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The problem of how an inhomogeneous distribution of the order parameter evolves in a thin 
conductor is discussed when the order parameter distribution is described by the dynamic 
equations of superconductivity. It is established that there exists a region of currents and initial 
conditions for which the final state of the evolutionary process is a phase-slip center (PSC) 
enclosed within a superconducting domain. It is shown that a chain of PSCs is formed from either 
the normal or the superconducting homogeneous phases as a result of self-organization. 

1. INTRODUCTION; FUNDAMENTAL EQUATIONS 

Certain media which are far from thermodynamic equi- 
librium are capable of stratifying into alternating layers 
which are in various states (phases). This stratification can 
take place as a consequence of instability of the medium rela- 
tive to the buildup of small fluctuations with a particular 
period.'-" An alternate version of this process is one which 
has received the name "self-~rganization,"~ or "propagation 
of organization waves," in which "hard" excitation of a me- 
dium results in a solitary element of some future structure, 
which then is multiply reproduced. These newly-generated 
elements are added onto the previous ones, leading to propa- 
gation of the structure in space. Wave organization is known 
for the most part from chemical  experiment^'.^ involving 
reactions in which the concentrations of the reagents vary 
spatially. The fundamental theoretical understanding of 
processes of this kind is obtained from numerical solutions 
of model equations of the Brusselator type'*2.5 or of approxi- 
mate equations describing the Belousov-Zhabotinski reac- 
t i ~ n . ' . ~ . ~  Under certain conditions, organization waves can 
occur in solids, too, e.g., in superconductors combined with 
normal metals carrying transport ~ u r r e n t . ~  In this latter 
case, a chain of heated nonsuperconducting regions forms 
behind the wavefront, immersed in the superconducting 
background. 

In this article it is shown that organization waves can 
propagate in thin homogeneous superconductors carrying 
current, as a result of which a structure appears consisting of 
periodically-located phase-slip centers (PSCs); this struc- 
ture has recently attracted the attention of many research- 
ers. Phase-slip centers are well under~tood;~-" they are 
points in whose immediate neighborhood the superconduct- 
ing order parameter and supercurrent density oscillate, peri- 
odically passing through zero. At such a point the order pa- 
rameter vanishes; its phase, which has been increasing in the 
course of one period of oscillation, suffers a sudden drop 
("slip") between points located on opposite sides of the 
PSC.I1 Conductors with PSCs can support an electric field 
and can dissipate energy from the source current. 

In order to describe the resistive state of a type-I super- 
conductor at a temperture T fairly close to its critical tem- 
perature, we make use of the dynamic superconductor equa- 
tions", given here in the dimensionless form used in Ref. l l: 

where A is the modulus of the order parameter normalized to 
its equilibrium value <P = e, + ax/& and Q = A - VX are 
gauge-invariant potentials, q, and A are the usual electrody- 
namic potentials, x is the phase of the order parameter, T is 
the pair-breaking factor, u -- 5.79 is a numerical factor, and j 
is the current density in the sample. The coordinates and 
time r are normalized to the coherence length c( T) and to 
rgl = ugl - l, respectively. "In the units used here, the criti- 
cal current satisfies j, = 2/3.3"' ~ 0 . 3 8 5 .  

Using (2)  and (3)  along with the condition of electrical 
neutrality (div j = 0) ,  it is not difficult to obtain" 

Using this equation and the fact that there exists a tempera- 
ture interval in which the temperature-dependent pair- 
breaking factor satisfies r < 1 (i.e., the superconductor has a 
gap), and assuming that A - 1, we find that the penetration 
depth for an electromagnetic field"." I, - ( u r )  - ' I2 > 1. 
Thus, there are two substantially different length scales in 
this problem, which is a necessary condition for the appear- 
ance of organization waves. 

A characteristic current j, ( T )  < j, is derived in the li- 
terature using Eqs. ( 1)-(3), where j, ( T  = ) = 0.326, 
such that an isolated PSC located in a thin superconducting 
sample is stable in the interval of currents j, < j < j,, while for 
j >  j, a periodic lattice of PSCs can exist. In Ref. 10, a current 
j, is also introduced, defined as the current above which the 
normal state is absolutely stable. In other words, for j >  j, it 
is impossible to set up a stationary dA/dr = dQ /dr = 0 non- 
trivial solution to the equations which corresponds to coex- 
istence of the normal and superconducting phases. The inset 
to Fig. 1 illustrates the relationship between j,, j,, and j, 
according to the information in the literature (not to scale). 
It is clear that the current j, can be both larger and smaller 
than the critical current. In the latter case, j, is in fact the 
current for which there exists an equilibrium between semi- 
infinite normal and superconducting phases. '' At this point 
it is worth noting that, in contrast to the inhomogeneous 
distribution, the homogeneous superconducting state disap- 
pers for j  > j, after a finite time; this is because an excessively 
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FIG. 1. Evolution of a superconducting nucleus in a normal conductor for 
j> jC .  

large density of supercurrent j, (x)  = j > j, causes disruption 
of the Cooper pairs. l 2  

Let us also investigate the one-dimensional geometry. 
Neglecting the magnetic field and noting that Eq. (3 )  is 
equivalent to 

we write the equations for j, and A in the form 

a j, a A" 
- -- ' " I  d j ,  ( ) ,,[(,+I) u?idr]+lI-i=~. (6)  
at A 

Equations (5),  (6)  are solved in this paper using the well- 
known method of finite differences, along with Dirichlet or 
cyclic boundary conditions; because the sample length ex- 
ceeds by many times the maximum scale of the problem, i.e., 
the length I,, we can treat the conductor as if it were infinite. 

2. EVOLUTION OF A SUPERCONDUCTING NUCLEUS FOR 
j>j,. FORMATION OF A RESISTIVE STRUCTURE 

In order to illustrate the evolution of a seed of the super- 
conducting phase in a normal conductor carrying a current 
j, < j <  jL (T) ,  we will solve Eqs. (5),  (6)  with initial condi- 
tions corresponding to the appearance at T = 0 of a bounded 
region with a nonzero value of the order parameter: 

j. (x, 0-) =j,(x, 0,) =A (x, 0-) =0, 

A (x, 0,) >0 for 1x1<l0 and A (x, 0+) =0 for I x I > ~ o .  

The shape of this seed is outlined by a smooth curve 
which decreases from a, = A (0,0+ ) to zero over a distance 
I, (usually the form used in A(x,O+) =aocos(~rx/2l0).  
This distribution of the variables A and j, is not a stationary 
solution to Eqs. (5) ,  (6), and for T > 0 it will change. In the 
initial period, during which the dependence A = A(x) un- 
dergoes almost no change, a bell-shaped distribution 
j, = j, (x) is established in the seed, followed by a relatively 
slow change in the order parameter and supercurrent den- 
sity simultaneously. At this point it is pertinent to investi- 
gate two cases separately. In the first case, the size of the seed 
is many times larger than the length I, over which the nor- 
mal component of the current falls and the supercurrent 
component rises; this implies that the relation between j and 
A can be taken as local. Such a smooth and rather long seed 

will evolve just as the homogeneous superconducting state 
does, i.e., it will disappear after a finite time. 

A wholly different situation obtains when the length of 
the seed I,= I,. After undergoing a rapid change during the 
initial period, the supercurrent density remains rather small 
in this case, even in the center of the seed, this is because 
current redistribution cannot take place over these compara- 
tively short distances. In other words, a significant part of 
the total curent is carried through the seed by normal excita- 
tions, which diffuse deep into the superconducting region to 
a depth -I,. Under these conditions, if the quantity a, hap- 
pens to be large enough, the seed can grow in size. As an 
example, Fig. 1 illustrates a distribution A = A (x) ,  comput- 
ed for a, = 0.6 and the two values I, = 10 (the dashes) and 
I, = 2.5 (the continuous curves) at time T = 0, T = 20, and 
T = 40. (All the distributions in Fig. 1 and subsequent fig- 
ures are symmetric; only the x>O region is shown.) The cur- 
rent in the conductor is given by j = 0.4; unless otherwise 
stated, the factor T = 0.1 in what follows. It is clear from the 
figure that a narrow seed increases slowly, while a wide seed 
practically disappears by the time r = 40. Naturally, as the 
characteristic length I, of the initial distribution changes, 
the character of the evolution of the seed changes. In partic- 
ular, for the parameter values chosen, a crossover from the 
narrow seed to the wide seed behavior occurs for lo = 6. 

The subsequent development of the growing seed is 
shown in Fig. 2 for j  = 0.41, a, = 0.6, and I, = 5. It is clear 
from the figure that after the order parameter of the seed 
increases to a value close to the equilibrium value for j = j, 
(A (x  = 0)  2 0.8), it proceeds to broaden out. The phase 
boundary (i.e., the n-s boundary) moves into the normal 
state region, due to the fact that the supercurrent density at 
the phase boundary is small (see the dashed line in Fig. 2 for 
T = 770 and T = 1730). The function j, = j, (x )  at first has a 
maximum at the center of the seed; as the seed increases in 
size, the supercurrent density first reaches and then some- 
what exceeds the critical value. At that instant the supercon- 
ductivity begins to be disrupted in the center of the seed, 
leading to the formation of a PSC at T = 785. As stated in the 
literature, within the PSC the quantities j, and A oscillate 
with a dimensionless frequence w, - 1, which is considerably 
larger than the characteristic frequencies in the problem at 
hand. For the values of T and j chosen here, the order param- 
eter and supercurrent density after one period of oscillation 
vary within the limits O<A ( 0 , ~ )  < 0.14 and OQ', ( 0 , ~ )  < 0.08 
for x = 0. 

FIG. 2. Formation of a PSC lattice in a normal conductor for j> j,. 
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The values ofj, and A averaged over the high-frequency 
oscillations are small in the neighborhood of the PSC. There- 
fore, after formation of the PSC the supercurrent density on 
both sides of the PSC decrease, which in turn leads to a more 
rapid motion of the n-s boundary toward the normal-metal 
side. Once the spacing between the PSC and the n-s bound- 
ary substantially exceeds I,, the velocity of the moving n-s 
boundary slows somewhat, while the value ofj, between the 
center and the boundaries again begins to exceed j,. As a 
result, two new PSCs begin to form on both sides of the 
original one. The process is then repeated with a period of 
rP - 1O3sr,-a,-'. It should be noted that the resistive 
state which results from this process closely resembles the 
distribution A = A(x) which arises in the static model13 as 
we move away from the n-s boundary, except in the immedi- 
ate neighborhood of the PSCs. In contrast to Ref. 13 and to 
the calculations in Refs. 9, 10, and 14, in which the spacing 
between PSCs was put in a priori, the calculation described 
in this paper has the advantage that the period of the PSC 
lattice arises naturally in the process of self-organization. 

The period of the self-organized PSC lattice does not 
depend on the initial conditions (a, and I,), which are "for- 
gotten" by the system after the formation of the first PSC. 
For the value given here of the pair-breaking factor T, the 
lattice period d is determined only by the current in the con- 
ductor. In Fig. 3 we show that d = d (  j ) .  It is clear that 
d - w as j-j,. At the same time, in the case of a fixed current 
j = const > j,, the quantity d increases as the factor r de- 
creases, which obviously is related to the increase in the elec- 
tric field penetration depth I,. 

Formation of resistive structures in a normal sample for 
j >  j, is accompanied by a decrease in the potential difference 
averaged over the high-frequency oscillations 

+m 

~T=*G=  j d x ( j - T , ( x ) ) .  
- m  

Figure 4 illustrates an oscillogram @ = @(T), corre- 
sponding to the process shown in Fig. 2. The regular in- 
creases in potential (points C, D, E, ... ) superposed on a 
decreasing '~ackground take place almost instantaneously 
(over the given time scale) whenever two more PSCs form 
from the dips in the distribution A = A(x) . The point B cor- 
responds to the formation of the first PSC. The peak at A is 
related to the appearance of a supercurrent component in the 
seed during the first stage of development of the original 
perturbation, which subsequently causes a decrease in the 
size of the nucleus an extremely short time later (this is not 

FIG. 3. Dependence d (  j )  of the period of the PSC lattice on current in a 
conductor. 

FIG. 4. Time dependence of the potential difference @in a sample during 
the passage of an organization wave. 

reflected in Figs. 1,2). The generation of low frequencies 
connected with the propagation of an organization wave can 
apparently be observed experimentally for sufficiently long 
and homogeneous samples. The characteristic frequency of 
this process in dimensional units is - 10' Hz.' ' 

An organization wave propagates to the edges of the 
entire sample provided the latter is sufficiently homoge- 
neous, and also provided that the current j does not depend 
on @ (the so-called constant-current regime). A wholly dif- 
ferent situation obtains in the constant-voltage regime, or 
what is the same thing, for a properly shunted sample. In this 
case, the propagation of the resistive structure must be limit- 
ed to the appearance of only a few PSCs; we can assume that 
an oscillating current and voltage are present in the chain, 
connected with the appearance and disappearance of an in- 
dividual PSC. In this connection, it is appropriate to note the 
results of experimental papersL5-" in which frequencies - 10' Hz were observed in conductors made from thin films 
of tin. According to the data from Ref. 16, which were ob- 
tained by laser scanning of the sample, the resistive region 
which was generating the low-frequency oscillations had a 
size of - 2 I,. 

3. TRANSITION WAVES FROM THE NORMAL TO 
SUPERCONDUCTING STATE FOR j<jc 

In the current interval 0 < j < j,, the conductor is a bista- 
ble system, which is capable of being in one of two homoge- 
neous stationary states-superconducting or 
Forj  = j, < j,, there is yet another stable state consisting of a 
boundary between semi-infinite superconducting and nor- 
mal states." In the current range 0 < j < j, , this phase 
boundary moves with constant velocity into the region on 
the normal side. This motion was studied in Ref. 18 for 
r = co. In this article, we carried out similar calculations 
for finite values of the pair-breaking factor. For purposes of 
calculation, a growing superconducting seed was created in 
the sample. After its length begins to greatly exceed I,, this 
seed widens due to motion of the n-s boundaries at constant 
(to the limits of computational accuracy) velocity. In this 
case, we can treat the n-s boundary as a wave front of transi- 
tion from the normal to the superconducting state. It should 
be noted that the distributions of the variables A and j, in the 
wave can be calculated in principle from the stationary equa- 
tions obtained from ( 5 ) ,  (6 )  by means of the substitution 
A = A (x -f CT), j, = j, ( X  + CT), where c is the velocity of 
wave motion. However, such a calculation is tedious and 
also can only be carried out numerically. 
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FIG. 5. Wave of transformation to the superconducting state: (a)  
j = 0.38, (b) j = 0.34. 

In Figs. 5 (a ) ,  5 (b)  we show the function A = A(x) 
(continuous curve) and j, = j, (x)  (dashed curve) near the 
wave front for j  = 0.38 and 0.34, respectively. It is clear that 
at some distance from the n-s boundary the order parameter 
and supercurrent density become practically constant. Nat- 
urally, the numerical values of A and J , ~  are connected by the 
well-known relationship for the homogeneous states12: 

A PSC does not form behind the wave front in the present 
case, because j, < j ,  everywhere. 

Thus, by comparing the processes discussed above, we 
see that the transition wave converts to an organization wave 
when the wave front moves in a medium with those values of 
the parameter for which the medium is not yet bistable. We 
note that despite the differences in the equations, the phys- 
ical situation described here is analogous to the motion 
which occurs in superconductors joined to normal metal 
through a transition electric resistor.I9 Here, "autowave" 
propagation of a hot normal region (see, e.g., Ref. 20) 
changes over to self-organization7 if the thermal front moves 
in a.conductor which cannot support a homogeneous normal 
state. 

4. FORMATION OF A PSC LATTICE FROM THE 
SUPERCONDUCTING STATE 

Let us now discuss how a resistive structure develops 
from an originally superconducting state. According to the 
calculations we have carried out here, in a sample with a 
current j, < j < j, for which the coupling between j, and A are 
given by the relation (7) ,  finite fluctuations in the order pa- 
rameter lead to formation of an isolated PSC. The distribu- 
tions A = A (x,T) and j ,  = j, ( x , ~ )  corresponding to this 
structure coincide with the distribution discussed in Refs. 8- 
11. 

If the current increases up to a supercritical value 
j, < j  <j ,  zjL (r) as we go deeper into a sample which con- 
tains a PSC, superconductivity will be suppressed through- 
out the conductor except for the region around the PSC. In 
this case an n-s boundary forms, which then begins to move 
toward the region of the normal state, leaving behind it a 
PSC lattice. Analogously, the process shown in Fig. 6 can 
occur, along with the corresponding case in which a fluctu- 
ation-induced decrease in the order parameter arises at the 
instant the current reaches the value j = 0.4 > j,. Here the 
formation of the n-s boundaries is concluded at T = 240. 
From a comparison of Figs. 6 and 2, it is clear that the disap- 
pearance of the superconducting state occurs considerably 

FIG. 6. Disruption of the superconducting state in a sample with a PSC. 

more rapidly than the formation of a single element of the 
resistive structure. 

5. QUASISTATIONARY STATE 

In addition, the system of equations (5  ), (6)  enumerat- 
ed above can have other stationary or quasistationary solu- 
tions, which are difficult to find in investigating the evolu- 
tion of an initial perturbation because the region of 
attraction of the final state is narrow. Nevertheless, one of 
these states does arise in calculations carried out with var- 
ious values of r and currents near a characteristic current jL 
( r ) .  If, e.g., the process of disruption of the supercon- 
ducting state in a sample with a PSC, as illustrated by Fig. 6,  
takes place within the interval of currents j, ( r ) < j < j, ( I' ), 
where j,, j 2 z j L ,  then the n-s boundary so formed stops at a 
distance - I ,  from the PSC. As a result, a structure forms 
consisting of a PSC embedded in the superconducting do- 
main. Alternatively, such a finite state can be obtained if for 
j, <j<j ,  at the instant T = 0 the distribution A = A(x,O+), 
corresponding to a superconducting seed in a normal con- 
ductor, is a monotonic function of coordinates. In the calcu- 
lations we have used the following initial conditions: 

A (x,O+) =a, cos (nxI21,) -a, cos (nx/21,), 

where a, <a, and I, <I,, (see the dashed curve in Fig. 7). In 
the process of evolution the seed changes: during the period 
from T = 0 to T = lo2, a PSC arises in its center; then, after a 
time T > lo3, the n-s boundary forms. 

Curves 1, 2, and 3 in Fig. 7 correspond to the currents 
j = 0.44, 0.45, and 0.46. It is clear how a superconducting 
domain with a PSC contracts as the current increases. As the 
domain shrinks, the average potential difference @ in- 
creases. The current-voltage characteristic of a sample con- 
taining the resistive state under discussion shown in Fig. 8. 
The I-V curve is increasing, which is indirect evidence for 
the stability of the state; to the limits of accuracy of the cal- 
culation, this increase is linear. Thse calculations lead us to 

FIG. 7. A superconducting domain containing a PSC: 1-j = 0.44, 2- 
j = 0.45, 3-j = 0.46. 
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FIG. 8. Current-voltage characteristic of a superconducting domain with 
aPSC;@=@( j ) .  

conclude that there exists a region of parameters and initial 
conditions for which the original distribution evolves to a 
quasistationary state, i.e., a superconducting domain con- 
taining a PSC. Decreasing the current in the sample to a 
value j, < j < j, (TI will cause the n-s boundary to move into 
the normal state region, and as a consequence will lead to the 
appearance of organization waves. 

The author is grateful to P. G. Mints, I. Ya. Krasnopo- 
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