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A study is made of the photoexcitation of ions in antiferromagnetic insulators ( AFIs) with regard 
to how variation of the exchange interaction between a magnetic ion and its environment affects 
the shape of the optical absorption spectrum and the diffusion of excitations. It is shown that for 
weak relaxation within a multiplet, absorption of light in the AFI can give rise to self-trapped as 
well as free excitons; self-trapping occurs by way of an inhomogeneity in the distribution of spins 
which makes up the spin cloud surrounding the photoexcited ion. In the case of strong relaxation 
within the multiplet, the self-trapped exciton moves through the crystal diffusively; the diffusion 
coefficient depends on the external magnetic field and the direction of exciton propagation. 

INTRODUCTION 

As a rule, in antiferrogmagnetic insulators ( AFIs) con- 
taining ions from the iron group, optical excitation is accom- 
panied by a change in the multiplicity of the electronic state 
of the 3d electrons, l v 2  In this case, migration of the quantum 
excitation to a neighboring magnetic ion can occur, due to 
the exchange resonant interaction (ERA) between 3d-elec- 
t r o n ~ . ~ - ~  Particularly clear evidence of the ERA is found in 
the intersublattice Davydov splitting of the exciton lines, 
which provides direct evidence of the Frenkel-like nature of 
optical excitations in AFIs6-' AS a consequence of its ex- 
change nature, the magnitude of the ERA depends on the 
mutual alignments of the magnetic ion spins. For the 
ground-state electronic configuration the spin directions in 
the case of weak single-ion anisotropy coincide with the di- 
rections of the sublattice magnetizations. In what follows, 
we will choose the spin quantization axis (SQA) along these 
directions. As was shown in Ref. 9, the quantity L<,;,,, of 
the ERA for two ions at na  and &in the magnetic sublat- 
tices a a n d p  as a function of the angle e, - e,, between the 
SQA of the ions at na  and & is given by the expression 

in which&<,:,,, is a parameter which determines the nature 
of thef-optical excitations in a specific AFI. It is clear from 
Eq. (1)  that the ERA is maximal for parallel spin align- 
ments (@, - @,, = 0 )  and zero for antiparallel spin align- 
ments (@, - e,, = n-). Because an external magnetic field 
H, can give rise to noncollinearity of the spins for a#p 
sublattices in the case of weak single-ion anisotropy, the 
magnitude of the ERA (Eq. 1) is itself a function of the 
external field. The dependence (1)  explains the Davydov 
splitting induced by the magnetic field in weakly-anisotropic 
AFIs,~-' and also the behavior of the diffusion coefficient of 
self-trapped excitons in the quasi-one-dimensional AFI 
NaMnC1, (Ref. 10). 

At the present time, the theory of excitonic excitations 
in AFIs (see Refs. 3 and 4 for an exposition of this) is based 
on the assumption that the SQAs of a magnetic ion coincide 
for the ground and excited states." It follows from recent 
experiments, however, that such a picture is not valid for 
every excitation. Thus, Eremenko and co-workers have 
shown that for excitation of the Mn2+ ion to the state 

f = 4Tl (4P) in the crystals MnF, (Ref. 11) and NaMnC1, 
(Ref. 12) the direction of the spin of the photoexcited ion 
(PI )  can vary, both because of the appearance of strong sin- 
gle-ion anisotropy and also because of the variation in the 
magnitude of the exchange interactions with the neighbors. 
As a consequence of the second of these reasons, it is also 
possible to have an additional "tilt" of the ion spins which 
neighbor the PI.I2,l3 The presence of such a "tilt" leads to 
the formation around the PI of a spin cloud, which hinders 
the hopping of the excitations and thereby makes possible 
the self-trapping of an excitation on a specific PI. This situa- 
tion recalls the case which arises in nonmagnetic crystals 
when a phonon cloud appears around a photoexcited mole- 
culeI4,l5 or an atom.'%ecently, it was shown by Rashba and 
Toyozawa (see, e.g., Refs. 17, 18) that in a nonmagnetic 
crystal with a st:ong electron-phonon coupling it is possible 
for self-trapped excitons as well as free excitons to form; the 
characteristic peculiarity of the former is its strong localiza- 
tion in the strain field formed by the optical excitation. The 
narrower the exciton band at the original equilibrium posi- 
tions of the nuclei and the weaker the exciton-phonon cou- 
pling, the stronger the self-trapping will be. For an AFI with 
Frenkel-type excitons, in addition to the vibrational degrees 
of freedom, the spin degrees of freedom also play an impor- 
tant role in dynamic processes. The subject of the present 
article is an investigation of the role of the latter in the pro- 
cess of formation of excitonic states in AFI, and also in the 
migration of self-trapped optical excitations. We will assume 
that single-ion anisotropy in the ground and optically excit- 
ed multiplet is weak. 

RESONANCE INTERACTION BETWEEN MAGNETIC IONS 

Within the framework of the molecular field (MF)  ap- 
p r o x i m a t i ~ n l ~ . ~ ~ ,  let us assume the eigenfunctions 
lo,, (M,,, )), If,, (Mi,  ) )  of a magnetic ion at lattice site n 
of sublattice a in its ground andf-excited configuration are 
known. Here, the spin projec:~ons M,, and Mi,  are defined 
relative to the SQA 5, and c i a ,  which usually do not coin- 
cide for the ground and excited multiplets (because the di- 
rections and magnitudes of the exchange fields acting on a 
particular ion need not coincide13). In the presence of the 
nath PI there is also a change in the exchange field which 
acts on the spins of the ions j ( n a )  adjacent to na.  The corre- 
sponding wave functions 16,,,,, (M,,,,, ) ) are defined rela- 
tive to the SQA fj,,,, . Because of the weak single-ion anisot- 
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FIG. 1. Directions of the intrinsic SQAs of ion na while in the ground 
([a) and optically-excited (cia ) electronic states; g,,,,, is the SQA of ion 

j in the ground electronic state near the PI na. 

ropy, the SQAs c, , cia, c,,,,, all lie in a single plane and are 
determined by the angles 8, ,  8 { , ,  B,,,,, relative to the ex- 
ternal field H, (see Fig. 1 ). For an explicit expression for 
these angles in the case of a two-sublattice AFI, see Refs. 12, 
13. Within the framework of the MF approximation, the 
wave functions of the AFI in the absence of perturbations 
and in the presence of a PI at na  have the form 

For convenience in writing, let us choose the sign of the Zee- 
man energy so that the maximum possible spin projection 
corresponds to the smallest energy. Then wave function (2)  
with M, = Swill correspond to the ground state of the AFI 
at T =  0 K, while function (3)  with Mjcna, = S and 
M i ,  = S - 1 corresponds to the lowest spin-forbidden ex- 
cited energy level if the sign of the exchange field for the 
photoexcited ion at na  does not change; likewise, the func- 
tion ( 3 )  with M,,,,, = S and M i ,  = - (S - 1 ) corre- 
sponds to the lowest spin-forbidden level if the sign of the 
exchange field does change. 

Because of the translation symmetry of the crystal and 
the equivalence of the magnetic sublattices, the state de- 
scribed by wave function ( 3 )  is degenerate. The degeneracy 
is lifted by the ERA, leading to quantum transfer of the elec- 
tronic excitation f from ion na  to ion @. The corresponding 
matrix element 

where I Fna ), 1 FmB ) denote function ( 3 ) ,  is calculated using 
the ERA operator 

in which the operator B generates a transition within the ion 
from the ground-state multiplet to a state of the excited mul- 
tiplet, while the operator ?mediates the reverse; then 

Here &' =&f* +By, 6E=6j, where c =  cj, 7 = q, < =  c, 
is a system of coordinates in which cj is the SQA for the jth 
ion (one of the three shown in Fig. 1 ). In the process of 
finding L , , ; ; ~ ,  we encounter the matrix elements 

in order to calculate them, we must first transform to a com- 
mon SQA before using Eq. (4) .  Let us choose for the SQA 
cna(mg) for the first matrix element and cmg (,,, for the sec- 
ond. Then 

where d h,. is the Wigner transition matrix for spin S from 
one coordinate system to the other, and 

corresponding to Eq. (4)  we have 

In Eq. (7),  nc, n,, nc are unit vectors along the axes of the 
coordinate system cn,(mB) ~ n a ( m p )  cna(mB, . Equations 
analogous to (5)-(7) are also obtained for the second ma- 
trix element mentioned above. Using these equations, we ob- 
tain 

f f f 
Lna; m[3 3 Lna; rn? (.afna * M n a c r n ~ )  ; -lfm:, (na) 

- 0, (nad Jl- dLiaAf,i  (@La -%a (m?)) 

M ,  fnr,' 

It follows from Eq. (8)  that the effectiveness of the quantum 
hopping depends both on the magnitude of the deivation of 
the SQA <ia, <,,,,, from the direction <, of the magnetiz- 
ations of the sublattices (the factors d ",,. and d .&;. ) and 
on the mutual orientation of the SQAs lna(m8) and cmp( 
(the product K,, .KmBr , Eq. (8)  also makes evident the fact 

765 Sov. Phys. JETP 67 (4), April 1988 E. G. Petrov 765 



that an electronic transition within a specific ion is correlat- multiplet consisting of a constant part Ef which depends on 
ed with transitions between spin components of multiplets the external field H, (through the angles 8 and ef ), and 
on surrounding ions which remain in their ground state con- 
figuration while changing their SQA. In other words, there 

S 
Hf=HocosOf -- HEf6 cos ( B + B ) ,  

S-I 
(12) 

occurs a dressing of the optical excitation within a given ion 
1 2-1 by the spin clouds of the other ions. This is reminiscent of f2'EH, cos - - .xEfH,fa cos ( g + O l )  HEo cos (0+8) 

exciton self-trapping caused by phonons. 14-" However, here Z Z 
the role of the nuclear degrees of freedom is played by the (13) 
spin degrees of freedom. The situation somewhat resembles are magnetic fields acting on the PI and the ions 
the process of creation of a spin cloud around a moving elec- around it. In the expressions above, 6, and a are the spe- 
tron in magnetic semiconductors during the formation of a cific magnetizations of the PI, the neighboring ion and the 
spin-polaron or magnetic polaron (see, e.g., Refs. 24, 25). ion with fixed SQA; go, gf are g-factors, ,up is the Bohr mag- 
The difference here is that the role of the electron is played neton, is the number of nearest neighbors from the oppo- 
by a currentless spin-forbidden optical excitation. site sublattice, 

At T = 0 K the magnetic ions have their maximal spin - 
projections along their intrinsic SQAs, i.e., 

Therefore, the matrix element of the ERA corresponding to 
the lowest excitation (Mi,  = M i p  = S - I ) ,  according to 
(8 ) ,  ( 7 ) ,  has the form 

Eq. (9 )  generalizes the dependence on spin noncollinearity 
of the matrix element ( 1 ) for resonant transfer of spin-for- 
bidden optical excitations of an AFI, and coincides with ( 1 ) 
in the absence of any deviation of the SQA from the direction 
of Ca, i.e., in the case 

FORMATION OF A SPIN-FORBIDDEN EXCITON BAND 

For definiteness, let us investigate a two-sublattice 
weakly-anisotropic AFI in the noncollinear phase for 
H, > Hcr , where Hcr is the field of the spin-flop phase. Be- 
cause for H, > H,, the SQAs for the various sublattices are 
aligned symmetrically relative to the external field H,, we 
introduce the notation 

The last equation in ( 10) is written for the ions j ( n a )  which 
are nearest neighbors of n a  and belong to the opposite sub- 
lattice. This limitation on the ions j ( n a )  will also be em- 
ployed below. Within this framework, following Refs. 21 
and 13 and using the M F  approximation, let us write down 
the Hamiltonian for an AFI with the nath ion excited: 

L % na '+!(a, - 0 ' )  - p B g i ~ ' ~ ~ :  - p B g o 4 x  s , ( ~ ~ )  ( 1  1 
J 

Here, 

E ' ( 8 ,  O')=Ei-Zx.IIilo16S(S-l) cos ( B + Q i )  

are exchange fields acting on the spin of the ion in the ground 
and excited electronic configurations, I >  0 is the exchange 
parameter for the magnetic interaction of an ion with its 
neighbor, If is a similar parameter in the case where one of 
the ions is photoexcited (x -sign If ), 

In Eq. ( 11 ), fnaX is the spin projection operator on the 
axis c i a ,  while f?,,,, is the same for a neighboring ion, only 
taken around the axis 

The wave functions ( 3 )  are eigenfunctions for the oper- 
ator ( 11 ) and serve as basis functions for finding the exciton 
states of the AFI. In order to find the exciton spectrum, we 
add to (11) the resonance interaction and represent the 
Hamiltonian for an optically excited state of the AFI in the 
form 

Because IF,,) is the state ( 3 )  and L<a,mp is defined by Eq. 
(8 ) ,  in ( 14) it is understood that a summation is to be taken 
over all spin projections of the ground and excited multi- 
plets. During the interaction of the AFI with light, a transi- 
tion occurs between (2 )  and (3 ) ;  the absorption coefficient 
of light is proportional to the imaginary part of the Fourier 
transform of the Green's function (see, e.g., Refs. 1,3-5 ) for 
the transition operators B ( F )  = 1 Fna ) (01, 
Bna (0 = 10) (Fna I .  

From here, the averaging is carried out using the den- 
sity matrix p, of the ground electronic configuration of the 
AFI. In the M F  approximation, p, = n, W(M,), where 

W ( M , )  =esp ( -hoOM,/kBT)  /Sp esp  ( - A o n S / / k B T )  

is the occupation of the M th energy level of the ground-state 
multiplet of the jth ion, ho = p,g,JZEa is the difference 
between its nearest energy levels for 2HE a > H, > H,, . The 
poles of this Green's function give the spectrum of the opti- 
cal excitations of the AFI. As an example, we present the 
exciton spectrum corresponding to the transition 

is the energy position of the center of gravity of the excited 1 O,,% (.If) ) + 1 Fnz ( M i )  ) 
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on the ion na  with energy 

where 

and 

is the position of the center of gravity of the ground-state 
multiplet. In the two-sublattice AFI, for Ha > H,, the excita- 
tion energy of an ion A E ( M + M ~ )  is split into two exciton 
bands E ,,, (k,f; M - M ~  ), characterized by the vector k and 
the transition t ype j  Limiting ourselves for simplicity to the 
case where only the PI has an inclined SQA, i.e., setting 
8 = 8 , 5  = u, we have 

E,, ,  ( k ,  f ;  M+Mf)  =AE'(M+M') 
+ W ( M )  [ Z I L l f ( M ,  M f ) y i ( k ) * Z I L f ( M ;  M f )  I r ( k )  I ,  (15) 

where Z ,  is the number of nearest neighbors from the same 
sublattice, and 

are the geometrical factors for the exciton bands [the sum- 
mation in ( 16) ranges over nearest neighbors]. Physically, 
the factor W(M) reflects the fact that in order for an excita- 
tion to undergo an iso-energetic resonance hop from one un- 
excited ion to another, the latter must have a spin projection 
of M; the probability that this is the case is precisely W(M). 
The expressions for L{ ( M ;  Mf)  and Lf(M;Mf) are ob- 
tained from (8) ,  taking into account (7)  with a =/? 
and a#/?, respectively. Because in our case 8,,,, 
- - 8 j c n a )  9 8nacrn~) = O a ,  M i a  =MJ,p =Mf,  Mmp(na) 

= M n a ( m ~ )  = Mj(na,  = M j ( m ~ )  9 

L,' ( M ;  M') 

= 2r, '  d;;,,, (of - 0 )  d;;M2f (of  - 0 )  K, (M,' -+ M )  
~ , f ~ , f  

x K,* (M,' + MI, 
(17) 

L' ( M ;  M') 

= z r '  d;;,, (0' - e) d;;!M2f (- 0' + 0 )  K, (.I,' -+ M )  
~ , f ~ ~ f  

x K,* ( M , ~  -+ M ) ,  

where A{, df are the quantities A{,,, for nearest neigh- 
bors when a = /? and a#/?, while K, (Mf -M) is given by 
Eq. (7)  with unit vectors directed along the axes la, 7, , la 
(see Fig. 1 ). In the absence of a tilt in the SQA of the PI, 
when ef = 8  we have d",,.(O) = S M M . ,  and thus 
M{ = M{ = Mf. Consequently, in (17) 

K l  (Mf  + M )  K2* ( M f - t M )  = {(s2-M') s,,,, 00s 20 as (as- 1) 

+ (S-M)  (S-M-1) 6,w~,,w+i]co~' 0 ) ,  (18) 

here cos 8 = Ho/2HE a (the expression for 
K, (Mf -M)KX (Mf-M) is obtained from ( 18) formally 
by setting B = 0).  

The light excites states with energies of a k  = 0 exciton; 
in correspondence with ( IS), ( 16), the splitting between 
these states is determined by the expression 

At low temperatures, when only the lowest level of the 
ground state multiplet M = S is occupied, and hence 
W(M) = a , , ,  we obtain from (18) and (17) for O f  = 6' 
the simple expression 

Lf ( S ;  S-1)  =Af cos2 0.  

The corresponding splitting 

AE ( S - + S - 1 )  =221Af1 cosZ 0 ,  

which appears as a result of the magnetic field induced spin 
noncollinearity, was observed in RbMnF, by Eremenko et 

and was explained in Ref. 9 on the basis of the exciton 
model. Equations ( 15 )-( 18) generalize the results of exci- 
ton theory to the case of T # O  K, when, e.g., there appears a 
Davydov splitting for Mf = M #S, - S i n  agreement with 
( 18), ( 17) even in a collinear AFI (formally, when 8 = n-/ 
2). For O f  # 8, exciton theory leads to a fundamentally new 
result; exciton dispersion along the same sublattice begins 
also to depend on the magnetic field [as a consequence of the 
dependence of the parameter L{(M, Mf )  on the angle 
O f  - 8 through the factor d Lhl. (Of  - 8) 1. One can see this 
intuitively at T = 0 K; since W(M) = S , ,  , we obtain from 
( 17) and (7) ,  taking into account the explicit form of d Ld., 

L,f ( M ;  M f )  =6M3s6nrt,s-jAif C O S ~ ' ~ - ~ )  ( - "',y7 

According to Ref. 13 (see also Ref. 23), the dependence of 
the angle O f  on the field Ha when only the PI has an inclined 
SQA is given by the expression 

?tHEfo Ho-xHEfo cos 0  
Hul  sin 0, cosOf = sin 0' = - H"' , (21) 

where 

is the effective magnetic field acting on the PI spin in the 
interval of fields H,, gHog2HEu. From (21 ) it is clear that a 
nontrivial deviation O f  from 8 arises only in the noncollin- 
ear case (in a collinear AFI, when Ha = 0 , 8  = n-/2 we have 
8 = r/2, - r / 2  depending on the sign of If). 

Let us note that the formation of an exciton spectrum in 
an AFI is possible if the dynamic processes related to the 
resonance hopping of an excitation from ion to ion, which 
are characterized by a time T,,, - IL{ I - ' ,  take place faster 
than the relaxation within a multiplet (characterized by the 
time T,,, . However, the condition T,,, <T,,, says nothing 
about whether an additional tilt in the ion spins under pho- 
toexcitation is possible or not. Such an additional tilt is pos- 
sible if the width of the exciton band without a spin tilt of the 
PI and neighboring ions (for the two-sublattice AFI, the 
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band is determined by the quantities L {, L fin ( 15), if in the 
expression ( 17) we set O f  = 6) is smaller than the differ- 
ence in the energies Aaaf in ( 15), taken for O # 6' and 
O f  = 8 (including the spin tilts of the neighboring ions-the 
difference E ~ ( ~ , O  f, - ~ ~ ( 8  = O,O = 0) of the centers of 
gravity of the excited multiplet). Because for a large pho- 
toinduced spin tilt the width of the exciton band is small, 
self-trapping of the exciton takes place, similar to what oc- 
curs in a nonmagnetic crystal because of a photoinduced 
shift of the nuclei. 17." 

DIFFUSION COEFFICIENT FOR SELF-TRAPPED EXCITONS 
IN AN AFI 

Let us now investigate an AFI in which the widths of 
the exciton bands are small, so that the condition r,,, < T,,, is 
fulfilled. A large value of r,,, can arise from several causes, 
e.g., strong excito~-phonon couplingf4 (in which case the 
quantity contains the parameter for this coupling) 
or a large variation in the SQA of the PI  and neighboring 
ions when excited. Assume an excitation lives for a charac- 
teristic time re,. After the lapse of this time, it can, e.g., 
decay into luminescence, be caught by a trapping center, or 
degrade into heat.26 If T,, ST,,, , then by virtue of the condi- 
tion T,,, <T,,, , relaxation processes will ensure that at any 
time interval At satisfying the condition r,,, <At<r,,, , the 
Boltzmann distribution will be preserved for the level occu- 
pation in each of the multiplets. No coherence is involved in 
the process of excitation hopping from one ion to another for 
times on the scale At; hence, the excitation hopping process 
in AFI will have a diffusive character. 

The probability of incoherent hopping of an excitation 
from ion n a  to ion @in a two-sublattice AFI  for H, > Her is 
determined by the expression 

where L {a:mB is obtained from Eq. ( 8 ) ,  while the occupa- 
tions W(M{, and W(M,,,,, ) differ from W(M,), which 
was given earlier, by the replacement of w" by w f  and 
i 5 ' r P B g ~ / f i .  In order to calculate (22) it is convenient to 
pass to the quantities 

in which r, r , ,  ri are numbers of levels in the multiplets; 
(O<r<2(S- I ) ,  O<r,<2S, O<r, <2S, 
- 2 l p 2 S -  1 - 2s<p1<2s,  - 2S<p,<2S 
(the ionsj(@) andj' ( n a )  with j, j' # na,  rnB are considered 
equivalent relative to their PIS n a  and @). Then in place of 
(22) we have 

Here, W(r) ,  W(r , ) ,  W(r, ) are the equilibrium distribution 
functions for the multiplet levels, which are measured from 
the position of the lowest energy levels of each. These func- 
tions are obtained from the expressions presented earlier by 
the substitutions M;, - r, MmB( - rl, Mjc,,, + r,. We will 
assume that the exchange interaction of a PI with the neigh- 
boring ions is not too large, so that the ratio IIf I / Z I  can be 
considered a small parameter. Then if ion n a  is excited while 
ionjis  its nearest neighbor on the opposite sublattice (as it is 
for ion I$), then we can assume that the inclination of the 
SQ A 

is small. When the value of the parameter I If I is smaller than 
I ,  the frequency w will be smaller than the frequency Z0 
(this relation is valid in the nearest-neighbor approxima- 
tion, when ions j and I$ occupy equivalent positions rela- 
tive to the P I  at n a ) .  Because of the condition w <Go, we 
can assume that the following inequality holds: 

which in turn allows us to limit the sum in expression (23) to 
terms with r, = r, = 0. The block 

which arises in this case can be calculated for small devia- 
tions A6, by the method set out in Ref. 13, giving 

where the parameter a in the magnetic Debye-Waller factor 
has the form 

The expression for A6 is given in Ref. 13, and for the case 
IIf l/ZI< lhas the form 

1 Hz' 
A 0  - [bf -sin (of+@) - sin 281.  

Z HE 

Because a < 1, it is sufficient to retain only terms with m = 0 
in the sum over m in Eq. (24) .  Finally we obtain in place of 
(23 
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Expression (27) is valid when the condition 
w fp + ZOp, = 0 is fulfilled, which is the value contained in 
the 6-function in (24) for m = 0. If, however, the frequen- 
cies w and Z0 are such that this condition cannot hold for 
attainable values of p and p,, then only the case p = 0 is 
possible (and correspondingly p ,  = 0).  Let us write down 
the probability of a jump for a self-trapped exciton in this 
case, settingp = 0 in (27) and taking into account the fact 
that according to ( 7 )  and the figure, 

Kna ( M i f  +S)  Kmp'  ( M z f  +S)  

Therefore, taking into account the relations given in ( l o ) ,  
we have 

In the nearest-neighbor approximation, the frequency Zo 
practically coincides with wO for small values of I If IZI in the 
interval of fields 2HEa>Ho>H,,. Let the temperature be 
close to zero, so that we can limit ourselves only to terms 
with r = 0 in the sum. For simplicity, we will include the 
variation in SQA only for the PI (besides the magnetic De- 
bye-Waller factor). Then from (28) we obtain 

2n Of-0 
~ A , m p  = -- r-a cassia') (T) [ 11,' 1 z~,p + cos4 o 1 A,' 1 2 

AZwO 

As is clear from (25), (26), when the value of If is not too 
large, we can set 

In Eq. (30) we have introduced the ratio of Mand M,,, where 
M is the magnetization induced in the crystal by the magnet- 
ic field and Mo is the saturation magnetization, in the form 
cos 8 = M/MO. Wealso write the hopping probabilities (29) 
for the self-trapped exciton for the ion's own sublattice 
[ W{ (M) ] of the AFI. For simplicity we will investigate the 
case If zO. Then, according to (21 ), we have O f  = 0, and 
consequently, 

2n 
W f  ( M )  = - 

'pLlgOIfE 

(32) 

The exciton diffusion coefficients in the direction along the 
ions of its own sublattice and along the direction correspond- 
ing to those ions which belong to the nearest neighbors on 
the opposite sublattice will be proportional to the quantities 
(31) and (32),  respectively. In' the field interval 
Hc,<Ho<2HE the quantity M varies over the range 
0 5 MGM,. In this case the factor exp( - a )  varies slightly 
and this variation can be neglected for estimation purposes. 
Setting S = 5/2 (for an AFI containing Mn2+ ions), we see 
that according to (31 ) the diffusion coefficient increases by 
a factor of 26 for diffusion along the ions of its own sublattice 
because the magnetization increases from 0 to M = M,, de- 
pending on whether or not the SQA of the PI is unchanged. 
As for diffusion along the nearest neighbors from the oppo- 
site sublattice, in Ref. 10 it was observed that the diffusion 
coefficient varied as (M/M0)4 in the field interval up to 70 
kOe, in keeping with (32). The presence of an additional 
factor of [ ( 1/2) ( 1 + M /Mo) 14'" - ')  is revealed at higher 
fields, if If zO. If, however, f #o, then for Ilf l/ZI < 1, we 
can make use of the more general Eq. (29), taking ( 3 1 ) into 
account. 1f If # O  and I If I > ZI, then a more detailed calcula- 
tion is required for the imhomogeneous magnetization 
which forms around the PII3. 

The analysis we have carried out here shows that the 
variation of the SQAs of a PI and of its neighboring ions 
leads to a decrease in the magnitude of the resonance interac- 
tion between magnetic ions and to a transformation of free 
excitons into self-trapped excitons. For weak relaxation 
within the multiplets, this contributes to a decrease in the 
exciton band parameters (which is larger the larger the spin 
cloud around the PI and to complicated dependences of 
these parameters on the external magnetic field. For strong 
relaxation within the multiplet, an equilibrium spin cloud 
forms near the PI, which moves along with the PI as a self- 
trapped exciton; this incoherent motion appears as diffusion. 
The diffusion coefficient depends significantly on the direc- 
tion of propagation of the self-trapped exciton and the char- 
acter of the spin noncollinearity. 

The author is grateful to A. S. Davydov and to V. V. 
Eremenko for discussions of this work. 

I '  The SQA is chosen so that for weak single-ion anisotropy the projection 
of the spin on the SQA is always a good quantum number for the mag- 
netic ion. 
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