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Numerical methods are used to study the system ofdynamic equations of superconductivity 
theory describing the resistive state of a narrow superconducting channel. The appearance of new 
phase-slip centers due to a gradual increase in the current is shown to result from the onset of a 
local instability in the distribution of the order parameter. The new phase-slip centers arise 
halfway between existing centers. The time scale for this process is estimated. The decay of a 
phase-slip center which occurs as the current is reduced stems from a global redistribution of the 
order-parameter profile due to the onset of a diffusion-drift instability. The decaying phase-slip 
center moves slowly toward its nearest neighbor and merges with this neighbor in the final stage of 
the process. The time scale for the onset of this instability is significantly greater than the time 
scale for the onset of the local instability during the appearance of new centers. The numerical 
calculations reveal hysteresis effects, which are evidence of the existence of several stable states, 
differing in the number of phase-slip centers, at a given value of the current. The role played by 
fluctuations is discussed on the basis of the time-dependent Ginzburg-Landau equations. When 
fluctuations are taken into account, the most probable event is the appearance of a structure with 
the smallest number of phase-slip centers possible at the given value of the current. This structure 
is at the boundary ofthe stability region for structures of this type (a  marginally stable structure). 
This most probable structure is simultaneously the structure with the minimum dissipation. 

INTRODUCTION 

A resistive state may arise in a narrow superconducting 
channel, with transverse dimensions small in comparison 
with the coherence length 6, at sufficiently high densities of a 
current flowing through the channel.'.' In this state, phase- 
slip centers arise in the superconducting channels. These 
centers are points at which the modulus of the complex order 
parameter (the wave function of the condensate), A, peri- 
odically vanishes, and its phasex jumps by a multiple of 2n. 
In such a situation, a nonzero normal current j, flows along 
with the superconducting current j, in the sample, so a non- 
zero dissipation arises. For this reason, the distribution of 
the order parameter which arises in a superconductor in a 
resistive state is an example of the dissipative structures 
which have recently attracted active research interest in con- 
nection with various problems in microkinetics and macro- 
kinetics (Ref. 3, for example). 

The resistive state of superconductors has been the sub- 
ject of several studies, which are discussed in some detail in 
Refs. 1 and 2. On the basis of the data in the literature the 
structure and dynamics of the development of an isolated 
phase-slip center can be regarded as completely understood. 
With regard to the dynamics of the development of a resis- 
tive state in a process governed by the interaction of different 
phase-slip centers with each other, in contrast, we have only 
some crude estimates and qualitative arguments, with rare 
exceptions. 

For example, a study of the dynamic equations of super- 
conductivity theory shows that at a given current density 
( j = j, + j, = const) a periodic chain of phase-slip centers 
may arise in a sufficiently long sample. The spatial period of 
this chain, L, however, is not given unambiguously by the 
existing theory." It follows from experiments, in contrast, 
that the period of the chain has a completely definite value at 

a fixed value ofj .  A systematic theory of the resistive state 
must therefore explain just what determines the choice of L 
at a fixed j. 

Analysis of the experimental data also leads to the as- 
sertion that as the current density is varied gradually there 
exist certain intervals of j, whose boundaries form an or- 
dered sequence j"' <j'2' ... <j'M ' ,  within which the num- 
ber of phase-slip centers (i.e., the value of L )  does not 
change as j is varied. When j crosses a boundary between 
intervals, however, there is either a change in L or a decay of 
the resistive state as such, in a process accompanied by a 
transition to a normal state ( i f j>  j ) or to a homogeneous 
superconducting state (if j < j" ' ) . There are several ques- 
tions to be answered here. 

What is the time evolution of the resistive state as the 
current density crosses a bifurcation value? Is the sequence 
of bifurcation values { j'"' which the system traces out 
with increasing j the same as the sequence which is traced 
out as j is reduced? In other words, can there be hysteresis 
effects in this system as a result of the existence of several 
stable states at a given value o f j ?  What role is played by 
random fluctuations of the parameters in this problem? 

Questions of this type are typical of the theory of dissi- 
pative structures in distributed systems. They arise in re- 
search on convection in l i q ~ i d s , ~ . ~  Couette flow,' and several 
other hydrodynamic flows.' They also arise in problems of 
the propagation of flames,' laser evaporation waves,9 the 
crystallization of a supercooled melt,"'." etc. The specific 
dynamic system must be analyzed in order to solve the prob- 
lem in each specific case, since there are no universal anwers 
to these questions. 

In the present paper we discuss these problems in con- 
nection with the problem of the resistive state of supercon- 
ductors. The paper is organized as follows: In Sec. 1 we state 
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the problem and write the dynamic equations of supercon- 
ductivity theory which are the basis of the rest of the study. 
Section 2 discusses the results of a numerical solution of this 
system of equations. In Sec. 3 we discuss the role played by 
fluctuations in the establishment of the most probable value 
L in a chain of phase-slip centers in the time-dependent 
Ginzburg-Landau equation approximation. The results of 
the study are summarized in the Conclusion. 

1. DYNAMIC EQUATIONS 

The behavior of a superconductor in an electric field is 
definitely time-dependent and must be described by dynam- 
ic equations. Unfortunately, the system of dynamic equa- 
tions for superconductors is exceedingly complicated in the 
general case. In the present paper we use a comparatively 
simple system of equations, which can be extracted from the 
miroscopic theory in a certain narrow temperature interval 
near the critical temperature of the superconducting transi- 
tion, Tc (Refs. 12 and 13). These equations are applicable 
only under the conditions Dk ', w 4 T;', where D is the elec- 
tron diffusion coefficient, T,, is the inelastic electron- 
phonon relaxation time, and k and w are typical wave vectors 
and frequencies of the problem. These conditions are equiva- 
lent to restrictions on the temperature difference Tc - T 
(Ref. 19). 

We introduce some dimensionless variables. We ex- 
press distances in units of g( T ), times in units of rGL , order 
parameters in units of A,, , and current densities in units of 
?ruALL/4e~g, where a is the conductivity of the metal in its 
normal state, e is the electron charge, <( T ) is the coherence 
length, defined by 

and the parameters TGL and AGL are given by 

where f (z) is the Riemann zeta function. 
We also introduce some dimensionless gradient-invar- 

iant potentials: a scalar potential 

which is expressed in units of # i / 2 e ~ ~ ,  , and a vector poten- 
tial 

Q=A- VX, (4)  

expressed in units of ?ic/2e(, where q, and A are the dimen- 
sionless scalar and vector potentials of the electromagnetic 
field. 

In terms of these variables, the dynamic equations of 
superconductivity theory are".'" 

where we have introduced a depairing factor, I?, defined by 

A n R T " 
- r=-=-- - 

2 4 n  A,, 8uIh T.r, ( T t - T  ) ' 
and the numerical parameter u = r4/145(3) ~ 5 . 7 9 .  

We will ignore the self-magnetic field of the current 
since the sample is so narrow; i.e., we will assume Q z - VX. 
In this case, system (5)-(8) is conveniently rewritten in the 
form13 

where the complex order parameter $ is defined by 

$=A exp (ix) . (12) 

We also write the value of the critical Ginzburg-Landau 
current in the dimensionless units which we have adopted 
here: 

j,=2.3-"%0:385. (13) 

The typical values of T, r,,/fi for various supercon- 
ductors lie in the interval 10-lo3. Accordingly, in the typical 
experimental situation the value of r satisfies the condition 
T 4 1. Let us briefly review the results which have already 
been obtained in this limiting case and which we will need for 
the analysis below; we refer the reader interested in a more 
detailed discussion to Refs. 1 and 2. 

It can be seen from (5 )  that under the condition r 4 1 
the time scale rOL is joined by another time scale, r,, which 
is the relaxation time of the modulus of the order parameter, 
and which is related to TGL by 

T A - T G L U / ~ > ~ G L .  (14) 

In addition, there is a length scale I, in this problem, 
which represents the depth to which the electric field pene- 
trates into the superconductor. In the case T< 1, this length 
scale can be estimated from 

zE-t ( u ~ ) - ' ~ ~ B E .  (15) 

In the structure of an isolated phase-slip center, on the other 
hand, one can distinguish several nested regions in this case. 
The largest of these regions, with a size 

lns-E ( u r )  - " + B E ,  (16) 
is the region in which the superconducting current j, under- 
goes oscillations at the Josephson frequency, 

~ ~ - l l ~ , ~ ( ~ r ) ' ~ > l l ~ ~ .  (17) 

These oscillations are associated with a change in the phase 
of the order parameter, X .  The modulus of the order param- 
eter, A, in contrast, is independent of the time and depends 
only weakly on position, remaining of order unity all the way 
to the boundary of the following region, whose size is on the 
order of (. In this region A is sharply suppressed to values 
A < 1, and simultaneously temporal oscillations appear at 
the frequency a,. The amplitude of these oscillations, how- 
ever, is small in comparison with the average value of A 
everywhere outside the immediate neighborhood of the core 
of the phase-slip center, whose size is 
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Inside this core, the amplitude of the oscillations in A 
reaches a value of order A. At the center of the core there is a 
point (the phase-slip center proper) at which A periodically 
vanishes; at such times the phase x undergoes a jump of 2a. 

The range of applicability of these results is defined by 
the inequalities 

The inequality on the left follows from the condition u r  4 1, 
and that at the right from the condition w, rPh 4 1, which 
limits the range of applicability of our original system of 
equations (5)-(8). 

In studying the problem, we integrated equations (7) ,  
( lo) ,  and ( 11 ) numerically over a segment of length 2 / 2  
with cyclic boundary conditions 

at x = 0 and x = 9 / 2 .  The origin of coordinates for the 
scalar potential g, is the point x = 0; i.e., we assume 

9(O, t )  =O. (21) 
Boundary conditions of this sort lead to spatially periodic 
distributions A(x,t), @(x,t), Q(x,t), j, (x,t) and .is (x,t) 
with a period Y .  

The numerical value of the depairing factor r is taken 
to be 0.1, so we have u r  = 0.579. In this case, a, is on the 
orderof~~,,andwehaveI,-I,,-1,-f [see (15)-(1811. 
At the same time, we have T, - 60rGL, and a definite hierar- 
chy of time scales is preserved in the problem, if there is no 
hierarchy of length scales. It thus becomes possible to find a 
chain of several phase-slip centers if the computation inter- 
val is not too long. The effect is to substantially reduce the 
expenditure of computer time in the numerical calculations. 

Calculations were carried out under the condition 
j = const. As the initial condition we specified the value of 
this constant and some distribution of the complex order 
parameter $(x,O). We then used equations (7)  and (1 1)  to 
determine the corresponding distribution of the scalar po- 
tential, g,(x,O). With these initial conditions, we integrated 
the problem until all the transients died out, and definite 
steady-state asymptotic distributions $(x,t) and g,(x,t) 
were established. When a resistive state arose, these distribu- 
tions corresponded to a stable limit cycle in the correspond- 
ing functional space. We then varied the value of j. As the 
new initial condition on $, we adopted the asymptotic distri- 
bution found at the previous value ofj. We then repeated the 
process. 

For the calculations we used a Crank-Nicholson differ- 
ence scheme14 of second-order accuracy in the time and in 
the spatial variable. The nonlinear terms in Eqs. ( 10) and 
( 11 ) were approximated in such a way that the difference 
analogs of the conservation laws for A were satisfied. To 
keep the algorithms for calculating Re $ and Im 1C, equiva- 
lent, we solved the system of difference equations which 
arose by the matrix tridiagonal inversion method. The ends 
of the computation interval were kept equivalent by alternat- 
ing runs in different directions. 

To conclude this section of the paper we would like to 
point out that a numerical integration of equations (7) ,  

( lo) ,  and ( 1 1 ) or of an equivalent system of equations has 
also been carried out previously. L3.15,16 However, those ear- 
lier studies focused on an isolated phase-slip center, i.e., on 
verifying the very existence of phase-slip centers and thus 
the validity of the overall picture of a resistive state. We 
would also like to mention a recent paper by Butler and 
Hsiang17 who used numerical methods to study the response 
of a superconductor to a current pulse above the critical val- 
ue. They also noted that when the superconducting channel 
is long the change in the distribution of the order parameter 
is a slow process, with a time scale considerably greater than 
rGL (cf. the results of Sec. 2 of the present paper). In the 
present paper we are interested in the dynamic behavior of a 
chain of phase-slip centers, which is why the present paper 
differs from Refs. 13 and 15-17. 

2. DYNAMICS OFTHE FORMATION AND DECAY OF PHASE- 
SLIP CENTERS 

System of equations (7) ,  ( lo) ,  and ( 11 ) with boundary 
conditions (20), (21) was integrated numerically over the 
segment 9 / 2  = 4 a  at the following values o f j  [the top row 
(N, ) corresponds to the situation which arises as j is in- 
creased from 0.240 to 0.500, while the bottom row (N, ) 
corresponds to the situation which arises as j is  reduced from 
0.470 to 0.2401 : 

The calculations show that when a uniform initial con- 
dition is chosen (A = const, VX = const), no phase-slip 
centers form, regardless of the value ofj. In such a case, with 
j < j, ( jc = 2 x 3-312 ~ 0 . 3 8 5  1, the system evolves toward a 
uniform superconducting state, while for j > j c  there is a 
transition to a normal state. 

The only way to obtain phase-slip centers was to specify 
a nonuniform initial distribution of the order parameter 
(nonuniform along x ) .  For this distribution we selected 

Even with this initial condition, however, phase-slip centers 
form only ifj>0.270 (Fig. 1) .  A t j  = 0.240, the initial distri- 
bution (22), like a uniform distribution, evolves toward an 
equilibrium superconducting state. 

FIG. 1. Profiles of absolute value of the order parameter, A, and of the 
scalar potential of the electromagnetic field, q, at various time ( r  = 0.1; 
9 = 88; j = 0.270). Formation of phase-slip centers from initial condi- 
tions (22): 1-t = 0; 2-2 = 60; 3-t = 120; 4--t = 240. 
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FIG. 2. Appearance of a new phase-slip center at the transition from 
j = 0.370 to j = 0.395. 1-t = 0; 2-t = 120; 3-t = 360; 4-4 = 420: 

5-t=660 ( r = 0 . 1 ;  2'=88n). 

The formation of new phase-slip centers on the segment 
2' with increasing j is illustrated by Fig. 2 (the transition 
f romN= 1 t o N = 2 )  andFig. 3 ( N = 2 - N = 4 ) .  Wesee 
that the new phase-slip centers form in the same way in the 
two cases. Over a time on the order of hundreds of units after 
the application of a current pulse exceeding the correspond- 
ing bifurcation value, a dip forms halfway between two 
neighboring phase-slip centers, i.e., at the point at which the 
superconducting current j, reaches its maximum value j,, , 
on the A(x) profile. Later on, after a time on the order of a 
few units, the value of A at this point decreases sharply to 
values much smaller than unity and becomes oscillatory. 
This event is the termination of the process by which a new 
phase-slip center forms. 

Analysis of the results of the numerical calculation 
shows that the value ofj,, near bifurcation values ofjis close 
to j, (j,,=0.370 at j=0.370 and j,,=0.381 at j 
= 0.395). This observation is of assistance in reaching an 

understanding of the reason for the occurrence of this insta- 
bility. Specifically, in the steady resistive state the value ofj, 
outside the immediate neighborhood of a phase-slip center is 
essentially independent of the time. The existence of a 
steady-state distribution of the superconducting current, 
however, is possible only under the condition j,, <jc (the 
condition of local stability). Since j,, increases with increas- 
ing j if the structure has a fixed period L (Refs. 1 and 2), it is 
clear that for each L there must exist a definite critical value 
j'"' at which the relation j,, ( j'"' ) = jc holds. If j exceeds 
j'"' , an instability will occur, and it will occur at the point at 
which the local stability of the structure was disrupted, i.e., 
halfway between two phase-slip centers. 

FIG. 3. The same as in Fig. 2, at the transition from j = 0.395 toj = 420. 
1-t = 0; 2-t = 300; 3-t = 360; 4--t = 420 (r  = 0.1; 9 = 8 ~ ) .  

Using these arguments and the known solution describ- 
ing the distribution of the order parameter in the static re- 
g ion , '~~  we can construct a simple approximate expression 
for the bifurcation values j'"' , which correspond to the ap- 
pearance of new phase-slip centers in a periodic chain as j is 
increased. Setting j,, = j, in this solution, we find that the 
period of the chain at the time of the local instability must be 
related to j'"' by l8 

2 - J ""'2 
ur (P ( A )  (1-A') ' dA, 

where 

The value of A in the integral (24) is at most no greater 
than unity; i.e., we have A - m ~ 0 . 2 2  m. It is thus 
convenient to expand (24) in a power series in A - m. 
Restricting the analysis to the first nonvanishing terms of 
this series, and substituting the functional dependence @(A) 
calculated with the help of this expansion into (23), we find 

It follows from (25) that we have j'"' > jc at any value of L. 
In other words, bifurcations leading to the appearance of 
new phase-slip centers in the system are possible only at val- 
ues of the current greater than the Ginzburg-Landau critical 
current. We wish to stress that we are talking here exclusive- 
ly about the bifurcations which occur in a chain of phase-slip 
centers as the current density is increased gradually-not 
the possible existence of the chain itself, which may be stable 
even under the condition j <jc (Table I ) .  Substituting 
ur = 0.579 into (25), and taking L = 8n-, we find j ' ' )  
= 0.40; taking L = 457 we find j"' = 0.44, in good agree- 

ment with the results of the numerical calculations. 
The time scale for a change in the profile A during the 

onset of an instability of this sort must be on the order of a 
few times T ,  , i.e., on the order of T,, in this case-again in 
agreement with the results of the numerical solution of the 
problem. This time is actually the retardation time which is 
observable when the superconductivity of narrow channels 
is destroyed by a strong current pulse. I' As can be seen from 
Figs. 2 and 3, the same time scale determines that change in 
the potential difference across the ends of the sample, which 
is related to the appearance of new phase-slip centers. 

This picture of the loss of stability suggests that in an 
ideal periodic chain of phase-slip centers each bifurcation 
which occurs as the current is increased gradually (in each 
step, j-j + Sj, where Sj< j) leads to a halving of the period 
of the structure; i.e., L-L /2, N+2N. The total number of 
phase-slip centers after the nth bifurcation is N,, = 2" No, 
where No is the initial number of centers. 

This process of doubling of the number of centers comes 
to a halt when the period of the structure becomes compara- 
ble to the size of an individual center (tentatively, at L - l ) ,  
so the region of a steady-state distribution of the order pa- 
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rameter essentially disappears. In such a situation, there is a 
collapse to a normal state, just as we see in the numerical 
calculations as j = 0.500 (Fig. 4).  

In those cases in which the chain of centers is not strict- 
ly periodic, because of (for example) a nonuniform distribu- 
tion of defects, which perturb the chain in a random fashion, 
the bifurcations with a doubling of the number of centers 
may be replaced by N-N + 1 transitions. In  this situation, 
the creation of a new center would occur between those two 
neighboring centers which are farthest apart. A disruption 
of this sequence may also occur when there are large jumps 
in the current density, when a local loss of stability occurs 
simultaneously over a large part of a spatial period of the 
structure. 

Let us examine the bifurcations which occur during a 
gradual decrease in the current (in each step, j-j - Sj, 
where 6j< j )  and which lead to a destruction of the phase- 
slip centers. Figure 5 shows an example of such a process: the 
destruction of a phase-slip center as j is reduced from 0.395 
to 0.370 [in view of the parity of the distribution A (x,t) with 
respect to the point x = 0, we will discuss the behavior of A 
only at O<x<Y/2,  i.e., only over half of the overall spatial 
period of the structure]. We see that the destruction of the 
phase-slip center results from a global change in the profile 
of the order parameter over distances on the order of 2L, 
where L is the period of the original structure. The overall 
process can be broken up somewhat arbitrarily into three 
stages. 

First comes the latent-change stage (0<t<200),  during 
which there is no significant redistribution of the order pa- 
rameter. 

Second is the diffusion-drift stage ( 2 0 0 0 ~  t< 3500), in 
which the central phase-slip center moves slowly toward the 
edge of the computation interval, to a distance on the order 
of [. 

Third is the coalescence stage (3500<t<3750), during 
which two phase-slip centers separated by a distance on the 
order of 6 merge with each other. The region between the 
two merging centers goes to the normal state (A = 0) .  The 
size of this region then decreases, and the region converts 
into an ordinary phase-slip center. The process by which the 
central center is destroyed is completed here, and the system 
reaches a new stable state with fewer phase-slip centers. 

We thus see that, in contrast with the appearance of new 
phase-slip centers as j is increased, the decay of the centers 
which occurs as the current is reduced is a very slow process, 
with a time scale considerably longer than both T ~ ,  and r, . 
I t  is easy to understand that in the latent-change stage some 

FIG. 4. Collapse to a normal state at the transition from j = 0.470 to 
j = 0.500. I-t = 0; 2-t = 240; 3-t = 480; 4-t = 600 (r  = 0.1; 
2' =8n-).  

FIG. 5. Destruction of a phase-slip center at the transition from 
j = 0.395 to j = 370. The curves are drawn for times corresponding to 
local maxima of the dependence A(?)  for the central phase-slip center. 
1-t = 0; 2-t = 2040; 3-t = 2640; 4--t = 3 180; 5-t = 3480; 6- 
t = 3600; 7-t = 3660; 8-t = 3720; 9-t = 3780; l&t = 4020 
(I- = 0.1; Y = 857). 

initial perturbations which result from the numerical noise 
grow to an amplitude of order unity. The duration of this 
process is determined not only by the small values of the 
corresponding growth rates but also by the small value of the 
initial amplitude of the noise. In other words, the duration of 
this process depends on the initial conditions and is therefore 
not a characteristic parameter of the problem.2' 

With regard to the stage of the diffusion drift, we note 
that its duration, r D ,  can be estimated easily when we note 
that, as follows from Eq. (5 ) ,  the time scales and length 
scales which describe the changes in the profile A(x,t) 
should be related in this case by 

For the situation shown in Fig. 5, the typical value of 1 is 
n-6, which leads us to the estimate r, - 103r,, , which agrees 
in turn with the numerical calculations. In contrast, the du- 
ration of the coalescence stage, which is not associated with a 
redistribution of the order parameter over large distances, 
can be estimated to have the value rA. 

The validity of these arguments is confirmed by Fig. 6, 
which shows the formation of a chain of phase-slip centers 
from the initial condition (22) for the case 9 / 2  = ST (as 
for Fig. 5, we will discuss here only the part of the structure 
which corresponds to values of x in the interval O<x<Y'/ 
2 ) .  In this case the initial distribution of the order parameter 
is not small, and there is no latent-change stage. At the initial 
time, the A relief shifts rapidly to the right (over a time 
t z  120), forming a region at 0<x,<4 which has converted 
into a normal state. This process amounts to fast relaxation 
of a highly nonequilibrium initial distribution A (x,O). A re- 
laxation of this sort occurs immediately over the entire 
length of the computational interval, so the duration of this 
process should be on the order of rA , regardless of the value 
of 2'. 

The next event is the beginning of the formation of a dip, 
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over a time order of T, , at the upper part of the A profile at 
x = 16. This dip develops into a phase-slip center. At the 
same time, another center appears at the right end of the 
segment, at x = ST, and the left-hand front of the A profile 
begins to move to the left. The formation of the phase-slip 
center at x = 0 terminates by tz 1200. By this time, the cen- 
tral phase-slip center has already acquired the structure 
typical of a phase-slip center, but its position is still not the 
middle of the computation interval. The last stage of the 
establishment process is accordingly a slow diffusion-drift 
motion of the central phase-slip center toward the point 
x = 477. We were not able to pursue this process to its com- 
pletion because of the large amount of computer time re- 
quired, but the corresponding tendency (toward the estab- 
lishment of a chain of phase-slip centers with a period 
L = 477) is obvious. An estimate based on (26) with I = 4776 
puts the duration of this establishment process at 
rD - 9 0 0 0 ~ ~ ~ .  . AS well as we can judge from an extrapola- 
tion of the results in Fig. 6, this estimate agrees with the data 
of the numerical calculations. 

As j is reduced further, below j = 0.370, the state with 
two phase-slip centers persists to j = 0.270 (Table I ) ,  going 
over a uniform superconducting state at 0 . 2 4 0 ~  j < 0.270 
(Fig. 7 ) .  The apparent explanation for this pronounced hys- 
teresis is the circumstance that the positions of the phase-slip 
centers at x = 0 and x = Y / 2  are fixed by virtue of the 
boundary conditions, so a diffusion-drift instability cannot 
occur. In this case, the destruction of a phase-slip center with 
decreasing j may result from the onset of an instability of a 
different nature, due to oscillations in j, . In this example, the 
amplitude of these oscillations is fairly high, since the prod- 
uct uT cannot, strictly speaking, be regarded as a small 
quantity. If this is indeed the case, then this mechanism 
should disappear in the limit u r -0 .  

We would like to conclude this section of the paper by 
pointing out that our numerical calculations show that the 
various phase-slip centers in a chain are not equivalent to 
each other, even after a stable asymptotic regime has been 
completely established in the system. The differences among 
the centers are extremely slight, but they exist. In particular, 
each center has its own frequency for the Josephson oscilla- 
tions of A. For example, in the case in which there are two 
phase-slip centers over a segment of length Y = ST, with a 
current j = 0.370, the period of the Josephson oscillations of 
each center is close to 5 . 6 ~ ~ ~ .  In this case there is a phase 
shift between the oscillations in A at the left edge (i.e., at 
x = 0 )  and those at the right edge (x  = Y / 2 )  of the compu- 
tational interval. This phase shift disappears approximately 
every 600 time units. Since the oscillations in A at each 
phase-slip center lead to corresponding oscillations in the 

FIG.  6. Formation of a periodic chain of phase-slip centers 
from initial condition (22 ) .  1-t = 0; 2-2 = 40; 3-r = 160; 
4-t = 340; 5-2 = 600; 6-2 = 1500; 7-t = 3500 
( r = O . l ;  9 = 16r; j=0.395). 

voltage across the sample, the resultant effect of two phase- 
slip centers with slightly different values of w, gives rise to 
beats at the difference frequency. In other words, the voltage 
oscillations acquire a low-frequency modulation. In the ex- 
ample which we have been discussing, the frequency of these 
beats is on the order of 10-2w, . It is possible that these beats 
are associated with the low-frequency oscillations which are 
observed2" in the resistive state, and whose origin has yet to 
be explained. 

3. MOST PROBABLE VALUE OF THE PERIOD OF A CHAIN OF 
PHASE-SLIP CENTERS IN THE PRESENCE OF 
FLUCTUATIONS 

The hysteresis effects observed in the numerical analy- 
sis of the dynamic equations (7 ) ,  ( l o ) ,  ( 11 ) show that at a 
given value of j a system may have not just one but several 
different solutions which are stable with respect to small per- 
turbations (in an infinitely long sample, there may be a con- 
tinuous family of such solutions). These solutions describe 
periodic chains of phase-slip centers which differ in the value 
of the spatial period. In such a case, transitions between dif- 
ferent stable structures may be caused by perturbations of 
finite amplitude of the nature of first-order transitions. The 
amplitude of such a perturbation (the height of the barrier) 
decreases as we approach the stability boundary of the origi- 
nal structure. When this boundary is reached, a transition to 
the new state occurs when there is any arbitrarily small per- 
turbation (without a barrier). Barrier-free transitions of 
precisely this type have been observed in the numerical cal- 
cu la t ion~ .~ '  

The role played by fluctuations in the initiation of such 

FIG. 7. Collapse to a uniform superconducting state at the transition 
from j = 0.270 to j = 0.240. 1-2 = 0; 2-t = 30; 3-t = 60; 4-t = 120 
( r  = 0 . 1 ;  .Y = ET). 
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transitions and the existence of a certain most probable state 
of the dynamic system become particularly important ques- 
tions in this situation. These questions are the subject of the 
present section of this paper. We will describe the behavior 
of the system not by means of the exact microscopic equa- 
tions, (5)-(8),  but by means of the model equations which 
are found from (5)-(8) through the substitution u (A2/ 
rZ + 1 ) * "' -, y = const, where the upper sign in the expo- 
nent corresponds to Eq. ( 5 ) ,  and the lower to Eq. (6 ) .  I t  is 
easy to see that in a gapless situation (r)  1)  model equa- 
tions of this type are the same as equations ( 5  )-(8) (with 
y = u ) .  We will not assume this equality, however; we treat 
y as a parameter of the problem, which can take on any 
positive value. A similar approach was taken to the descrip- 
tion of the resistive state of a superconductor in Refs. 15 and 
16. I t  was shown that these model equations are, at a qualita- 
tive level, completely equivalent to the system (5)-(8).  In 
particular, the entire hierarchy of time scales and length 
scales is preserved, and for these scales relations ( IS)-( 18) 
continue to hold, with the formal substitution uT - y. 

It follows from the results of Ref. 16 and from numeri- 
cal analysis that all the time scales of the problem which are 
associated with the onset of various instabilities in the chain 
of phase-slip centers are long in comparison with w; '. For 
this reason, it is natural to transform to a "slow" time, by 
taking an average of the dynamic equations over the fast 
Josephson oscillations. Since the oscillation amplitude is 
small everywhere outside the immediate vicinity of a phase- 
slip center, this averaging procedure does not alter the dy- 
namic equations. It reduces to the formal replacement of the 
oscillating quantities by their average values. 

In taking an average of this sort we are actually adopt- 
ing the approximation of point phase-slip centers, at which 
I,, and all of the smaller length scales associated with the 
structure of the phase-slip center are assumed to be zero. I t  
should be assumed here that the c o n d i t i o n ~ l ~ ~  

must hold at the point at which a phase-slip center is local- 
ized, and it should be assumed that the potential @ is discon- 
tinuous at this point. 

Since we are dealing exclusively with average quantities 
everywhere in this section of the paper, we have retained for 
them the same notation we were using earlier for unaveraged 
variables. Later on, it will be convenient to transform to a 
gauge for the potentials of the electromagnetic field in which 
we have p, so we have 

cD =ax/at, Q=A- V X .  (28 1 
This transformation can be made since the problem involves 
no space charge. 

It is not difficult to see that in this case, when we make 
use of electrical neutrality, which gives us 

div j=O, (29) 
we can write the dynamic equations as 

where i = 1, 2, 3; qi (x, t)  = {A, X, A); vi = {vA,  vx ,  
vA = { y, A2y, I) and the "potential" Vis given by 

and represents the free energy of the superconductor at a 
given total current j. 

We now incorporate fluctuations in the value of A, X, 
and A, putting equations (30) in the form of Langevin equa- 
tions, i.e., adding random "forces" ( a  noise) c, ( x , t )  to the 
right side. These random forces satisfy the correlation rela- 
tion 

<&((x ,  t )&k(x l ,  t ' )  )= ( 2 q i l P ) G ~ ~ G ( ~ - ~ ' ) G ( t - t ' ) .  (32) 

wherep - '  is a dimensionless temperature of the noise. 
A generalization of this sort can be justified at  the mi- 

croscopic level by means of (for example) the model of a 
heat reservoir consisting of a system of equilibrium oscilla- 
t o r ~ . ~ '  

If we now introduce a functional p{ q,), which de- 
scribes the probability density of the states of this dynamic 
system, then we find a Fokker-Planck equation for q i )  
from Eqs. (30)-(32): 

We know quite well that the right side of this equation 
vanishes identically when we substitute into it a Gibbs distri- 
bution 

p{qL)=C exp(--PJ'{qi) 1, (34) 

which gives the probability for the system to be in a state 
characterized by any time-independent set of coordinates 
C qi (XI). 

In our case, the situation is complicated by the circum- 
stance that in a state corresponding to a steady-state periodic 
chain of phase-slip centers the variables x and A depend on 
the time explicitly. To see this, we note that after an average 
is taken over the Josephson oscillations the gradient-invar- 
iant potentials @ and Q are time-independent. I t  follows im- 
mediately that we have 

x=cDt, A=Q+Vx=Q+tV@ (35) 

[see (28 ) 1. In  this case we have @ # 0, since in the resistive 
state there is an electric field E in the superconductor, which 
is related to @ by E = - V@ in the case a Q/dt = 0. 

However, the quantities A and x enter the expression 
for Vonly in the combination A - Vx = Q.  The quantity Q ,  
on the other hand, does not depend on the time. As a result, 
when we substitute a solution corresponding to a steady- 
state chain of phase-slip centers into (34) ,  we find that the 
time-dependent terms cancel out, and the functional qi ) 
turns out to be independent o f t  and thus satisfies Eq. (33).  It 
follows that the most probable state of a chain of phase-slip 
centers is determined by the absolute minimum of the func- 
tional V{ qi ). 

By virtueoftheconditionsa A/dt #Oanddx/at #O, the 
solutions of Eqs. (30) which correspond to resistive states 
are extrema of the functional V, since an extremal path 
would have to satisfy the conditions SV/Sq, = 0. Neverthe- 
less, a periodic chain of phase-slip centers turns out to be 
stable with respect to small perturbations because of the sta- 
bilizing effect of the external forces which keep j constant, 
despite the presence of dissipative processes in the system. 

How does the quantity V{ qi )  depend on the chain peri- 
od L ? To answer this question, we write V{ q,) in the form 

where Q = A - dx/dx; the x axis is oriented parallel to the 
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vectors A, Q, and j; and 

The steady resistive state is then described by the equations 

6F/6A=0, (38) 

For a solution corresponding to a chain of phase-slip centers 
we have Q = Q(x,L) and j, = j, (x,L), where the period of 
the structure, L,  is an adjustable parameter (instead of L we 
could take this parameter to be j,, , the value of A halfway 
between two phase-slip centers, etc. ). The functional depen- 
dences Q(x,L) and j, (x,L) can be found through an ap- 
proximate analytic solution of the averaged  equation^.',^ 
The only point of importance to the discussion below, how- 
ever, is that the derivatives dQ/dL and djs/dL satisfy the 
inequalities 

aQ/dL<O, aj.laL>O (41 

for all values of x, as can easily be seen by analyzing this 
solution. We turn now to the calculation of the derivative of 
the functional V with respect to L under the condition that 
equations of motion (38)-(40) hold, i.e., along the path of 
the system. We have 

since we have aF/SA = 0 by virtue of (38), and - SF/ 
SQ = - A2Q is the superconducting current density j, . 

From this point on, there are two possible cases. I f j  < j, , 
Eqs. (38)-(40) have the trivial solution with j = j, 
= A2( 1 - A') 'I2. This solution is an extremum of the func- 

tional V, which in this case is the ordinary free energy of a 
current-carrying superconductor. For T < T, , this free ener- 
gy reaches its minimum value, as it should, as the system 
goes into a homogeneous superconducting state. 

For j > j, , (in the resistive state), we have a positive 
difference j - j, > 0, so it follows from (41 ) that the sign of 
(dV/dL),, is the same as the sign of (dQ /dL),, , i.e., nega- 
tive. 

We have thus found that for a periodic chain of phase- 
slip centers the quantity V{ qi) falls off monotonically with 
increasing L. Since, on the other hand, at a fixed value o f j  the 
quantity L cannot exceed the value L,,, ( j ) ,  determined 
from the condition for a disruption of the local stability of 
the structure, according to (25),  it follows L,,, ( j )  is the 
most probable period of the chain. Strictly speaking, these 
arguments hold only for superconducting channels whose 
length is great enough that the boundary conditions at the 
ends of the sample have no significant effect on the structure 
of the resistive state. 

In other words, when there are fluctuations in this sys- 
tem the most probable event is the establishment of a dissipa- 
tive structure at the boundary of the stability region for 
structures of this sort (marginal stability). In this connec- 
tion we would like to call attention to Langer's derivation"' 
of a corresponding result for spatially periodic structures 

formed during the crystallization of a melt of eutectic com- 
position. 

We can now show that a minimum of the functional V 
corresponds to a minimum of the dissipation function W. By 
definition, the density of the dissipation function is equal to 
the product jE. Using (30) and (36),  we then find 

(we recall that we have 7, = 1 ) . We find W = 0 at j < j, (in 
the homogeneous superconducting state) and W> 0 at j > j, 
(in the resistive state), as we should. 

Differentiating (43) with respect to L along the path, 
we find 

[see (41 ) 1. Consequently, the dissipation function, like the 
functional V{ qi ), falls off monotonically with increasing 
period of the chain of phase-slip centers. Accordingly, the 
most probable value o fL  corresponds not to a minimum of V 
but to a minimum of W, justifying the application of the 
principle of minimal dissociation to this problem. 

It is pertinent here to consider the model of time-depen- 
dent Ginzburg-Landau equations which we have used in this 
section of the paper instead of the actual system of equations, 
(5)-(8),  to describe the dynamics of the phase-slip centers. 
I t  can be seen that Eqs. (5)-(8) can also be put in form (30).  
If we do, we find that the viscosity coefficients 7, and 7, are 
complicated functions of A. T o  the best of our knowledge, 
however, the question of whether a microscopic foundation 
can be laid for the Langevin equations when the viscosity 
coefficients depend on the coordinates qi in this way has yet 
to be resolved. For this reason, we restrict the discussion to 
the simplest model. The final results of this section-expres- 
sions (34),  ( 3  1 ) and (42),  (43)-do not contain the viscos- 
ity coefficients 7, and 7,. This fzrt suggests that these re- 
sults are of more general applicability than the simple 
time-dependent Ginzburg-Landau equations which we have 
used. 

To conclude this section we :would like to point out the 
following circumstance: A dissipative structure in a so- 
called two-dimensional mixed state, which arises at the inner 
surface of a hollow superconducting cylinder when the su- 
perconductivity is destroyed by a current, was studied in 
Ref. 22. It was pointed out there that the dissipative struc- 
ture in this case has an adjustable parameter and that the free 
energy and the dissipation reach minimum values as a func- 
tion of this parameter simultaneously, in a state which lies at 
the boundary of the stability region of the dissipative struc- 
ture. The results of the present study furnish an explanation 
for this circumstance. 

CONCLUSION 

1. The formation of phase-slip centers from initial per- 
turbations of the order parameter requires a fairly pro- 
nounced irregularity in the initial profile A(x) .  We would 
therefore expect that in an actual experiment various disrup- 
tions of the uniformity of the sample (impurities, defects, 
etc.) should play an exceedingly important role in the for- 
mation of a resistive state. 
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2. The sequence ofbifurcation values { j'"' } which cor- 
responds to the appearance of new phase-slip centers in the 
superconducting channel as the current density is increased 
is not the same as the sequence ( j'"' } which corresponds to 
the destruction of the phase-slip centers as j is reduced: Hys- 
teresis effects are observed in the system. 

3. As j is increased, the appearance of new phase-slip 
centers is associated with the development of a local instabil- 
ity of the A profile because the superconducting current ex- 
ceeds the Ginzburg-Landau critical current. This instability 
develops in a region in which the value ofj, is at a maximum, 
i.e., halfway between two existing phase-slip centers. The 
time scale over which the new profile of phase-slip centers 
forms is found to be on the order of a few times T, [see (2 )  
and ( 14) 1. The bifurcation values j'"' are given by (25).  

4. The process by which the phase-slip centers are de- 
stroyed as j is reduced is a slow drift of a phase-slip center 
toward one of its nearest neighbors, accompanied by global 
redistribution of the order-parameter profile. This process 
terminates in the merging of the phase-slip centers and the 
formation in their place of a single new phase-slip center. 
The time scale for the onset of this diffusion-drift instability 
is rD - (L  / g ) 2 ~ A ,  where L is the initial distance between two 
neighboring centers. By virtue of the condition L){, this 
time is significantly longer than the rise time of the local 
instability which we discussed in the preceding section of 
this paper. 

5. In the steady state, the various phase-slip centers in a 
chain can have slightly different Josephson oscillation fre- 
quencies. As a result, beats at the difference frequency ap- 
pear; i.e., there is a low-frequency modulation of the voltage 
drop across the sample. 

6. Within the framework of the time-dependent Ginz- 
burg-Landau equations, one can introduce a functional 
which is an analog of the free energy for a very dissipative 
resistive state of a superconductor. Incorporating fluctu- 
ations in this case has the consequence that at j >  j, the most 
probable state of the system is a chain of phase-slip centers 
whose spatial period is the largest of all the values possible at 
the given value of j.  This most probable value of the period 
corresponds to the boundary for local stability of the chain of 
centers. This functional reaches its absolute minimum. At 
the same time, the dissipation function of the system reaches 
its absolute minimum, justifying our use of the minimum- 
dissipation principle as the criterion for choosing the most 
probable state of the superconductor. 

We note in conclusion that in all versions of the numeri- 
cal calculations we only observed phase-slip centers of such a 

nature that the phase jump at  the time at which A vanished 
was equal to 2 ~ .  We did not observe phase-slip centers with 
phase jumps which were higher multiples of this value. 

We wish to thank B. I. Ivlev for a discussion of this work 
and L. I. Usanova for assistance in the numerical calcula- 
tions. 

"The criterion which was used in Refs. 1 and 2 for choosing L, and which 
is based on the principle of a minimum dissipation (a minimum entropy 
production), can be regarded only as heuristic, since the application of 
that principle to such a highly nonequilibrium situation requires specific 
justification (Sec. 3 of the present paper). 

"We note, however, that the very fact that there is a stage of latent changes 
plays an important role in reaching an understanding of the physics of 
the phenomenon. The presence of this stage is evidence that the initial 
state of the system is unstable against small perturbations. In other 
words, the unstable state is disrupted in a process which does not involve 
a barrier, through the development of a soft mode. 
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