time dependence 
of the population of level 0 is determined by two characteris- 
tics: the correlation time and whether the random walk is of 
a return nature. 

2. CALCULATION OFTHE DECAY PROBABILITY 

It is convenient to seek a solution of Eq. ( 1 ) in the form 
of an infinite power series in the interaction V. In this case 
the probability amplitude for the filling of the ground state 
can be written as a sum over all possible closed paths which 
begin and end at level 0. Each path corresponds to a particu- 
lar term in the series. A path is represented as a sequence of 
transitions between levels (0, {k), {a}); each of the levels 
met along the path corresponds to a factor E- ', (E - A, ) - ', 
or ( E  - A, ) - I ,  and each of the transitions corresponds to a 
factor V,, or V,,, which is the probability amplitude for the 
given transition. 

Over the long time intervals in which we are interested 
here, the system has time to undergo many transitions. The 
corresponding paths are thus long, with many self-intersec- 
tions. If we represent each path by an oriented graph (or- 
graph), the graph will have a large number of parallel edges, 
since a given transition occurs repeatedly, or pairs of levels 
from the band {k) are connected by different nonintersect- 
ing paths. Since only the numbers of levels and transitions 
encountered along the path-not the particular order in 
which they occur--contribute to the series in a perturbation 
theory in V, many paths will have identical orgraphs and will 
thus contribute identically to the sum of the series. A sum- 
mation over paths can then be replaced by a summation over 
different orgraphs with appropriate "statistical weights," 
i.e., with the numbers of various possible circuits of the or- 
graph or "Eulerian paths." An explicit expression is avail- 
ableI6 for a number of this sort: 

where d, is the multiplicity of node j, i.e., the number of 
edges which leave it (the number of times level j is encoun- 
tered on the path), and detllpU 1 1  is any of the minors of the 
connectedness matrix llpU 11, which consists of the matrix ele- 
ments p O ,  which (with i#j)  give the numbers of parallel 
edges connecting nodes i and j or (with i = j) are assumed to 
be equal to the total number of edges which leave the node 
pi, = ZjpU. For definiteness below, we will always deal with 
the minor which corresponds to the deletion of the row and 
the column which correspond to the ground state. 

We are interested in the population, not the wave func- 
tion, of state 0. To find the population we need to go through 
a completely analogous procedure-taking Fourier trans- 
forms, carrying out a series expansion in a perturbation theo- 
ry in the interaction, and writing the series as a sum over 
orgraphs-for the complex-conjugate wave function, which 
we denote by $({), using a different variable 6, which is 
conjugate of the time. We then need to multiply the resulting 
series term by term. Most of the terms in the series for the 
populations which is formed in this way vanish after we car- 
ry out the ensemble-averaging, by virtue of assumption 3. 
The only terms that are left are those for which the parts of 
the orgraphs which differ in topological structure from trees 
and which correspond to the levels of band {k) and {a) and 
to transitions between them, V,, , are completely identical 
for the right-hand and left-hand brackets. If we also allow 
for the fact that the parts of the orgraphs which do have the 
topology of trees can be summed separately, with the result 
that we find a renormalization of the node factors [the level 
energies A, acquire imaginary increments y ( ~ )  and y({) 
which are positive for { and negative for E],  then we can 
assert that the only terms of the series for the populations 
which are nonvanishing are those for which the orgraphs of 
the transitions between states of the {k) and {a) bands are 
identical. By virtue of assumption 2, we can ignore self-inter- 
section of the diagrams at the levels ofband {a). By virtue of 
assumption 4, we can associate identical factors f(s,$) with 
all coincident edges of the orgraphs for the right-hand and 
left-hand brackets connecting different levels of band {k) 
and passing through levels of {a). 

It thus becomes possible to further simplify the struc- 
ture of the perturbation series for calculating a population. 
Specifically, we can now eliminate the energy levels of band 
{a) from consideration. The nodes of the orgraphs will then 
refer exclusively to the {k) band. Each edge connecting 
these nodes can be associated with a factor f (a ,c) .  The ma- 
trix elements of the connectedness matrix pU now refer only 
to the number of parallel edges between nodes of band {k); 
and a combinatorial factor compensates for the indistingui- 
shability of the nodes of band {a) which results from this 
procedure. 

The difference between the number of Eulerian circuits for 
the right-hand and left-hand brackets now results exclusive- 
ly from the difference between the orgraphs at the levels of 
band { k )  and level 0. If we denote by m,, the number of 
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FIG. 1. 

transitions Vok which are encountered for the left-hand 
bracket, and by no, the corresponding number for the right- 
hand bracket, we can write the following expression for the 
population of the ground state: 

where a summation over {pU) means a summation over all of 
thepv, each of which takes on values from 0 to a. Similar 
comments apply to n and m. 

As an example, Fig. 1 (a )  shows a graph representation 
of one of the terms of the series for the population (straight 
lines correspond to the right-hand bracket, and wavy lines to 
the left-hand bracket). Corresponding to the orgraph is a 
term of the following form in the series for the population: 

Herep,, = 1; p,, = 1; the number of Eulerian paths for the 
right-hand bracket is equal to 1; and that for the left-hand 
bracket is equal 2. Figure 1 (b)  shows Eulerian paths for the 
left-hand bracket. 

For convenience in the calculations, we will make one 
more change in the order of the summation. The reason is 
that there are many different levels in band {k), and a path of 
finite length is incapable of reaching all of them. This asser- 
tion means that among the factors in expression (3)  there 

are many 1s (zeroth powers). We eliminate them from con- 
sideration. To do this, we choose exclusively those levels 
through which the paths of the given orgraph pass, and we 
call the set the "carrier of the orgraph." We carry out a 
summation over all orgraphs with a given carrier, and we 
then carry out a summation over all carriers. With the sum- 
mation in this order, the value of no, + mok + 2,pk, is a 
natural number for any node k. Expression ( 3 )  can then be 
put in the form 

where the sum over {X) means a summation over all possible 
carriers. 

We now make use of assumption 1: In our ensemble, 
each level k is distributed at random in the band, and it can 
take on values A, from - to with equal probabilities. 
We average the terms of series ( 3 ), noting that we have 

(I) 

1 1 2nig (ni-m-2) ! 
J,,,j%zF gdA = (a-b) mf n-' - - (n-I)  ! (m-I)  ! 

(6)  

forn,m>O.Inthecasesn =O,m = 1,andn = 1,m =Othe 
integral is equal to * igrr (depending on the sign of the 
imaginary part ofa and b).  Using the integral representation 
of the factorials 

OD 

we find the following expression for the population of the 
ground state: 
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where 2y = y ( ~ )  + y ( { ) .  
The idea of the following transformations is to put the 

population of the ground state in the form of a product of 
factors each of which depends on only the parameters corre- 
sponding to one level. An averaging is then carried out over 
these parameters. In this approach, the primary difficulty 
stems from the presence of determinants which depend on 
the indices of many levels in expression (8) .  The levels can 
be split, however, by using generating functions. The actual 
procedure, in the form in which we have managed to carry it 
out, is extremely involved, and we do not have space here to 
reproduce it in detail. It is summarized in the Appendix, 
where the appropriate notation is also introduced. The final 
expression is 

du (4nuu) -' exp (-A-o-r-x2-y2) 

exp (A,-&) + ( A ,  12(1-Az)-2 exp (A,-A,) 1, (9)  

where we are using the notation 

+2i (f.t)'"v [ x  cos (0-l-8) +y  sin (0+0)  ] +f.tv2. 
(10) 

Here @ is a contour around the origin, and C(p ) is a contour 
consisting of a ray which starts from the origin and goes off 

to infinity at an angle p from the real axis. The phase p is 
chosen in such a way that all the integrals converge. The 
quantity g(  V) is the spectral density of those levels for which 
the matrix element of the interaction with the ground state 
lies in a d V interval around V. 

Expression (9),  along with expressions ( lo),  describes 
the behavior of the population of a state associated with a 
band of levels between which the transitions described by the 
transfer function f(~,{) occur as a result of a mediated inter- 
action through a dense band. Although this point cannot be 
seen directly from the expressions written here, the popula- 
tion of the ground state remains equal to unity at all times in 
the case V=O. To verify this physically obvious fact, it is 
necessary to carry out several transformations which consist 
basically of using the relations found for the Bessel functions 
after integrating over dB and d6, introducing the new vari- 
able J = A, -A2, and integrating by parts. 

For the transformations below, we make use of the spe- 
cific functional form of g(  V), which makes it possible to 
substantially simplify the expressions derived above: 

where V,- ( V2) 'I2 is the mean square matrix element of the 
transition operator, andg is the spectral density of all levels. 
Noting that Vand 8 - 6 can be treated as polar coordinates 
under integration, carrying out the corresponding integra- 
tions in terms of the equivalent Cartesian coordinates 
Vcos(8 - 6) and V sin(@ - a ) ,  changing the order of the 
integration over d ( 8  + 6) and the differentiation, introduc- 
ing the change of variables v- v exp(s/2) and then differen- 
tiating with respect to ds, dL, and dR, we find an expression 
for the population. After the terms in the relation for the 
quantity J = A, -A2 which are proportional to v-' are eli- 
minated through the use of recurrence relations for the Bes- 
sel functions; after we use the identity 

CO 

exp ( fzvZ)  =n-' 3 exp [ (1,) 'lavY-Y2] d Y ;  (12) 
- m 

and after we introduce the variables 

Z=(~-E-2iy)+V~~[o(~-ingV,~)-~ 

-h(g+ingVo"-']+2(f.)"Y, 

r2=4{V02[-h~(e-ingV~~)-'(~+ingVgO-']% 
+ i ( f ~ ) " x ) ~ - 4 f z y ~ ,  cp=arctg( ylx) (13) 

and 

this expression for the population takes the form 

=&jf- do' da dq dr d r d y  [ (I -A,)  (1-AR) (i-Aa)-' 

-A,, (I-A,)  -,- 1 A, 1' (1-A,) -']exp (I-or-izq-x2-y') , 

where 
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m 

1 (the 1 - A 2  pole) and over d r  by the method of steepest 
1 = - nlllg j { - v :  (u'2f-2+z2) + [ v: ( ~ ~ ~ f - ~ - z ~ )  

2 descent, in which we make use of the small values of the 
quantities V,-'g-', f  -', and <; taking a Gaussian integral 

-2i (fa-) '1*x]'-4fzy" over d y  and a steepest-descent integral over dx,  we find the 
- rn following expression for the principal component of the pop- 

+ V:1~ ' f -~ [c /2 - i y+  (fz)  " Y l )  {[ Vo2 (o"f-'-z2)"" ulation after a long time: 

-2t (fz)"xIS 

- [ t - 2 i yS  V,Pufb-'+2 ( f z )  'laY]')-"l 

exp (- Y 2 )  dY,  
m 

& = - -  g f z  j (z~-+)  -% exp ( - y 2 )  d ~ ,  
2in" -_ 

x exp (-Y2) dY. ( 1 6 )  

We consider the following cases in more detail. 
a) We assume f =  0 and y =O. In other words, we assume 

that there is no interaction between band {k} and band {a}. 
We then have A, = A 3  = A,,, = A,, = 0 ,  and the expres- 
sion for the population of the ground state becomes the same 
as that found in Ref. 6 for a level-band system. Under the 
condition V&( 1 ,  there is essentially no decay of the level, 
while at V i g 2 )  1 a steady-state population po- ( V , ) - '  is 
reached after a long time. 

b) The case of a nonreturning random walk ( y f 0 ,  and 
f-0 in the limit (-0) corresponds to 

A,=AL=AnL=A2=As=O1 J=-i/2ng(Vo2a'iy/&) '", ( 17) 

from which we find 

and, at long times, 

po-(tyg2V02)'A exp {-i/2(tyg2V02)').  (19) 

c) The case of an uncorrelated return random walk, i.e., 
the case y#O, f ( g , ~ )  + 2 ? ~ i f ( f ) ,  corresponds to 

d) The case of a returning random walk with a finite 
correlation time T ,  leads to the following expressions for f  
and y in the asymptotic expressions for large values of 7, i.e., 
at r / ) ~ , - ' :  

f ( f ,  q ) - f ( b ) / z c q 2 ,  

Specifically large values of 7 are responsible for the incom- 
plete decay of state 0 .  After a long time, we should retain in 
expression ( 13 ) for the quantity Z only terms of order V i a '  
and of order V ~ U ' ( - ' ( J T ) " ~ .  Since in the limit ( - 0  we 
asume f (g)<+O,  we have A2+A3 + ARL +0,  and the integral 
over do' is evaluated by the method of steepest descent. The 
saddle-point value a' is such that in the limit 5 - 0  both A,  
and A,  tend toward zero. After the change of variables 

and an integration over d r ,  we find 

x exp{-iqlz'--V:g2Y (q ' ;  x) )dqf  dz' dx, 

where ( 7 ' ; ~ )  and U ( v l ; x )  are functions which are of order 
unity for arguments of order unity. Evaluating the integral 
over dz' and the integrals over d7' and d x  by the method of 
steepest descent ( V i g 2 )  1 ), we find 

~o-t- 'g-~Vo-'  exp( -Vo2g2 const), (24) 

which yields, in the limit t +  a, 

po-g-lVo-i exp (-Vo2g2 const). ( 2 5 )  

The correlation time r, does not appear in the result for 
the population. It determines not the steady-state value p, 
but the time which is required to reach a steady state. Specifi- 
cally, since the saddle-point value is 7'-  1 ,  we have 
7 -  l f ( c ) r , - 1 c - 2 ] " 2 ,  SO satisfaction of the condition 
7 >) r, - ' requires 

t-zf ( f )  ( 2 6 )  

Using {=: t  - ', we find from this expression an estimate of the 
time required for the population to reach its asymptotic val- 
ue. 

3. DISCUSSION OF RESULTS 

Limiting cases b and c, which correspond to a nonre- 
turning random walk and an uncorrelated returning random 

where c,  ( x ) ,  c, ( x ) ,  c,, ( x ) ,  c ,  ( x ) ,  c, ( x )  are functions of walk, can be given a graphic interpretation on the basis of the 
the integration variable x,  which are of order unity. Using idea that the spectra for Poisson and Dyson ensembles differ 
the expressions given above; carrying out the integration do' in "hardness." For this purpose we need to examine the 
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probability for returns of a random walk to the levels of band 
{ k )  as an effective interaction between them. A returning 
random walk in the asymptotic behavior at large t then cor- 
responds to a strong interaction, while a nonreturning ran- 
dom walk corresponds to asymptotically noninteracting 
states. 

The temporal behavior of the population of the ground 
state, p,, as t - co determines those realizations of the band 
which correspond to the slowest decay, i.e., bands which do 
not have levels which lie close to state 0 along the energy 
scale. The probability that there will be no levels of band { k )  
in a A neighborhood of this state under the condition gA) 1 
is of order exp( - gA) for a Poisson (noninteracting) en- 
semble and of order exp( - $A2) (to within the coefficient 
of the exponential function) for Dyson ensembles. The rate 
of the decay of the population of level 0 to states of band { a )  
through a level of band {k) ,  tuned an amount A away from 
resonance, is determined by the composite matrix element 
W, which can be estimated to be 

The rate of the decay through this and all other levels of band 
{k) ,  detuned by a greater amount, is 

This is the decay rate of level 0 in the case in which the 
nearest of the states in the realization of the band { k )  lies a 
distance A away along the energy scale. We can thus write 

pc exp(--v~~ygtlIAl). (29) 

Taking an average of this quantity over the probability dis- 
tribution for the formation of an energy gap of size A in a 
Poisson ensemble exp( - gA), we find 

I 

which agrees with expression (19). Taking an average of 
expression (29) over a Dyson ensemble, 
(gh)"  exp( - g2A2), we find 

~0-t"'~ exp [ - c o n s t ( y ~ , ~ ~ ~ t ) ~ ] ,  (31) 

which agrees to within the coefficient of the exponential 
function with expression ( 2  1 ) . If the function f in the asymp- 
totic region of small f is represented in the form f -O, then 
there is complete agreement between expressions (2 1 ) and 
( 3  1 ) under the conditions a  = 7 - p, and yg- 1. Since we 
have 1 >p> 0 for a returning random walk, we find that the 
quantity a lies in the interval 7 > a  > 6. In other words, the 
interaction of states as the result of an uncorrelated return- 
ing random walk leads to the formation of ensembles which 
are harder than ordinary Dyson ensembles. Here, however, 
we are talking about that hardness which determines the 
coefficient of the exponential function in the asymptotic 
expression for the case of large separations between levels. 
Furthermore, since we are dealing with a repulsion of decay- 
ing levels in this example, it is totally meaningless to talk 
about their relative positions at distances smaller than the 
decay rate. 

We should emphasize that the results found for cases b 
and c indicate that after long times the ground-state popula- 
tion is not self-averaging. It is dominated by systems which 
lead to a slow decay of the level and which are encountered 
only rarely in the ensemble. Consequently, the results found 
here cannot be used to describe any single system, and valid- 
ity of the model requires the physical existence of an ensem- 
ble of different systems. 

The situation is quite different in limiting case d, in 
which the wave functions have a finite correlation time, and 
the level decay is incomplete. The reason is that the asympto- 
tic expression for its population should obviously be a con- 
tinuous function of the microscopic parameters of the sys- 
tem (the extent to which the levels are "detuned," the matrix 
elements of the transition operator, etc. ) . Consequently, if 
the mean value of the population of state 0 is finite in the 
limit t+  C O ,  then it must also be finite for the overwhelming 
majority of possible specific realizations of the system. The 
exceptional case comprise a set of measure zero. In other 
words, a finite value of the correlation time leads to the exis- 
tence of a localized component of the population. 

The role played by the requirement that the correlation 
time be finite can be understood by noting that only when 
this requirement is met does there exist a nonvanishing pop- 
ulation flux from a state of band { k )  to level 0. Specifically, if 
the quantity Z, VOk$, ( t )  (the flux of probability ampli- 
tude) varies irregularly with a typical correlation time T,, its 
time integral can be estimated from 

which corresponds to diffusion population fluxes 
- v;.r,Z,p,. 

We would also like to call attention to the circumstance 
that the correlation time T, does not appear in the expression 
for the asymptotic value of the population. This time deter- 
mines not the steady-state value p, but the time which is 
required to reach the steady state. Condition (26), which is a 
necessary condition here, means that the quantity gf(5)c -' 
exceeds the number ( g ~ , - ' )  of levels which fall in a T,-' 

neighborhood of the resonance. We note that the variable 5 
is related to the time by f -  t -'. We also note that the func- 
tion f ( f )  signifies the Fourier transform of the probability 
for observing a particle at time t in  some level k  of band { k )  
under the condition that at t = 0 the particle was at a level 
k  '# k  of this band and first returned to it at the time t. We 
then see that thequantity f -2f(f )gis an order-of-magnitude 
estimate of the time integral of the total flux of the popula- 
tion which returns to band { k )  by the time t- 5 - I .  When the 
value of this quantity per state of band { k )  participating in 
the process (there are grc- '  such states) becomes of order 
unity, the decay of the ground state is terminated. The return 
fluxes of population from the band to the level stabilize its 
average population. 

This statement means that a necessary condition for the 
termination of the decay is that the quantum-mechanical 
particle described by the Schrodinger equation ( 1 ) must be 
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in each state ofband { k )  which satisfies the resonance condi- 
tion with a probability close to unity. It can also be asserted 
that the steady-state value of the level population is reached 
after the quantum-mechanical particle which was originally 
localized in a phase volume Y- (277%)S of one state of the 
band goes, in the course of the random walk, into a phase 
volume corresponding to another state of the band. The time 
required for this event is essentially the PoincarC recurrence 
time for the minimum (consistent with quantum mechan- 
ics) phase volumes. 

There is yet another interesting circumstance here. In a 
quantum-mechanical system consisting of an isolated level 
and a discrete band,''-l9 the band may be thought of as a 
continuum with smoothly varying parameters-the square 
amplitude of the transition probability and the state den- 
sity-at times t <g, when the typical distance between levels, 
8-g-', is smaller than the uncertainty in the their energy 
position, -t - '. For such a system, the wave function of the 
ground state is 

$ a ( t )  =exp(-V2gt const). 

By a time t-g, i.e., by the limiting time for which the analy- 
sis is valid, the population of the level is 

poaexp(-V,2g2 const), (34) 

which agrees to within the coefficient of the exponential 
function with (25). At times t>g, "revivals"-return proba- 
bility fluxes from the band to the level-begin to play an 
important role. These revivals subsequently lead to an in- 
crease in the population of the level, to a value g-'V,-', 
corresponding to the principle of detailed balance. Specifi- 
cally, if t%g, and if the phase shift between neighboring 
states satisfies IA, - A,_, It& 1, these population fluxes 
may be regarded as random, rapidly oscillating fluxes, equal 
on the average to g-'. Equating the forward and return 
fluxes, p, Vig = g- ', we find p,- V, 'gP2. In other words, 
the population of the level is on the order of N - I ,  where 
N = g (  V2g) is the number of states of the band which have 
reached resonance. 

The presence of an interaction between the levels of 
band {k ) ,  mediated through the states of band { a )  in the 
course of the random walk, apparently has the consequence 
that the phases of the wave functions of levels k  are interact- 
ing-locked together or correlated. The phase shift between 
neighboring levels, on the other hand, is not a random quan- 
tity. Accordingly, that linear combination B V,, $, ( t )  of the 
wave functions of band { k )  which determines the probabili- 
ty amplitude flux to the ground state can no longer be esti- 
mated from of the wave functions of band { k )  which deter- 
mines the probability amplitude flux to the ground state can 
no longer be estimated from V,, N ' I 2  Vo/N ' I 2  - V, , as in the 
summation of N randomly oriented vectors each of length 
Vo/N 'I2.  The uniform arrangement of the phases of the $ 
functions on a circle leads to the estimate 
V,, - V, exp( - N), which agrees to within the coefficient 
of the exponential function with expression (34) and which 
leads to expression (25). The phase capture suppresses the 
"revival" process. 

In conclusion we would like to discuss two physical 
problems which can be solved through the use of the model 
system which we have been discussing here. The first of these 

problems concerns the dynamics of the filling of the low- 
lying levels of polyatomic molecules in an electromagnetic 
field which is resonant with one of the vibrational modes. We 
are interested in the mechanism for the formation of a so- 
called cold ensemble, i.e., a significant fraction of the mole- 
cules which, despite the existence of an external field, either 
are not excited or are excited only slightly. This analysis can 
be carried out on the basis of the model of a multilevel band- 
type sy~tern. '~  The role of the factor which forms the ensem- 
ble of systems is played by the rotational motion of the mole- 
cule as a whole, which, by virtue of the thermal distribution 
of the molecules among rotational states and by virtue of the 
vibrational-rotational interaction, can lead to irregularities 
in the vibrational spectrum and in the matrix of the dipole- 
moment operator. At times shorter than the PoincarC time, 
such a system can be described by balance equations, and the 
average populations of the levels which have reached reso- 
nance decay in accorance with a random-walk law. Limiting 
d makes it possible to describe the behavior of a system at 
times longer than the PoincarC recurrence time. State 0 is 
understood in this case as the only level which is occupied at 
t  = 0 (and which corresponds to the vibrational ground 
state); the states { k )  are understood as levels which are di- 
pole-accessible from this state; and the function f is under- 
stood as representing those transitions which, under the in- 
fluence of the radiation, couple levels k  through higher-lying 
states. If the spectral width of the absorption band is finite, 
so that its inverse-the correlation time of the random 
walk-is also finite, the decay by a random-walk law will 
come to a halt, the population distribution will reach a 
steady state, and a level which initially had a population 
p = 1 will be populated only slightly: 
p a exp( - Vig2const). A situation of this sort corresponds 
to quantum-mechanical steady states localized within a re- 
gion N a  exp( Vig2const) in terms of band indices. 

The existence of localized states can explain the forma- 
tion of a cold ensemble during the infrared excitation of a 
system of small polyatomic  molecule^.^' Specifically, if the 
density of quantum states in the region of the low-lying vi- 
brational levels and the spectral widths of the bands are 
small, the time required for dissociation of the molecule, t,, 
may be much longer than the PoincarC recurrence time for 
the low-lying levels, t,. There will thus exist a time interval 
t ,  % t% t, within there are localized states in the low-lying 
levels. Because of the rapid growth of the number density of 
quantum levels with increasing energy, the population dis- 
tributions corresponding to these localized states decay rap- 
idly with increasing index of the excited level. 

The second problem concerns the disruption of inte- 
grals of motion (quantum numbers) in nonlinear physical 
systems when they are subjected to a perturbation. In classi- 
cal mechanics, a resonance between the periodic motions 
corresponding to these integrals can be achieved by appro- 
priately choosing various values of the integrals of motion 
which are conserved with any prescribed accuracy in the 
unperturbed system. In systems with three or more dimen- 
sions, this situation can be arranged at essentially any point 
in the space of the action variables; i.e., the grid of reson- 
ances is dense everywhere (Ref. 22, for example). For this 
reason, if a perturbing interaction is not degenerate because 
ofsome symmetry, it will lead to the complete destruction of 
all the integrals in motion other than the energy, and it will 
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lead to the appearance of a stochastic motion over the entire 
constant-energy surface. 

In the quantum-mechanical case, the situation is more 
complicated. On the one hand, because of the discrete nature 
of the spectrum it is not always possible to satisfy the reso- 
nance conditions. On the other hand, even in the absence of 
an intermediate resonance there may be an effective tunnel- 
ing interaction. To what extent the integrals of motion are 
violated in the process can be determined by solving the 
problem discussed above. For this purpose, we can take state 
0 to be any state of the unperturbed Hamiltonian which cor- 
responds to a completely integrable motion and which can 
therefore be described by a set of quantum numbers {nil. A 
perturbation Vof a sufficiently simple structure gives rise to 
probability amplitudes for transitions from this state to oth- 
er eigenenergy states of the unperturbed Hamiltonian with 
quantum numbers {n]) which differ from In,) by a relative- 
ly small change in the values of ni in a relatively small num- 
ber of positions. The set of these states, along with those 
which are reached in higher-order perturbations in V as a 
result of tunneling through greatly "detuned" levels, should 
be treated as a band of levels { k ) .  

If, on the other hand, we also know that this interaction 
is capable of leading to the formation of a stochastic layer 
(states for which the nondiagonal terms in Vare greater than 
the energy differences) for at least a relatively small fraction 
of the eigenenergy states, and if the random walk corre- 
sponding to this layer is a returning walk, then we can choose 
as band {a) the set of eigenenergy states which are formed in 
the layer when V is taken into account. If the correlation 
time of the random walks (the reciprocal of the width of the 
stochastic layer in energy space) is finite, the state does not 
decay completely-only to a magnitude exp( -g2V'). A 
nonreturning walk and an infinitely short correlation time 
may lead to the complete violation of the integrals of motion 

and they act on the expression as a whole. We then carry out 
a summation') over n,, and m,, . As a result, Bessel func- 
tions arise. These functions can be expressed by means of the 
variables 8, and 9, in terms of the corresponding standard 
Sommerfeld integral representations. We then carry out a 
summation over p,,, and as a result we find an exponential 
function of argument fr: 

where Y,  = rk (E - - 2y)-' exp(sk/2). 
After the order of the summation and the integration is 

changed, this exponential function is acted upon by two dif- 
ferential determinant operators. As a result, the first deter- 
minant acquires, in place of the arguments a/&,,., argu- 
ments ( ... )exp a,, and itself becomes the object acted upon 
by the second determinant. The action of the second deter- 
minant on the exponential function leads to the appearance 
of the same arguments as in the first case, along with which 
we should retain the operator part a /auk,. After this proce- 
dure is carried out, the variables a,, in the argument of this 
exponential function, "carried through" the differentiation 
operators a /aakj, are assumed to be zero, and they become a 
bilinear form of variables corresponding to different levels: 
X,,, ,,aka?. For the exponential function of this bilinear 
form there exists a two-dimensional integral representation 
[Jdxdy exp( - x2 - y2) ( ... ) 1 of the quantity exp (xA 
+ yB + C ) ,  which is multiplicative in terms of the variables 

with different indices, where 

(quantum numbers). It can also be assumed that approxi- 
mately exp( - g2 V2).  100% of the total number of quantum A - z 1 3 e a k .  B - Z 1 m a k ,  C ' - ~ I ~ ~ I ' .  
states are states which have not decayed and which are de- A k R 

scribed by the previous quantum numbers. A fraction of un- 
decayed states of this magnitude corresponds to realizations In this step, the only quantity which is not multiplica- 
of the {a) band which have no levels in a Vneighborhood of tive in terms of the variables corresponding to different lev- 
the resonance. The quantity exp( - g2 V2) under the condi- els is the product of the determinants. Since the order of the 
tiong+&+ 1 describes the probability for such a realization in derivatives with respect to each of the a,, is no higher than 
Dyson ensembles. the first, it can be written in the form 

We wish to thank N. V. Karlov for a discussion of these 
results. a 

det 1 1-fmkvj + exp [ i (Ok+Bk-Oj-Bj) 1 - 
d aPj 

APPENDIX a a d a 
+6M(K+K)lldetIIfTvjVh(l-ajk)+6jk(-+-)II. 

Let us go through the procedure for deriving (9)  from dsk dLk 

expression (8) .  Using standard relations of  the type 
x = (d/dy) = , exp(xy) we introduce variables L, ,  R,, 
a,,, ands,, which are the adjoints of n,,, m,, ,pk, and Z,pkj, 
respectively, in the determinants. In this case the determi- Expanding the determinant of the sum of the two matrices in 
nants become differential operators of the type minors, we have 
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where {C}  is the set of rows, and {C}  is the set of columns 
(which have identical numbers of elements). The first two 
determinants, however, are nonzero only if {C}  and { C ' }  
differ by no more than a single element. The product of the 
last two determinants is a numerical factor, equal to the 
number of nonzero terms in the determinant with a zero 
mean diagonal or a zero diagonal nearest the mean diagonal. 
The nonzero determinants can be written in multiplicative 
form: 

where contour @ circumvents point 0 in the positive direc- 
tion. 

Since a summation is carried out over all possible carri- 
ers, a summation over minors can also be incorporated in it. 
The reason is that the minors differ from diagonal minors by 
no more than a single element. The transformation from a 
summation over carriers to an integration over the param- 
eters of the levels and a summation over repeated levels with 
identical parameters is then made. In other words, we carry 
out a chain of transformations of the type 

-+ e x p  1 N ( V ,  g) a ( V ,  g )  dV d g ,  

where N( V,,  g, ) is the fraction of levels with parameters V, 
and g ,  , and n ( V, , g,  ) is the number of their repetitions. 
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