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The electrical resistivity of& (ET) ,X organic metals (X = I,, AuI,, I,Br, IBr,) has been 
measured at temperatures below 20 K. In this range of temperatures the resistivity of all the 
compounds obeys an expression with a term A p, where the coefficient A is independent of the 
residual resistivity and approximately the same for all the samples. The AT2contribution to the 
resistivity of organic metals is attributed to electron-electron collisions. In the case ofthe 
investigated compounds this electron scattering contribution is anomalously large because of the 
low values of the Fermi velocity and energy. 

A characteristic feature of the behavior of organic met- 
als belonging to the P- (ET) ,X family [where ET stands for 
bis(ethylenedithio10) tetrathiofulvalene and X is a linear an- 
ion of the type I,, IBr,, AuI,, etc.] is a strong temperature 
dependence of the electrical resistivity at low temperatures. 
Typically, the resistivity falls by a factor of 2-3 between 15 
and 4.2 K. This fall is superposed on a background of rela- 
tively small values of the ratio R (300 K)/R (4.2 K ) ,  which 
are of the order of 300-1000. In ordinary metals with these 
values of the ratio R(300 K)/R(4.2 K )  the resistivity in 
practice ceases to vary at temperatures below 10-1 5 K. 

We shall report experimental and theoretical investiga- 
tions of the temperature dependence of the resistivity of met- 
als belonging to theP-(ET),X family, where X = I,, AuI,, 
IBr,, and 1,Br. In the range T < 20 K the dependencep( T )  is 
given by 

where the quadratic term is due to the contribution of elec- 
tron-electron collisions and is anomalously large. 

The experimental results are plotted in Fig. 1 in the 
form of the temperature dependence of the resistivity of met- 
als using the coordinatesp-T 2. In the case ofP-(ET),I, this 
figure gives information on the behavior of both P, and P , 
phases characterized by low and high critical temperatures 
of the superconducting transition; the phase 8, was ob- 
tained in a cycle involving cooling of the crystal to 60 K 
under a pressure of 400 bar and subsequent removal of the 
pressure.' Figure 2 shows the form of p(T2)  obtained for 
several P-(ET),AuI, crystals. We can see that the coeffi- 
cient A in front of the quadratic term is practically the same 
for all the samples and equals (6 + 0.2) X R.cm K -,, 
whereas the residual resistivity p (0 )  changes severalfold 
from sample to sample. The same conclusion that A is inde- 
pendent ofp(0) is obtained from a comparison of the behav- 
ior oftwo phases of&(ET),I,: the transition fromB, t o p  , 
reduces p(0)  by a factor of about 20, whereas the value of 
A = (2.5 f 0.2) X 10 - R cm K - * remains constant with- 
in the limits of the experimental error. 

There are two mechanisms that can generally give rise 
to a quadratic temperature dependence of the resistivity at 
low temperatures. The first is the electron-phonon scatter- 
ing in a strongly disordered lattice, related to violation of the 
law of conservation of momentum2 (see also Ref. 3 and the 

literature cited there). In this case we can expect the qua- 
dratic contribution to be proportional to the residual resis- 
tivity:p(T) -p(O) ccp(0) (T/TD ),, where T, is the Debye 
temperature. It follows from the results presented in Figs. 1 
and 2 that in our case this relationship is not obeyed and the 
coefficient A is independent of p (0) .  

The second mechanism that can give rise to a depend- 
ence of the p ( T) - p (0)  cc T type is the electron-electron 
~cat ter ing.~ For normal metals the contribution of this 
mechanism to the resistivity is small, but it can increase con- 
siderably in the case of metals with low Fermi energies and 
velocities. 

A detailed analysis of the electron-electron contribu- 
tion to the resistivity of isotropic three-dimensional crystals 
can be found in Ref. 4. Similar calculations for the system 
with almost two-dimensional electron motion (which agrees 
well with calculations of the band structure) and experimen- 
tal parameters ofP-(ET),X crystals yield the expression 

where K is a numerical coefficient; the factor Gallows for the 
efficiency of the umklapp processes; c is the distance between 
the conducting layers; k,, v,, and EF are the momentum, 
velocity, and energy of an electron on the Fermi surface. The 
factor G can be estimated from 

FIG. 1. ~ e ~ e n d e n c e p ( P 1 ;  I )  So33 ,I, in theB .phase ( T , =  1.5 K ) ;  
2 )  P-(ET),I, in the P ,  phase ( T , =  7.5 K) ;  3 )  P-(ET)J,Br; 4) B- 
(ET), IBr, . 
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FIG. 2. Dependence, p ( p) for four samples of P- (ET) , A d 2  with differ- 
ent values of the residual resistivity. 

where g is the reciprocal lattice vector and n ( r )  is the distri- 
bution of the electron density in a unit cell; the integration is 
carried out over the unit cell volume. In the case of ordinary 
metals the function n ( r )  does not change greatly within a 
unit cell because of the relatively weak potential of the ions 
which is screened strongly by conduction electrons. There- 
fore, in this case the factor G is small: Gz0.1-0.01. The 
energy band structure of organic metals is described well by 
the tight-binding model for which we have G=: 1. 

The following assumptions were made in the derivation 
of Eq. (2) .  

1. The umklapp processes are not limited by the law of 
conservation of momentum, i.e. g < 2k,. This condition is 
satisfied for a closed Fermi surface lying quite close to the 
boundaries of the Brillouin zone, which is typical of f i  
(ET),X compounds in which the band occupancy is 3/4 
(Ref. 5).  

2. The quantities k,, g, and the reciprocal radius for the 
Debye screening are approximately equal. 

3. The value ofp,, is calculated using the Born approxi- 
mation which can overestimate the electron-electron contri- 
bution by almost one order of magnitude. 

4. The real band structure is ignored. 
Under these assumptions the value of K in Eq. (2)  

clearly lies within the interval 0.1-1. Bearing this in mind, 
we can estimate A with the aid of Eq. (2)  but only to the 
nearest order of magnitude. The values v,=: 10' cm/s, E, 
=: 0.1 eV, and ck, z 5 can be deduced from the experimental 
value of the plasma frequency w, (Ref. 6) .  In the model of 
noninteracting electrons under conditions of essentially 
two-dimensional motion we have w, =:4.irne2/m, n = E,m/ 
2?rcfi2, uF =: (2EF/m) 'I2, and k, =: mu,/fi, where n is the 
conduction electron density. Consequently, for w, ~ 0 . 7  eV, 
we obtain A =: 2 x 10 - ' R cm K - 2. The agreement between 
this A and the experimental value means that the electron- 
electron scattering mechanism can account for the T2 de- 
pendence exhibited by the resistivity. This mechanism is 
supported also by the relatively small variation of A within 
the limits of the 0- (ET) ,X family with symmetric anions. 
The energy band structure is practically the same for the 
whole of this family. 

Extrapolation of the dependence ( 1 ) from low to room 
temperatures gives p ( 300 K )  =: 1.8 X 10 - cm for B- 
(ET),I,. This is in satisfactory agreement with the experi- 
mental value p (300 K )  =. 3.6. lop2  R cm, which can be re- 
duced by a factor of 3-4 due to the constant-volume 

correction. We note that the thermal expansion due to heat- 
ing from T <  40 K to 300 K increases the lattice parameters 
by about 1% (Refs. 7 and 8).  This can be compensated by 
applying a pressure of about 2-3 kbar (Ref. 9 )  if the results 
of Ref. 10 are interpolated linearly to allow for changes in the 
parameters at pressures from 0 to 9.5 kbar. 

The contribution of the electron-phonon scattering at 
temperatures T s  T, can be estimated from the expression 

where il is the dimensionless electron-phonon interaction 
constant. Ifil=: 1, we obtainp(300 K )  ~ 0 . 4 .  lo-' R cm. 

We can therefore see that the electron-electron scatter- 
ing process makes a considerable contribution to the resistiv- 
ity throughout the investigated temperature range. 

In the case of organic metals belonging to the 
(TMTSF), X family the low-temperature resistivity also in- 
cludes a contribution proportional to T2. In the compound 
with X = PF, above the transition to the insulating state 
(16-18 K )  the resistivity can be described by Eq. (1)  with 
A = 2 x 1 0 W 8  f l c m K - *  (Ref. 11) right up to 80 K (at 
higher temperatures the thermal expansion is important). 
This contribution can also be explained by the electron-elec- 
tron scattering. 

For ordinary metals with one band the values of u, and 
E, are at least an order of magnitude higher than for organic 
metals and the factor G is one or two orders of magnitude 
less. Therefore, the coefficient A for ordinary metals is very 
small and the electron-electron contribution to the resistiv- 
ity is observed only at very low temperatures when p a T5. 
Organic metals are in this sense unique. They satisfy all the 
requirements necessary for the manifestation of the elec- 
tron-electron scattering at all temperatures. 

The authors are deeply grateful to L.,N. Zherikhina for 
a valuable discussion of the results and to E. B. YagubskiY for 
supplying the samples. 
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