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The adiabatic and radiative effects which arise when a fluxon interacts with a localized 
inhomogeneity consisting of a combination of a microshort or microresistance with a dissipative 
inhomogeneity arc analyzed by perturbation theory. An inhomogeneity of this sort could be 
produced in a long Josephson junction by, for example, a focused laser beam or a localized short 
circuit of a normal metal. The threshold values of the static external field which permit the 
capture of a fluxon by such an inhomogeneity are calculated numerically and analytically for 
various cases. The energy of the plasma waves (Svihart waves) radiated by a fluxon as it is 
scattered by a composite inhomogeneity is also calculated. The influence of these effects on the 
current-voltage characteristic of a long junction is discussed. 

1. INTRODUCTION AND STATEMENT OF THE PROBLEM 

There is considerable physical interest in the dynamics 
of nonlinear excitations in long Josephson junctions. Var- 
ious inhomogeneities are usually built into a junction in or- 
der to impart given properties to it (Ref. 2, for example). 
Several theoretical papers have been devoted to the dynam- 
ics of fluxons (magnetic flux quanta or Josephson vortices) 
in inhomogeneous  junction^.^-'^ It has been suggested that 
the radiation of quasilinear plasma waves (Svihart waves) 
by a fluxon moving in a long annularjunction with a periodic 
sequence of microshorts be utilized" to develop a Josephson 
microwave s ~ u r c e . ~  

A static external current applied to a junction plays the 
role of an external force acting on a fluxon. If the current is 
sufficiently low, the interaction of the fluxon with the micro- 
short may result in capture (or pinning) of the f l ~ x o n . ~  This 
effect also may find a variety of applications. '4 

In the present paper we analyze the interaction of a 
fluxon with a localized inhomogeneity in a long Josephson 
junction in a situation with an external current and with a 
dissipative loss. We use a model described by the perturbed 
sine-Gordon equation 

cptt-cp,+sin rp=-1-yqt-p6 (x)cpt+e6(x)sin cp. (1)  

Here q(x,t)  = @(x,t)/@, is the magnetic flux, normalized 
to the corresponding quantum, @, = fic/2e; f = J/J,,, is 
the dimensionless density of the external current, normal- 
ized to the maximum Josephson current density J,,,,,; and 
the dimensionless dissipation coefficient y stems from the 
tunneling of normal electrons across the junction. The coor- 
dinate x, along the junction, and the time t are expressed in 
units of the Josephson penetration depth A, and the recipro- 
cal of the Josephson plasma frequency w J ,  re~pectively.~ In 
the casep = 0, Eq. ( 1 ) describes the well-known model of a 
long Josephson junction with a locally inhomogeneous max- 
imum Josephson current den~ i ty .~  In case E < 0 corresponds 
to a microshort, and E > 0 to a microresistance. A local in- 
homogeneity of a more general type alters not only the maxi- 
mum Josephson current density, as described by the term 
&8(x)sin p, but also the local value of the dissipation coeffi- 

a junction.'' Equation ( 1 ) was proposed as a model to de- 
scribe such an inhomogeneity by Chang." The same mode 
can be used to describe a long Josephson junction with a 
localized short-circuit made from a normal metal. The inter- 
action of a fluxon with a short circuit of this type was studied 
experimentally by Akoh et al.I4 In the absence of perturba- 
tions, i.e., with f = y = fi  = E = 0, the fluxon is described by 
the well-known solution of the sine-Gordon equation in the 
form of a so-called kink: 

cpR(x, t; u) =4 arctg 

where {(t) = ut is the coordinate of the center of mass of the 
fluxon, v is its velocity (v2  < 1 ), and o = +: 1 is its polarity. 
In a homogeneous long Josephson junction, with a static 
external current and a dissipation (i.e., with f i  = E = 0; f, 
y 4 1 ), the fluxon is described by the following approximate 
solution of Eq. ( 1 ) : 

where the dimensionless fluxon velocity u,, is determined un- 
ambiguously by the balance between the external force and 
the frictional force,4 

In the present paper, except in Sec. 3, we will be dealing with 
the "nonrelativistic" case vg 4 1, i.e., 

(for definiteness, we are assuming f > 0) .  
When there is an inhomogeneity, the motion of a fluxon 

can be described by perturbation t h e ~ r y . ~  It is easy to show 
that in the adiabatic approximation (in which the radiative 
loss and the distortions of the shape of the fluxon are ig- 
nored) the equation of motion for the coordinates { of a 
"nonrelativistic" fluxon is the same as the equation for a 
classical particle of mass m = 8 which is moving in a poten- 
tial 

cient, which corresponds to the additional term - fia(x)p, U(E) =-2nofg-2e sech"=-2nafE+Uo (t) (P > 0) .  A local inhomogeneity of this type arises, for exam- ( 7 )  

ple, as the result of the application of a focused laser beam to with a friction force 
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The capture of a fluxon by a microshort (0 = 0, E < 0)  
was examined in the well-known study by McLaughlin and 
Scott4 (a  microshort repels a fluxon, regardless of its polar- 
ity). Under the condition 

the maximum (threshold) value ( f ,,, ) of the external cur- 
rent which permits the capture of a fluxon by an inhomoge- 
neity of this type was found by equating the kinetic energy of 
a fluxon moving far from the inhomogeneity, Ek, ~ ~ 4 4 ,  to 
the height of the potential barrier, 21.5 [see (7)  1 : 

A microresistance differs from a microshort in that it 
attracts a fluxon. In Sec. 2 we analytically and numerically 
calculate the threshold value of the external current, f,,,, 
which allows the capture of a fluxon by an inhomogeneity of 
this type. This threshold turns out to be substantially lower 
than (10). We also calculate the correction to expression 
(10) for a microshort, and through a comparison with the 
numerical results we show that this correction is important. 
In the same section we calculate the threshold value f,,, for a 
local inhomogeneity of a general type, i.e., with 0 #0, for 
either sign of E. 

These results were derived in the adiabatic approxima- 
tion. At the same time, it is worthwhile to examine the radia- 
tive effects which accompany the interaction of a fluxon with 
an inhomogeneity. In Sec. 3 we calculate the total energy 
radiated by a fluxon as it is scattered by a purely dissipative 
inhomogeneity ( E  = 0),  and we show that this energy is sub- 
stantially greater than the prediction of Refs. 4, 5, and 15 of 
the energy radiated by a fluxon as it is scattered by an ordi- 
nary (nondissipative) inhomogeneity. 

In the final section, Sec. 4, we briefly discuss the influ- 
ence of these effects on the current-voltage characteristic of a 
long junction with a composite inhomogeneity. 

2. CAPTURE OF A FLUXON BY AN INHOMOGENEITY 

2.1 Microresistance (o=O, E> 0). In the case E > 0, the 
capture of a fluxon is possible under the necessary condition 
f < f, E ( 4 0 / 9 ~ )  in which case the corresponding poten- 
tial, ( 7 ) ,  has two equilibrium positions, dU/df = 0, which 
are determined by the equation 

(here and below we are assuming a = + 1 for definiteness). 
It is easy to see that the smaller root, f , ,  corresponds to a 
stable equilibrium (a  minimum of the potential), while the 
larger, g2, corresponds to an unstable equilibrium (a  maxi- 
mum). In particular, under the condition f /&< 1 we have 

To determine the complete conditions for the capture of 
a nonrelativistic fluxon, we write a balance equation for its 
kineticenergy E,, 4 ( d f / d t ) 2 .  From (7)  and (8)  we have 

The threshold value of the external current which allows 

capture, f,,, , is determined by the condition that the velocity 
d l  /dtvanishes at the point f = f, (in the limit t - a ). In the 
opposite limit t- - a ,  i.e., in the limit f -  - a ,  df/dt 
takes on the value ( 5  ) . Accordingly, by integrating Eq. ( 12) 
we find an equation which determines f,,, : 

E, 

Let us assume f,,, <E. The right side of (13) will then be 
dominated by the integral over the region /c I 5: 1, where the 
law of motion takes the approximate form 

dE/dt= ( d 2 ) ' "  sech E .  (14) 

The next contribution comes from the region 1 <f5:f2, 
where, by virtue of our assumption f ,,, <E, the value of f, is 
determined by ( 1 lb)  with f = f,,, . As a result, we find the 
final expression 

G= (20) 'h+8/,rZ 1, r, (15) 

If follows from ( 15 ) and ( 16) that the incorporation of the 
term U,(f2) in ( 13) leads to a correction - r2 to ( 15). With 
regard to our original assumption f,,, <E, i.e., G< 1, we note 
that it reduces to the condition r < 1 [condition (9)  1. 

To determine the functional dependence G ( r )  
throughout the region r 5: 1, we have numerically integrated 
the complete equation of motion of a nonrelativistic fluxon: 

where Uand Fare defined in (7 )  and (8) .  The results of this 
calculation are shown in Fig. 1. At r = T,,, -- 1.14, the val- 
ue f ,,, = f, - ( 4 f i / 9 7 ~ ) ~ ,  is reached; i.e., we reach the value 
G = G,,, = 2fi/9, at which bound states disappear. As 
r - r,,, we have dG /dT -0. This result could be found by 
analyzing the phase paths of an effective particle at 
r -- r,,, . This result is confirmec' by the numerical calcula- 
tions. In the region r > r,,, , a capture occurs at all values 
G <  2 0 / 9  (Fig. 1 ). Incorporating the correction term in 

FIG. 1 .  The threshold external current f,,, versus the parameters c and y 
for a dissipationless microresistance [the quantities Gand rare  defined in 
(16) ] .  Solid line-Result of a numerical solution of Eq. (17) ;  dashed 
line-complete analytic functional dependence ( 15); dot-dashed line- 
dependence (15) without the second term. 
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( 15) substantially improves the agreement between the ana- 
lytic dependence and the numerical dependence." 

2.2 Microshort (p=0, E <O). In the case E < 0, the equi- 
librium positions in effective potential (7) exist under the 
same condition, f < f, = (*/97r) I E ~ ,  as in the case E > 0, 
and these positions are again given by Eq. ( 1 la) .  Since E is 
negative, both of the real roots of this equation are negative. 
The root which is larger in magnitude, f ,, corresponds to a 
stable equilibrium, while the smaller in magnitude, c,, corre- 
sponds to an unstable equilibrium. In particular, under the 
condition f < IEI  we have 

[cf. ( l l b ) ] .  
As was mentioned above, the value given in ( 10) for f,,, 

for the case E < 0 was found under condition (9)  in Ref. 4. In 
the notation 

[cf. ( 16) 1, relation ( 10) take the form G = T. As we will see 
below, from a comparison with the numerical results, it is 
important to find the correction - T2 to ( 10). As in the case 
E > 0, the energy balance equation is written in the form 
( 12), and the threshold-capture condition-the condition 
that d l  /dt must vanish at 6 = 6,-leads to Eq. ( 13) for f,,, . 
In contrast with the preceding case, the basic approximation 
which leads to ( 10) is determined not by the integral term on 
the right-hand side of (13) but by the term U ( { , ) .  To find 
the first correction to ( 10) it is sufficient to substitute into 
the integral the approximate law of motion of a fluxon at 
16 I S 1 which follows from the general equations ( 17), ( 7 ) ,  
( 81, where f,,, is taken in the form in ( 10) : 

[cf. ( 14) 1. As a result we find the following refined expres- 
sion for the thershold value of the external current: 

Expression (201, like ( 15 ) , was derived under the assump- 
tion T < 1. Nevertheless, the results of a numerical calcula- 
tion of the pinning threshold show that this expression, in 
contrast with ( lo) ,  gives a fairly good approximation to the 
function G( T )  even at nonzero values of T (Fig. 2). Accord- 
ing to (20), the maximum value G = 1/41n2-,0.360 is 

FIG. 2. Threshold external currentf,,, versus the parameters E and y for a 
dissipationless microshort (the parameters Gand r are defined in the text 
proper). Solid line-Result of numerical calculations; dashed line-de- 
pendence (20); dot-dashed line-dependence ( 10). 

reached at T = 1/21n2~0.721. Each of these quantities 
differs by less than 8.6% from the values found through the 
numerical calculations: G,,, = 0.385 and T,,, = 0.788. In 
the limit T - T,,, , as in the case of an attractive microscopic 
inhomogeneity, we have dG /dT + 0. In the region T > T,,, , 
capture occurs for any G < G,,, . 

Comparison of Figs. 1 and 2 leads to the conclusion that 
the threshold value of the external current in the case of an 
attractive microscopic inhomogeneity in the region T < 1.14 
is lower (considerably lower if r is small) than for a repul- 
sive inhomogeneity. 

2.3 Dissipative inhomogeneity (WO). We turn now to a 
study of the capture of a fluxon by a dissipative inhomogene- 
ity. This effect has been observed experimentally. l 4  We first 
consider the case E < 0 (a  combination of a microshort and a 
dissipative inhomogeneity ). In the limit of small values of T 
and G, we can set 

in the equation describing the motion of an effective particle 
[see ( I ) ,  (8) ,  and ( 18) 1. It can be shown that the path of a 
particle corresponding to the pinning threshold, i.e., satisfy- 
ing the condition 6-6, as t- a,, is described by the law of 
motion 

From the condition d l  id t (  - co ) = v, we finally find 

where we have introduced 

At small values of T, expression (22) is confirmed to high 
accuracy by the numerical cal~ul~~tions.  

At finite values of G, an analytic result can be found 
under the condition B$ 1 % r. Integrating the approximate 
equation of motion 

for this case, we find 

At f = f thr the fluxon stopping point is the same as the point 
at which the potential reaches its maximum, which is given 
by Eq. ( 1 la ) .  We then find a relation among G, T, and B 
which can be put in the form 

With increasing TB, the value of G increases monotonically 
from 0 to G,,, = 2 0 / 9 ;  the coefficient C falls off from 1 to 
1 - 0 / 3 .  The value of the parameter T,,, , above which 
capture occurs for any G < G,,, , can be found analytically in 
the case B% 1: 

We have calculated T,,, numerically (line 1 in Fig. 3) for 
finite values of the parameter B. The results satisfy the 
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FIG. 3. The parameter T,,, versus the ratio of the intensities of a dissipa- FIG. 4. The threshold external current f,,, - G I.de ( 16) ] as a function of 
tive inhomogeneity and of an ordinary inhomogeneity for ( 1 ) a micro- the parameter y a - T B  [see (16), (23)J  at a fixed valueof~ .  According to 
short and ( 2 )  a microresistance. ( 15 ), the value B = 0 corresponds to Go=: ( 2 a r 3 )  ' I 2 .  

asymptotic expressions found above for the cases B-0 and 
B) 1. 

We turn now to a study of the interaction of a fluxon 
with an inhomogeneity of a different type, with E > 0 (a  "hy- 
brid" of a microresistance and a dissipative inhomogeneity ) . 
Analytic expressions can be found for the fluxon capture 
threshold in the case r < 1 the two limiting cases B <  1 and 
B) l .  

We first assume T 4 B <  1. As we will show below, the 
relation G< 1 holds in this case. The threshold value of the 
external current is calculated by a procedure similar to that 
which we used in Subsec. 2.1, but in this case we take account 
of the circumstance that the change in the kinetic energy of 
the particle is now determined primarily by the dissipative 
loss associated with friction force F, [see (8)  1. This loss is 
equal to TBE~". From the energy balance equation we find 

In the case B% 1 )T, the requirement that the fluxon 
stopping point coincide with the maximum of potential (7 )  
[which is determined by Eq. ( 1 la)  ] leads us again to rela- 
tions (25). A straightforward analysis of Eqs. ( 1 la )  and 
(25) shows that we have 

for TB < (0 - 1 )/3. For TB = (0 - 1 )/3, expression 
(26a) reaches the value G,,, = 2 0 / 9 ,  at which the mini- 
mum and the maximum of the potential (7)  merge and dis- 
appear; i.e., we have G=G,,, as TB> (0 - 1 )/3. Figure 4 
shows the complete functional dependence G(TB) in this 
case (E>O, B) 1%T)  (cf. Fig. 2).  According to (26a), we 
have dG/d(I'B) = 0 at the point TB = (0 - 1)/3; i.e., 
the functional dependence G(TB) is "smooth" at this point. 

In summary, at a fixed value of B, the quantity G in- 
creases with increasing T in accordance with (26a), reach- 
ing the value G,,, at T = T,,, = (0 - 1 )/3B. For 
T > T,,, , the capture of a fluxon by an inhomogeneity of the 
type under consideration ( E  > 0, f l  # O )  occurs for all 
G < G,,, . For arbitrary B? 1 and 5 1, the functional de- 
pendence T,,, (B) can be found numerically (line 2 in Fig. 
3 ) .  For B s  1, the numerical dependence can be approximat- 
ed well by the expression T,,, = (0 - 1)/3B which was 
found above. 

Finally, for B- 1 and small values of T, we can find the 
following result analytically: G = r V(B) where V(B) is 
some function with the asymptotic behavior V z  (TB) ' I 2  as 

B-0 [cf. (26)]  and Vz2B as B- oo [cf. the asymptotic 
behavior of expression (26a) as TB-0] . 
3. RADIATIVE LOSS 

The results reported above were derived in the adiabatic 
approximation. There is also considerable interest in study- 
ing the radiative effects which accompany the scattering of a 
fluxon by an inhomogeneity. In terms of the inverse scatter- 
ing method,I6 the radiative component of the wave field de- 
scribed by the sine-Gordon equation is characterized by a 
complex amplitude (the so-called Jost coefficient of the scat- 
tering problem) b(R), where the real spectral parameter R is 
related to the frequency w and the wave number k of the 
linear waves which are excited: w = R + 1/4R, k = A -  1/ 
42. The evolution of the coefficient b(R) governed by the 
perturbation is determined by a well-known 
which takes the following form in our case: 

Here B(R,t) = b(R,t)exp(iw(R) t) ,  E P ( ~ )  specifies the per- 
turbation, i.e., the right side of ( 1 ); and \VIP, (x,t;R) are the 
components of the so-called Jost function (the normalized 
eigenfunction of the auxiliary scattering problem associated 
with the sine-Gordon equationI6). A general method for cal- 
culating the radiation generated when perturbations act on 
solitons was formulated in Refs. 15, 19, and 20. Under the 
assumption that there is no radiation before the interaction, 
i.e., choosing B(R,t = - w ) = 0, we can find the final value 
of the radiation ampli t~de,~ '  Bf (A ) : 

m 

J dB (A, t )  dt. B, (A) =B (A, t=+oo) = - 
- m 

dt 

The basic physical characteristic of the radiated waves is the 
spectral density g ( k )  of their total energy E,, (see, for 
example, Refs. 1 1, 15, 19, and 20) : 

A calculation of this quantity with the help of expressions 
(27)-(29) leads to the following result for the spectral den- 
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sity of the radiated energy as a function of the wave number 
k: 

n[e"I-v,')" ( I S  k2)'"-kvo]2+4~2v,l] 
&'(k)= (30) 

4vO6 chZ[n (I-v,2)'"(l+kz)'b/2~o] ' 

where uo is defined in (4) .  It can be seen from (30) that the 
spectral density of the energy radiated when a fluxon is scat- 
tered by a "composite" inhomogeneity (E#O, 0 +O) is 
equal to the sum of the spectral densities radiated in the cases 
E = 0 a n d p  = 0 (the latter was calculated previously in Ref. 
15 ). This circumstance-the absence of interference-is a 
consequence of the fact that the phases of the waves excited 
by the terms -E and -Pan the right side of ( 1 ) differ by T/ 
2. We also note tht in the case fl = 0, E # O  nearly all of the 
energy is radiated backward with respect to the direction in 
which the fluxon is moving [the backward direction corre- 
sponds to vok < 0 in (30) 1, while in the case E = 0, P # O  the 
spectral density is symmetric (it does not depend on the sign 
of k) .  

The total radiated energy can be calculated in two limit- 
ing cases: the case &*, 8 < v i  < 1 and the case 1 - u i  < 1. In 
the first of these cases we find from (30) 

In other words, for small values of uo the radiated energy is 
exponentially small and is determined primarily by the first 
term in (30). In the nonrelativistic case, the radiative loss is 
actually negligible in comparison with the dissipative loss 
E ,iss = 8yv,/( 1 - u i  ) ' I 2 .  In the second case, 1 - v i  < 1, we 
have 

In other words, the total radiated energy in the "ultrarelati- 
vistic" limit is determined by the dissipative properties of the 
inhomogeneity, while the contribution of the first term in 
(30) ( - E ~ )  to the radiation tends toward zero. This result 
means that the dependence of the total radiated energy E,, 
on the fluxon velocity vo is definitely not monotonic in the 
case P-E; it goes through a maximum at v, 5 1, due to the 
contribution of the first term in (30).  Furthermore, the in- 
crease in the radiated energy as v,- 1 for dissipative inhomo- 
geneities means that the use of dissipative inhomogeneities 
to develop a microwave source using a Josephson junction 
may be more effective than to use microshorts for similar 
purposes. 

4. CURRENT-VOLTAGE CHARACTERISTIC OF A LONG 
JUNCTION WITH A COMPOSITE INHOMOGENEITY 

Let us briefly discuss the manifestation of the analytic 
results derived above in a measurement of the current-vol- 
tage characteristic of a long junction with a composite in- 
homogeneity in which there is one fluxon. An isolated fluxon 
would be seen experimentally either as a "shuttle flux quan- 
tum" oscillating between the reflecting ends of a linear junc- 
tion of finite length2' L(L%A, ) or in uniform circular mo- 
tion in a uniform annular junction.22 In either case, the 
potential difference V across the junction would be Qov,,c,/ 
LC, where c is the velocity of light in vacuum, and c,, is the 
Svihart velocity [the corrections to V for end effects were 

found in Ref. 23 for a linear junction of finite length; for an 
annular junction of finite circumference, there are obviously 
no such corrections, but there are some small corrections to 
expression (4 )  because of the difference between the shape 
of the kink in a problem with periodic boundary conditions 
and the shape corresponding to expression (2 )  1 .  

If a long Josephson junction has a single inhomogeneity 
of the type described above, then over one half-period T /  
2 = L /u, the fluxon radiates, during the scattering, the ener- 
gy D,, which was found in Sec. 3. In an oscillatory motion, 
the power of the radiation generated by a fluxon is 
P(v,) = u & ~ ~  (vo)/2L. The radiative loss ( -E * ,  8 ' ) and 
the dissipative loss ( -  y)  are balanced by the work per- 
formed by the external force (the ext&nal current). The 
energy balance condition leads to the relation 

in which we have ignored the change in the fluxon velocity 
near the inhomogeneity, as we are justified in doing under 
the conditions v i  )E, p. Since f = J/Jm,, , and u, = LcV/ 
@,c,, relation (33) actually determines the shape of the cur- 
rent-voltage characteristic (the dependence of J on V )  of a 
long Josephson junction with an inhomogeneity in a region 
in which there is no pinning of a fluxon near an inhomogene- 
ity. Figure 5 shows this current-voltage characteristic. In the 
case E*% y, the function f(v,) is not monotonic, and it con- 
tains hysteresis (the presence of hysteresis in the current- 
voltage characteristic of a junction containing nondissipa- 
tive inhomogeneities was pointed out in Ref. 6).  As can be 
seen from (32), however, regardless of the relation among 
the parameters the asymptotic behavior of the function f(u,,) 
in the limit v i  - 1 is substantially different from that of the 
current-voltage characteristic of a homogeneous junction 
(the dashed line in Fig. 5) .  As the external current is re- 
duced to f ,,, , the fluxon becomes captured by an inhomoge- 
neity, and the voltage across the junction falls abruptly to 
zero (Fig. 5).  If, on the other hand, the external current is 
increased again, the fluxon will remain at rest until the cur- 
rent supplied to the junction reaches the critical value of c 
corresponding to the disappearance of the bound state. At 
f, , the fluxon is necessarily torn away from the inhomogene- 

FIG. 5. Current-voltage characteristic ofa long junction with a composite 
inhomogeneity in the case yg~'. Heref, = (4 \ i 3 /9~ )  ~ E I  is the current at 
which the fluxon is "torn away" from the inhornogeneity, and 
f,,, = f,,, (E, fi) is the current at which a fluxon is captured by an inhomo- 
geneity. Dashed line-Current-voltage characteristic ( 4 )  of a homoge- 
neous junction (E = 0, fi= 0). 
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ity, and it is accelerated until the external force becomes 
balanced by the ohmic (dissipative) and radiative losses. 

In summary, the threshold value f,,, and the critical 
valuef, of the external current are clearly evident on the 
current-voltage characteristic of the junction. Sincef, is de- 
termined exclusively by the strength of the effective poten- 
tial of the inhomogeneity (by the parameter E ) ,  while f,,, is 
also determined by the dissipative properties of the inhomo- 
geneity (the parameters E and P ) ,  one can determine the 
parameters of inhomogeneities in any of the cases discussed 
above by measuring these quantities. 

We are indebted to A. V. Ustinov for calling our atten- 
tion to Ref. 14. We are also indebted to J. J. Chang for send- 
ing us a copy of Ref. 13. 

"For these purposes one could also use the radiation generated by a colli- 
sion of two fluxons of opposite polarities in a homogeneous junction." 

''Actually, the dashed line in Fig. 1 corresponds not to expression (15) 
but to its inverse, r = (G  2/2a)"2 - (1/2a)G In G, which was derived 
from ( 15), with the same accuracy. This inverse leads to an agreement 
with the numerical results better than that achieved with (15). 
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