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The thermodynamic and electrodynamic properties of heavy-fermion superconductors are 
analyzed in a model with interband singlet pairing. The general expression for the electron- 
electron interaction is analyzed. It is shown in particular that spin fluctuations, both 
ferromagnetic and (especially) antiferromagnetic, promote such a pairing. An expression is 
derived for the free-energy functional. The behavior of the coherence length, the upper critical 
field, and the London penetration depth in the limits T = 0 and T- T, is analyzed. This model 
leads to a good qualitative agreement with the properties of heavy-fermion superconductors. 

1. INTRODUCTION 

Heavy-fermion superconductors'~'--compounds of 
rare earth metals and actinides in which there are electrons 
with huge effective masses mf =: ( 10'-103)m,, at the Fermi 
surface at low temperatures-have recently attracted much 
interest. So far, research has unraveled neither the nature of 
the heavy fermions themselves nor that of the superconduc- 
tivity in them. It has been suggested"' that the pairing 
which occurs in these substances is anisotropic and possibly 
of a triplet nature, as in 'He. On the other hand, there are 
arguments in favor of the more common singlet supercon- 
ductivity, especially in the case of the first superconductor of 
this class, CeCu,Si, (Refs. 2 and 6 ) .  

Discussions of the superconductivity of these systems 
usually deal with the pairing of heavy f electrons. However, 
there are strong  argument^'^' for the case that these systems 
contain, in addition to the heavy electrons, some comparati- 
vely light d electrons with m, >m,,. A question which natu- 
rally arises is that of the relative roles played by these two 
components in the superconductivity. I t  is clear from experi- 
mental data, in particular, on the jump in the heat capacity 
AC/yT, and the value of dHc, /aT, that the heavy compo- 
nent participates in the pairing.'3' At the same time, there 
are data which may be evidence that electrons with small 
masses are participating in the superconductivity.' There 
are furthermore indications that some of the electrons 
(heavy electrons in UPt, and light electrons in CeCu,Si,) 
may possibly remain normal down to temperatures T <  T, 
(Ref. 6 ) .  This possibility follows from the behavior of the 
heat capacity Cs ( T )  and of the thermal conductivity 
K s ( R )  for T < T c .  

In the present paper we analyze one possibility, which 
leads to a qualitative explanation of the basic experimental 
results on superconductivity in heavy-fermion compounds. 
Specifically, we suggest that in these systems, which we will 
deal with phenomenologically as two-component systems, 
there may be a singlet pairing of electrons from different 
bands, of the type (af, +a,, ' - af , +a,, +). This possibil- 
ity was examined a fairly long time ago.9-" It was discussed 
in connection with heavy-fermion systems in Refs. 12-15. 

We should first mention that a tendency toward an in- 
terband singlet pairing of this sort can be seen even in the 
very simple model of an Anderson or Kondo lattice, which is 

widely used today to analyze the properties of heavy-fer- 
mion systems. Specifically, the Kondo interaction 

naturally arises in these models and leads in particular to the 
possibility that a singlet pair of an f electron and a d  electron 
will form. Although the situation is actually more compli- 
cated'' (strictly speaking, we cannot restrict the analysis to 
the ladder approximation here; in addition to the electron- 
electron mechanism, it is necessary to consider the electron- 
hole mechanism, etc. ), it is useful, as a first step, to analyze 
the conditions for and the possible consequences of an inter- 
band pairing of this sort in a very simple model analogous to 
the BCS model. A generalization will be made at the end of 
this paper. 

In this paper we analyze in its general form the nature of 
the electron-electron interaction in systems of this sort, and 
we examine the effective electron-electron interaction in var- 
ious channels (intraband and interband). We then analyze 
in detail the various thermodynamic and electrodynamic 
properties of superconductors with an interband pairing. 
Analyzing the results, and comparing them with experimen- 
tal data, we can draw conclusions about the plausibility of 
this proposed explanation of the superconductivity in heavy- 
fermion systems. 

2. ELECTRON-ELECTRON INTERACTION IN A TWO- 
COMPONENT SYSTEM 

To determine which types of pairing are most probable 
in a two-component system, we consider the general struc- 
ture of the electron-electron interaction. For the most part, 
we will assume interband interactions of the form ( 1 ), which 
are specific to systems of this type, as the starting point, 
although we will also briefly discuss the consequences of 
other interactions ( the electron-phonon interaction and the 
long-range Coulomb interaction). 

To study the effective electron-electron interaction, we 
need to construct a two-particle vertex function which is 
irreducible in the particle-particle channel: 
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i j k l  
ra2a,aLaI(p3, PI, Pi1 ~ 2 )  1 

Here 

where i, j, k, I = dl I are band indices; ai are spin indices; and x< (I)= ai x s i  (p-q/2)14 (p+q/2) 

pi  = (pi, E~ ) are the 4-momenta of the particles. The mo- 
Y 

is the polarization operator for the electrons from band i, 
mentum transfer is q = p, - p,.  This quantity can be written and 
as a sum (Refs. 17-19; see Fig. 1 of the present paper): 

In this model we can also derive the charge susceptibility 
where rdir is a vertex function which is irreducible in the xp (9)  and the spin susceptibility X ,  (q)  : 
particle-particle channel but reducible in the direct 
(q = p3 - p ,  ) particle-hole channel, re" is the correspond- x ~ ( Q ) = [ x ~ ( Q ) + x ~ ( Q ) - J x ~ ( Q ) x ~ ( Q ) / ~ I / ~ ( ~ ) ,  (8  
ing function which is reducible in the particle-hole exchange 
channel (Lj = p, - p ,  ), and the block Wis irreducible in any XS(~)=[X~(~)+X~(Q)+JX~(~)X~(Q)/~]/~(Q). (9  
channel. 

We first examine the case of a short-range interaction, 
which reveals the basic features of the behavior of the effec- 
tive interaction and yields effective coupling constants, as we 
will see below. In general, the Hamiltonian of the interaction 
of electrons from different bands can be written in the form 

where 

and I and J are assumed to be irreducible in all channels. It 
follows from the antisymmetry of the scattering amplitude 
under interchange of particles that we have 

If we ignore the frequency and momentum dependence of I 
and J, we then find the identity I=  J. In this case, I and Ware 
the same and take the form (igj) 

i j k l  
IaJa,a,al='/~l[GaBa16a,a2-~aeat~a~azI 6''6". 

To determine the vertex function rd" we must solve a 
Bethe-Salpeter equation in the direct channel. The function 
re" is found through the interchanges i-j, 3-4, 
4-9 + P2 -PI .  

As a result we find 
i j k l  

ra,a,afa,(Pi-4, PZ+Q, Pi, ~ 2 )  

where 

It follows from (8 )  and ( 9 )  that in this model the susceptibi- 
lities X, and X, have singularities in the case d ( q )  =O; i.e., 
the magnetic transition and the structural instability occur 
simultaneously. The reason for this result is the condition 
J = I in ( 3 ) .  If there is dispersion in the quantities J and I, 
the points of the instabilities in the spin and charge channels 
will generally not coincide. 

Using a vertex function which is irreducible in the parti- 
cle-particle channel, we can derive an expression for the ef- 
fective interaction and the coupling constants which appear 
in important properties like the critical temperature of the 
superconducting transition. The equations for determining 
this quantity are" (Fig. 2 )  

where F $  (p)  = - (T( *'is , k ,  ) ) is the Gor'kov func- 
tion. The latter can be written in the form 

for singlet pairing and in the form 

for triplet pairing. 
In this case we find from ( 10) 

where the effective singlet and triplet interactions V*' de- 
pend only on the momentum transferp - p' and are given by 
the following expressions. 

a )  For the intraband interaction (e.g., f - f ), we have 

FIG. 1. FIG. 2. 
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where the plus sign corresponds to singlet pairing and the 
minus sign to triplet pairing. For the d - d interaction we 
need to replace X, by xf in ( 12). 

b )  For the interband pairing ( d  - f ) we have 

These results can easily be generalized to the case of the 
long-range Coulomb and electron-phonon interactions. 
Without writing out the expressions for the vertex function 
r, we list the results for the effective interactions (see also 
Ref. 18): 

v d f a  ( q )  = A;(q)Af  ( q )  Vc ( q )  f l / d ( q )  , 
&tot ( 4 )  

where V, (q)  = 477e2/q2 is the Coulomb interaction, Ai (q )  
is the vertex function 

and E,,, (q)  is the total dielectric constant of the crystal, 
which incorporates both the electron screening and the elec- 
tron-phonon interaction, and which is given by 

Here D,, is the renormalized phonon Green's function, and 
E,, is the electron dielectric constant of the nonvibrating rig- 
id lattice, which is related to Ai by 

To calculate the critical temperature of the supercon- 
ducting transiton we need to solve Eq. ( 11 ). As in the BCS 
theory, we assume that the interaction is instantaneous and 
that the entire frequency dependence reduces to a cutoff of 
the interaction of the finite widths of the bands, w, and wf. 
We furthermore assume that the Fermi surfaces for the light 
and heavy components coincide completely (the conse- 
quences of a deviation from complete coincidence will be 
discussed below). If we adopt the condition T, < w,. < w, , we 
can easily derive expressions for T, in the weak-coupling 
approximation for the cases of intraband and interband pair- 
ing. 

a )  For intraband (f-band) pairing we find 

b)  For interband pairing (Refs. 9, 14, and 15) we have 

where the coupling constantsg' for the various orbital angu- 
lar momenta I are related to the effective interaction V,, (q) 
by " 

Here (. . .) means an average over angles, and the PI ( x )  are 
the Legendre polynomials. 

Substituting (12),  (13) into (21), (22) we see that in 
the general case with J < 0 the interaction in the singlet inter- 
band channel is the strongest. The specific values of g' de- 
pend on the corresponding static interactions, ( 12), ( 13). If 
the system is nearly ferromagnetic, i.e., if d ( q )  has a maxi- 
mum at q = 0 [see (9)  ], the interaction is an attraction in 
the singlet interband channel, and in the triplet f - f channel 
the interaction is analogous to that in the case of 3He. If the 
system contains highly antiferromagnetic spin fluctuations, 
however [ i fd (q )  goes through a maximum at some nonzero 
value q,#O], then an f - f singlet pairing in 'the d state 
(1  = 2)  and a d  - f singlet pairing will be preferable (similar 
conclusions were reached for the single-band case in Refs. 
20-22). Figure 3 is a sketch of the various coupling con- 
stants as functions of q,. It is not difficult to show that ap- 
proaching the region of magnetic instability enhances the 
tendency toward interband singlet pairing, and this effect 
turns out to be stronger in the antiferromagnetic case. If 

then it follows from relations (13) and (22) that for qO=O 
we have 

while for qo # 0 we have 

FIG. 3. Sketch of the intraband and the interband interaction constants as 
functions of the wave vector q,,. Solid lines-s = 0, I = 0; dashed lines- 
s = 0, 1 = 2; dot-dashed line-s = 1, I = 1. 
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To conclude this section of the paper, we take a brief 
look at ( 1 ) how the result will be altered by the incorpora- 
tion of long-range contributions and ( 2 )  how the constant 
fdf depends on the magnetic field. 

To answer the first of these questions, we must combine 
relations ( 15)-( 18) and (22). As a result, we can write fd 
in standard form (we are ignoring the pronounced differ- 
ence between the typical phonon and electron energies) : 

where A,, = Nd (0) (A,*D,, A f )  is the electron-phonon cou- 
pling constant, 

is the magnon coupling constant, whole sign in this case cor- 
responds to an attraction, and p is the Coulomb coupling 
constant, to which the Kondo interaction also contributes 
through the dielectric constant. This coupling constant is 
given by 

It follows from this expression that incorporating the Cou- 
lomb interaction reduces by a fourth the effective attraction 
due to the exchange of spin excitations, but it does not 
change the sign of the interaction. 

The effect of a magnetic field is determined by the 
change in the polarization operators. The increment in the 
effective interaction is 

where 6 ~ ' ~  is the change in the polarization operator 

0 

which is quadratic in the field H. In the case of quadratic 
dispersion laws, this effect leads to an increase in the cou- 
pling constant g:, by an amount 

i.e., to an increase in the coupling constant when an external 
field is applied. This result may prove important in interpret- 
ing the functional dependence H,, (T) .  It may be deter- 
mined to a large extent in these systems by the particular way 
in which the normal properties of the substance, in particu- 
lar, the coupling constant, depends on the magnetic field. 

In summary, in some typical cases, in particular, in an 
interaction of the type in ( 1 ), which is the most characteris- 
tic interaction for heavy-fermion systems, and for the prox- 
imity to antiferromagnetism which is typical to these sys- 
tem, interband singlet s-wave pairing is predominant 
(possibly along with an intraband singlet d-wave pairing). 

3. PROPERTIES OF SUPERCONDUCTORS WITH INTERBAND 
PAIRING 

We turn now to a more detailed study of the properties 
of superconductors with a singlet interband (hybrid) pair- 

[here (J  ) = gfd is to be understood as the effective constant 
in the d - f channel given by relations ( 15) and (22) 1 .  For 
simplicity, we assume that the Fermi surfaces for the f and d 
bands with the dispersion laws 

coincide, and we assume that the coupling is weak ( T ,  is 
much smaller than the band widths w f ,  w, ). In this case the 
critical temperature is given by expression (20). 

To verify that the hybrid-pairing model is a good ap- 
proximation for describing heavy-fermion superconductors, 
we will analyze various physical consequences of the model 
and compare them with the actual properties of the corre- 
sponding systems. 

For this purpose we first find an expression for the free- 
energy functional which holds for all temperatures: 

where the coefficients a, b, and c depend on A and T. In this 
calculation we used the method proposed in Ref. 23 (see the 
Appendix ) . 

We use the assumptions that the magnetic field is weak 
and that the nonuniformity of the order parameter is like- 
wise weak: 

Here is the final result: 
m 

b = 
4nMVd(0) T 

[onz+d: (T) 1 -%, 
(l+h)s w*--m 

and a = - bA$.  Here A = w,/wd = m d / m ,  4 1, A,, is the 
equilibrium value of the order parameter; and a,, = [2A ' I 2 /  

( 1 + A )  ]A,, is the actual gap in the energy spectrum,3' which 
is related to the critical temperature by the customary rela- 
tion of the BCS theory: a,, = (.rr/y) T,.  Here are expressions 
for the corresponding coefficients: in the limit T-0, 

and in the limit T- T, ,  (31) 

In the latter case we find the usual Ginzburg-Landau func- 
tional. 

We can now study the thermodynamic and electromag- 
netic properties of our state in the limit of low temperatures 
and near T,. If we ignore possible interband terms in the 
Hamiltonian and retain only the intraband contribution to 
the current operator (more on this below), we find the fol- 
lowing expression for the current density [see (A7)  ] : 
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j=- n a ( T ) e z  A (n. (T=O) =n.+n,). 
m, ( I S h )  c 

(32)  

Correspondingly, the London penetration depth A, is given 
by 

m, (l+h)c 
hLz ( T )  = 

4nn, ( T )  eZ ' 

This is precisely the expression which we would expect for a 
hybrid superconducting state: The mass of the Cooper pair 
in the BCS relation has been replaced by the resultant mass 
of the hybrid pair, m, + mf = mf ( 1  +A).  

The correlation length &( T )  is given by the expressions 

The Ginzburg-Landau parameter x is given by 

Finally, we can estimate the upper critical field 
Hc2 z aO/& ( T )  : 

In this model, the basic properties of superconductors 
with hybrid pairing are thus actually determined by the mass 
of the heavy component. Specifically, the correlation length 
is small, g( T )  - m y  ', and the critical field H,, - m; and also 
x - m y  are large. These results correspond to experimental 
results on heavy-fermion superconductors. The thermody- 
namic properties, e.g., the jump in the heat capacity, also 
correspond to experimental data.I4.l5 These consequences 
are obvious from the physical standpoint: In the supercon- 
ducting phase, the pair moves as a whole with a mass 
m, = mf + m, ~ m , .  

Less clear is the question of which mass determines the 
penetration depth A,. Expression (33)  yields A t -m f ,  
which does not agree completely with the experimental re- 
sults. In Ref. 24, for example, it was asserted that we have 
A - m f ,  in UBe,, compounds, while it was mentioned in 
Ref. 2 that in the compounds UBe,, and ZrBe,, the values of 
A, are of the same order of magnitude. The meaning may be 
that it is the mass of the light component, m,, which deter- 
mines the penetration depth. 

It can be shown that incorporating in our model a factor 
which has previously been omitted-interband transi- 
tions-leads to a more complicated dependence ofA, on the 
masses of the components. This question is taken up in the 
following section. 

4. ELECTROMAGNETIC RESPONSE WITH INTERBAND 
TRANSITIONS 

In the analysis above we used a Hamiltonian in which it 
was assumed that the f and d bands are orthogonal, and in- 
terband terms arise only to the extent that there is a hybrid 

superconducting pairing. Actually, there are usually some 
direct interband contributions, also. To discuss this prob- 
lem, we will generalize our model a bit and make it more 
realistic. Taking the standard approach, similar to the well- 
known (kp) method in semiconductor physics, we write the 
Hamiltonian of the two noninteracting bands as follows (cf. 
Ref. 25 1: 

Here the {. . .) means the argument ofthe quantities EdJ,  not 
their product, m,, is the electron mass, and 

is the interband matrix element of the momentum operator, 
which depends on the symmetry of the crystal lattice and the 
symmetry of the corresponding energy bands. As a result, we 
find the following system of equations for the Green's func- 
tions G,,, Gfd ,  F A ,  F;: 

(A+B)€=f ,  (40)  

where we are using the v e c t o ~  G =^(Gdd, Gfd , F,, , Ff ,  ), - 
I = ( 1,0, 0,O). The matrices A and B are given by 

Here E , ~  is the energy of the electrons in the bands, k is a 
wave vector, and 

There is a corresponding system of equations for the quanti- 
ties GR, etc. 

Assuming that all quantities vary slowly in space, and 
retaining i%terkand terms proportional to PI2, we have the 
keq%ality B g A ,  which means that we can invert the matrix 
A + B .  

As a result we find the following expression for sG, the 
correction to the Green's functions: 

6C= (A-iBA-')l=d,-'dz-LW, 

where 
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d,kV 
( i o  + E ~ ) ~  - 

dlimd + ~ * d , k 6 ~ / d , m ~  

- ( i o  + ~ d )  (im + ef )  Pl,k/m, - m;'A*d,P,,V (A/dl)  
Arn,'P,,*k (io + E,) + (io - el) dlPl2*kA/dl 

Ad,kV (io + q)/mdi d ,  - ( i o  - E ~ )  d2k0 (Aid,) 

Hered, = - ~ * $ i ~ ( & f - & ~ )  -&,-Ed - 1A12,d2=dy. 
We can find an expression for the current density by 

convolving the current density operatorj, given by 

with the Green's function 5 found above: 

The contribution in which we are interested, which is non- 
diagonal with respect to the bands, is 

We thus see that the anisotropic nature, 
Sj- P I ,  (AP,,), generally makes a nondiagonal contribution 
to the current. Summing over k, we finally find 

The corresponding contribution to the penetration 
depth, S( 1/A 2 ), is 

Combining this result with (33 ), we easily see that very dif- 
ferent situations may prevail, depending on the relations 
among mf, m,, and P,,/m,,. For example, if PI, and 

mismd -mo are 
not too small, we find 

A . - m,,/ln ( mf/md ) in the limit T- 0 and A -mi /mf in 
the limit T+ Tc. We thus see that if the interband terms in 
the current are important, the London depth A, is deter- 
mined primarily by the light mass. The reason is that incor- 
porating the nondiagonal terms in Hamiltonian (38) leads 
to the induction of an intraband pairing in addition to the 
interband pairing.2h In this case, not only the f - d pairs 
with mass m, = mf + m, but also the intraband pairs, in 
particular, d - d pairs with a mass m, = 2md -2m,,, par- 
ticipate in the screening. 

5. EFFECT OF DIELECTRIC (EXCITON) PAIRING 

It follows from the analysis above that incorporating 
the interband matrix elements, in particular, PI,, leads to 

nontrivial consequences, e.g., the induction of intraband 
pairing, F,,, I;;./.. We would thus naturally ask whether a 
more detailed consideration of the specific features of the 
two-band model is necessary. In particular, in addition to 
the interband pairing in the electron-electron channel there 
might also be a singularity in the electron-hole (exciton) 
channel and in the Cooper channel. 

This question has been analyzed in detail elsewhere." 
To round out the present discussion, we will simply summa- 
rize that analysis briefly and discuss the basic conclusions. 

For the analysis we start from the model Hamiltonian 

in which an f - d hybridization V has been added to the 
customary terms. In addition to the superconducting chan- 
nel, there is also a singularity in the electron-hole channel in 
the case of completely coincident Fermi surfaces. This sin- 
gularity can be dealt with by introducing anomalous aver- 
ages of the form2' ( fk,d &). Incorporating them leads to a 
renormalization of the hybridization: 

Introducing the corresponding Green's functions, we find a 
system of four equations which are similar in structure to 
(40).  From this system we can find the energy spectrum and 
also expressions for the Green's functions and self-consis- 
tent equations for the superconducting and exciton order 
parameters A and (Refs. 27 and 26). Using them, we can 
analyze the mutual effects of interband superconducting and 
exciton pairings. It can be verified that the hybridization and 
the exciton pairing in our case suppressed the superconduc- 
tivity, lowering Tc : 

This effect is easy to understand at a qualitative level: In the 
case of completely coincident Fermi surfaces, the hybridiza- 
tion mixes states near E ~ ,  which are participating in the in- 
terband pairing, with states which are not involved in the 
interaction ( 1  ). In other words, some of the averages 
( f  +d +) are replaced by intraband averages ( f +f +) and 
( d  + d  +). 

The equations found above become more transparent 
when we use the Landau functional: 

Minimization yields the following expressions for A and p: 

The mutual effects of the parameters A and t a r e  determined 
by the sign of the coefficient c in (52) and (53).  A micro- 
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scopic c a l ~ u l a t i o n ~ ~  yields c > 0 for this sign; i.e., incorporat- 
ing the exciton averages reduces A and Tc. 

In the case of a very narrow f band, with a width 
wf 5 T,, the calculation scheme used above must be modi- 
fied. The parquet approximation must be ~ s e d . ' ~ . ~ '  Some 
results in this direction are reported in Ref. 29. 

6. CONCLUSION 

We can say in conclusion that the model with singlet 
interband pairing is nontrivial and is capable of explaining 
many aspects of the behavior of heavy-fermion supercon- 
ductors. The basis thermodynamic characteristics [ AC and 
g( T) ] and electrodynamic characteristics (H, ,  and A, ) are 
explained in a natural way. One might attempt to use this 
model to generate a (slightly speculative) explanation for 
the most intriguing feature of these superconductors, the 
nonexponential dependence of various quantities at T <  T,. 
This dependence may be a consequence of incomplete "nest- 
ing" of the f and d Fermi surfaces, which would give rise, in 
particular, to a highly anisotropic gap, so that electrons on 
some part of the Fermi surface may in fact remain in a nor- 
mal state (cf. the experimental results reported in Ref. 6) .  

We wish to express our gratitude to L. V. Keldysh and 
D. A. Kirzhnits for useful discussions. 

APPENDIX 

We calculate the free energy of the systems by the Eilen- 
berger method": 

where A is the gap, and H(r)  the external magnetic field. The 
system of equations for the Green's function G,, G,., I;/+,, 
F& splits into two subsystems (G,, F,:) and (Gf, F C ) ,  
simplifying the corresponding solution. 

Assuming that A is a slowly varying function, and mak- 
ing use of the small value of the potential A(r), we carry out 
an expansion G = G'"' + G'" + G'2' + . . . and (by analogy 
with F (an expansion in the small parameters to within sec- 
ond order, more precisely, to second order in 

and to first order in 

As a result we find 

Here J i = i m - - ~ ; ,  E i =  -im-E,, k 2 - k ; 7 2 m i ~ i ,  
E, = ~ , ~ , . = A ~ , A = r n , / r n ~ , d ,  =d:,andd, =<{+ IAI2. 

To calculate R, (and 6) it is sufficient to know G Io' 
and G!", since the parity in k tells us that the function G"' 
will not contribute to R,. The term with k[Bk] in Gf2'  is also 
equal to zero in this case of an isotropic gap. Finally, by 
virtue of the parity, only ImG, makes a contribution. With 
an eye on a calculation of the electromagnetic response, we 
retain in Gi and Fi only the contributions which depend on 
the square of the field: 

(and similarly for SGY', SF, ). 

The corresponding part of the free energy is 

Evaluation of the integrals in (A4)  here, in contrast with the 
case studied in Ref. 23, requires some caution (cf. Ref. 30). 
Integrating over k and then over w ,  we find 

Precisely the same result is found for SR,, if we use the well- 
known method of intergating over the coupling constant. 

As a result, the current density j turns out to be 

where A = 2A ''*A/( 1 + A) is the real (indirect) gap. 
The same result can be found by directly calculating the 

current in terms of the corrections of first order in the mag- 
netic field to the Green's function. In the limit T- Tc we find 

which yields the well-known result in the case A = 1. In the 
case T = 0 we find 

(A8)  
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"We are assuming a pairing with oppositely directed momenta (more on 
this below). 

"Here and below (unless otherwise stipulated), we are considering only 
the shorkrange contribution to the effective interaction. 

3'The gap A,, is the indirect gap in the energy spectrum. It is this gap which 
appears in the state density and thus in the thermodynamic characteris- 
tics. Experiments involving direct transitions might provide information 
on the gap A,,. 
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