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A method of constructing relaxation terms allowing for the symmetry of the crystal lattice is 
described and the hierarchy of relaxation constants is noted. Expressions are obtained for 
dissipative functions of antiferromagnets, the symmetry of which belongs to the orthorhombic, 
rhombohedral, and tetragonal systems. A comparison is made of the expressions for the damping 
rate of spin waves calculated on the basis of a dissipation function and a Heisenberg Hamiltonian. 
An expression is derived for the friction coefficient of a kink-type soliton. 

1. INTRODUCTION operator. Some of the vertices may ~ a n i s h . ~  This is the rea- 

It is well known that the lattice symmetry affects the 
structure of the magnetic anisotropy and magnetostriction 
energies of magnetic crystals.' For example, the magnetic 
anisotropy energy of crystals belonging to the triclinic sym- 
metry arises from terms which are quadratic in the magneti- 
zation, whereas the magnetic anisotropy energy of cubic 
paramagnetic crystals begins with terms which are of the 
fourth power in the magnetization. 

It is shown in Ref. 1 that the higher the power of the 
magnetization in the expansion describing the magnetic an- 
isotropy energy, the lower the coefficient in front of the cor- 
responding term. This is due to the fact that the coefficients 
are determined by perturbation theory ordered in powers of 
u/c,, where v is the average velocity of electrons in an atom 
and c, is the velocity of light. Therefore, the crystal symme- 
try governs the hierarchy of the magnetic anisotropy terms. 

However, in the existing discussions of relaxation terms 
in the equation of motion for the magnetic moments in a 
crystal the crystal symmetry has not been allowed for in any 
way. It is usual to describe the dissipative processes employ- 
ing the relaxation term A [M x [M x F] ],  proposed by Lan- 
dau and Li f~hi tz ,~  or the same term rewritten in the form 
a [M x M I  as suggested by Gilbert.3 (In these formulas M is 
the magnetic moment and F is the effective field.) As point- 
ed out in Ref. 2, the relaxation constant A is due to the rela- 
tivistic interactions. 

Akhiezer, Peletminskii, and the present author calcu- 
lated the tensor of the high-frequency magnetic susceptibil- 
ity of ferromagnets by the Green's function method4 and 
found that the relaxation term in the Landau-Lifshitz equa- 
tion cannot be described by a single constant even in the 
linear approximation. The same conclusion was reached by 
Gurzhi and Tsukernik8 who derived the Landau-Lifshitz 
equation by the Bogolyubov method. In our monograph6 it 
was suggested that relaxation processes in ferromagnets can 
be described by the tensor of relaxation constants and the 
tensor itself was derived using a model of a uniaxial crystal. 

It is well known that in calculations of the energy and 
damping of spin waves by the Green's function method both 
these quantities are in fact governed by the same sets of dia- 
grams for the mass operator, since the energy is determined 
by the real part of the mass operator and the damping by the 
imaginary part. The symmetry of a crystal is manifested by 
the actual nature of the vertices in the graphs for the mass 

son for the appearance of the magnetic anisotropy energy 
only in the second order of perturbations in the case of cubic 
crystals. It is therefore clear that the ideas on the hierarchy 
of the anisotropy constants developed by Landau and Lif- 
shitz in deriving the magnetic anisotropy energy of a ferro- 
magnet can be used also to obtain the dissipation function for 
a ferromagnet. 

The present author expressions for describ- 
ing relaxation processes due to the exchange interaction in 
ferromagnets and antiferromagnets and in Ref. 9 an analysis 
was made of the hierarchy of the relaxation constants asso- 
ciated with relativistic interactions and governing the dissi- 
pation function of a ferromagnet. 

In this paper we derive the part of the dissipation func- 
tion of an antiferromagnet due to the relativistic interactions 
and the corresponding relaxation terms in the equations of 
motion. The characteristic features of antiferromagnets are 
then manifested in, for example, the exchange-relativistic 
Dzyaloshinskii interaction. We show that in establishing the 
hierarchy of the dissipation function constants, we have to 
allow not only for the direct consequences of the symmetry 
governing the invariance of the dissipation function, but also 
for indirect consequences associated with the symmetry of 
the Hamiltonian. We analyze the specific examples of car- 
bonates of transition metals with the D $ symmetry, ortho- 
ferrites with the D :,6 symmetry, fluorides with the Dl;  sym- 
metry, and a uniaxial crystal model of antiferromagnets. In 
all these cases we write down the relaxation terms. We deter- 
mine the damping of spin waves in the uniaxial crystal model 
for the easy-plane magnetic anisotropy and compare the re- 
sults obtained with those obtained on the damping of spin 
waves by the Green's function method and by applying the 
standard expression for the Landau-Lifshitz relaxation 
term. We calculate the mobility of a 180" domain wall in an 
antiferromagnet. 

2. DISSIPATION FUNCTION 

We consider the state of an antiferromagnet close to the 
ground state which can be described by specifying the mag- 
netization vector m(r, t)  which varies slowly with the dis- 
tance and one antiferromagnetic vector" l(r, t). The vectors 
m(r, t )  and l ( r ,  t)  are related to the magnetic moments M, 
and M, of the sublattices 
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The internal energy W of such a quasiequilibrium state, 
known from Ref. 10, is a functional of m(r, t )  and l ( r ,  t ) :  

The time dependence of W is6 

where the effective fields H ,  and H, are given by 

Dissipative processes increase the entropy S of the system. 
Therefore, we find that 

It is clear from the above expression that dm/& and d l/dt 
can be selected as generalized fluxes and H ,  and H I  are 
generalized forces in thermodynamics of irreversible pro- 
cesses. It is convenient to combinedm/dt and d l/dt into a 
six-dimensional flux vector x, = {dm/&, dl/dt) and the 
values of H ,  and H I  into a six-dimensional vector of gener- 
alized forces Fa = { H ,  , H I ) .  We shall assume that 1 ( a ~ 6 ;  
the Latin indices vary from 1 to 3 and label Cartesian coordi- 
nate axes. Therefore, we have 

The Onsager equations for this system are2' 

The transport coefficients YaB satisfy the Onsager sym- 
metry principle: 

where we have introduced s, = (m, 1) or 

- 
The part y$ = (TaB - yBa )/2 of the tensor yao anti- 

symmetric with respect of the indices determines the nondis- 
sipative dynamics of an antiferromagnet. Since this part has 
been investigated fully in Refs. 13-16, we shall not consider - dB in detail. 

The part yaB = (TaB + Yo, )/2 of the tensor YaB sym- 
metric in the indices a andB determines both the relaxation 
terms R ,  in the equations of motion (2.7) and the dissipa- 
tion function Q of the system: 

We can easily see that 

It is convenient to expand the transport coefficients yao as a 
series in powers of s, It follows from the condition (2.8) 

that this expansion contains only the terms with even powers 
of S,  : 

Strictly speaking, this expansion is meaningful in the vicinity 
of a phase transition from the paramagnetic to the antiferro- 
magnetic state, when the quantities m and 1 (i.e., s,) are 
small. As is usually done in theoretical treatments of magne- 
tically orders crystals, we shall assume that the expansion of 
Eq. (2.12) is also valid far from a phase transition. It follows 
from the ideas put forward in Ref. 1 and in the Introduction 
that the coefficients of such an expansion can be taken to be 
decreasing as a power of the small parameter ( u / c ,  ) ': 

Here, 2n is the exponent of the parameter s in the expansion 
of Eq. (2.12). The number of independent components of 
the coefficients in the expansion of Eq. (2.12) is determined 
by the symmetry of the given crystal in the paramagnetic 
phase. 

Substituting Eq. (2.12) into Eq. (2. lo) ,  we obtain 

The dissipation function Q must naturally be invariant with 
respect to the symmetry group of the given crystal in the 
paramagnetic phase. This makes it possible to formulate the 
following phenomenological method for the derivation of 
the dissipation function Qand then of the relaxation term R, 
which follows from this function. First of all, we have to find 
the invariant (relative to the paramagnetic group of the in- 
vestigated crystal) combinations of F, and s, which are 
quadratic functions of F,, using even powers of s,; this 
should then be followed by summation of these quantities 
with arbitrary coefficients. These coefficients are the relaxa- 
tion constants. The higher the power exponent of the param- 
eter s,, the smaller should be the coefficient of the corre- 
sponding term. The series of coefficients in the expansion of 
the dissipation function of Eq. (2.14) should be equated to 
zero in accordance with the law of conservation of the com- 
ponents (or component) of the magnetic moment. 

3. DISSIPATION FUNCTION OF CARBONATES AND 
ORTHOFERRITES 

We shall now illustrate the general ideas of the preced- 
ing section by considering specific examples. We shall dis- 
cuss transition-metal carbonates with the lattice symmetry 
D $  in the paramagnetic phase. We shall select the basic 
symmetry elements in the form of threefold rotation h ,  
about the vertical axis z, twofold rotation h ,  about they axis 
perpendicular to one of the fundamental vectors of the lat- 
tice a , ,  inversion h , ,  together with a shift by half a period 
along the z axis, and time reversal R. 

The fields H ,  and H I  transform under the influence of 
the symmetry elements of a crystal in the same way as m and 
1 on the basis of the definitions given by Eq. (2.1) and be- 
cause of invariance of the internal energy. Following Dzya- 
loshinskii," we can write down the invariance of the zeroth 
order in s, and of the second order in F, : 
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The density q of the dissipation function considered to 
lowest order in s is 

where H, = H, ex + H, e, and e x ,  e, ,  and e, are unit vec- 
tors along the coordinate axes. The last term in the above 
expression is a complete analog of the Dzyaloshinskii energy 
component of the internal energy of an antiferromagnet. 
Equation (3.2) does not include a term i12,H :,, because the 
exchange part of the dissipation function [see Eq. (3.9)]  
contains a term il,,'H: so that the constants A,, and A,, 
cannot be regarded as independent. 

It should be noted that Eq. (3.2) does not describe the 
anisotropy in the basal ( x ,  y )  plane. In this approximation 
(representing the constant term of the expansion in the pa- 
rameter s, ) the dissipation function density is constant for 
an arbitrary homogeneous rotation about the symmetry axis 
z. In other words, Eq. (3.2) for q corresponds to the model of 
a uniaxial crystal. We can allow for the anisotropy in the 
basal plane by including invariants of the type 
(1 4, Hk + + 1 4p H; ), i.e., invariants of the fourth order 
in s, and of the second order in Fa.  

SO far we have applied symmetry considerations only in 
writing down the expression for the dissipation function. 
Consequently, all the relaxation constants il can be regarded 
as being of the same order of magnitude. We now show that 
allowance for the symmetry of the internal energy can pro- 
vide additional information on the relative values of the re- 
laxation constants: il ,, gill, , il ,, . 

We recall the energy density in an antiferromag- 
net17.18,6. 

W=i/z{f(m2+ lz+2ml) +f (m2 + 12 - 2ml) 
SP(m2-1') +a(dl/dx,) '$0 [Im] , + K21t 

+(KI/2i) 1 , ( 1 + 3 - 1 - 5 )  - ' / sKe(l+B+l-B))  - 2mH,. 
(3.3) 

In the above expression the term f (x2) represents the 
exchange energy governing the magnetic moment of a sub- 
lattice and F = (2/,y, ) (m2 - 12) is the energy of the ex- 
change interaction between the sublattices. In the approxi- 
mation of the Landau thermodynamic potential, we have 

where M, is the equilibrium value of the magnetization of a 
sublattice in an antiferromagnet; M :  = M i  = M i ;  xII and 
xL are the transverse and longitudinal (relative to the sym- 
metry axis) components of the magnetic susceptibility. The 
other quantities in Eq. (3.3) have the following meaning: a 
is the inhomogeneous exchange interaction; K,, K,, and K, 
are the magnetic anisotropy constants (K, and K, describe 
the anisotropy on the basal plane); D is the Dzyaloshinskil 
constant. We can go over from Eq. (3.3) to the expression 
for the energy of a uniaxial crystal by assuming that the con- 
stants K, and K, vanish. In the exchange approximation 
(corresponding to the rotation group symmetry) we have to 
assume that not only K, and K, vanish, but also the con- 
stants K, and D. 

The equations of motion for the vectors m and 1 are 

whereg = ( Iel/2mc) is the gyromagnetic ratio, and R, and 
R, are the relaxation terms described by 

The first two terms on the right-hand sides of the equations 
in the system (3.4) describe the nondissipative dynamics of 
an antiferromagnet. 

A general property of the equations in the system (3.4) 
is the law of conservation of the vector representing the total 
magnetic moment of a sample in the exchange approxima- 
tion, or its component along the anisotropy axis in the uniax- 
ial crystal approximation. It is known that conservation of 
additive quantities 

implies the existence of equations of continuity for the densi- 
ties of these quantities. For this reason, the first equation in 
the system (3.4) considered in the exchange approximation 
should be of the formI9 

whereas in the uniaxial crystal approximation, it should be 

dm,/dt+ dII,,/dx,=O. (3.4b) 

In these formulas the quantity II,, is the tensor representing 
the flux of the ith component of the magnetization rn cross- 
ing a unit area perpendicular to the k th axis. The tensor 
consists of two parts: dynamic and dissipative. The dynamic 
part of n,, corresponds to the first two terms in the first of 
the equations in the system (3.4), whereas the dissipative 
part corresponds to the relaxation term R,. 

These properties are manifested directly in the relaxa- 
tion constants. We shall assume here the uniaxial crystal 
approximation. We then have 

Following Eq. (3 .2) ,  we find that 

R,n=h1ke(d2IIm/dX,dXk) +htlH,,if ht,e,lI,,+h~[e,, HI], 

H,=).2,'H,-t-h,lIIl,-hd[e,, H,]. (3.6) 

In writing down the formulas for R we allowed for the con- 
tribution of the exchange dissipation functionH 

Substituting the equations from the system ( 3 . 7 )  into 
the dynamic part of the equation of motion m, we find that in 
the nondissipative approximation the component m, satis- 
fies Eq. (2.4b), where 
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The relaxation term R, should not alter the nature of Eq. 
(3.4b) for a uniaxial crystal. We can easily see that this con- 
dition is satisfied if A, ,  = 0. In the uniaxial crystal approxi- 
mation (K, = K, = 0)  the requirement A ,, = 0 reflects the 
circumstance that the relaxation constant A ,, is determined 
by the same microscopic interactions as the constants de- 
scribing the anisotropy in the basal plane. Therefore, we can- 
not assume that K, = 0 and K, = 0 and at the same time 
postulate that A ,, #0, as one could have done on the basis of 
the requirement of invariance of q in the case of uniaxial 
crystals. An allowance for the anisotropy in the basal plane 
or an allowance for the magnetostriction energy, when the 
phonon system with its own orbital momentum is included, 
implies A,, #O. However, since K,<K4<K2 and the mag- 
non-phonon interaction is weak, it follows that A , , < A , , .  
The considerations leading to the conclusion A, ,  = 0 in the 
uniaxial crystal approximation are a manifestation of the 
symmetry of the Hamiltonian in the properties of the relaxa- 
tion constants, mentioned in the Introduction. In the ex- 
change approximation described by K, = K, = K, = D = 0 
andA,,  = A , ,  = A , ,  = A ,  =Otheequationofmotionform 
should be Eq. (3.4a). We can readily see from Eqs. (3.4), 
(3.5), and (3.6) that this requirement is satisfied and the 
internal magnetic friction (represented by the first term in 
the expression for R, ) does not violate the conservation of 
the total magnetic moment of a sample. 

We should note another circumstance associated with 
the integrals of the equations of motion [Eq. (3.4) 1. In the 
nondissipative approximation (R, = R, = 0 )  these equa- 
tions have two local integrals of motion: 

n~.'(x, t)  +lZ(r.. t)  =C, ( L ) ,  m (z, t)  1 (x, t)  =C, (x). (3.9) 

Usually these two integrals are assumed to be not local but 
global, i.e., they do not depend on the coordinate x and can 
be assumed to be equal to their equilibrium values: 
C, ( x )  = 0 and C,(x) = M i ,  where M, is the magnetic mo- 
ment of a sublattice. This procedure is equivalent to the as- 
sumption that the magnetic moments of the sublattices are 
equal and constant, M = M i  = M i ,  not only under equi- 
librium conditions but also under dynamic conditions. We 
can demonstrate that the integrals of motion C ,  ( x )  and 
C2(x)  are lost when the dissipation terms are included. The 
relaxation of these integrals to their equilibrium values is 
governed by the relaxation constant A r, . 

We now consider orthoferrites with the symmetry 
group D it. We limit our treatment by employing only a two- 
sublattice model of the antiferromagnet. The same proce- 
dure as for a crystal with the D f;, symmetry shows that the 
density of that part of the dissipation function which is due 
to the relativistic interactions amounts to 

qv= {hilHm"+a,zHm,"+h,3H,,2 (3.10) 
+hz~H~x'+hzzH~,'+ 2hidHmxH~z+2hz~HmzH~x)/2. 

The x, y, and z axes are selected along the twofold axes. In 
writing down the above dissipation equation we allowed for 
the fact that the term A ;, H: is already included in the ex- 
change part of q, of the dissipation function of Eq. (3.7). 
Equation (3.10) readily yields the relaxation terms in the 
equations of motion for m and 1. For example, 

Rrnx=(dg/dffm) =hllH,,f h ldHII ,  

R I ~ =  (aq /dH~~)  =XzlH,x+hzdHmz. (3.11) 

Since the symmetry group D 1: belongs to the orthorhombic 
system, all the relaxation parameters in Eq. (3.10) are of the 
same order of magnitude. 

We conclude this section by quoting the expressions for 
the dissipation function of transition-metal fluorides 
(MnF,) with the symmetry group D ii. In this case, we have 

qr= {h*iHm,2+hi3Hm~+hziH112 
+ 2hd (HmxHl,+Hm,H~x) 112. (3.12) 

The z axis is selected along the fourfold axis, whereas the x 
and y axes are oriented along the twofold axes. For the same 
reasons as in the case of Eq. (3.2), we retained only the term 
H:, . In Eq. (3.12) the smallest relaxation constant is A , ,  . 
The other relaxation constants are of the same order of mag- 
nitude. The relaxation terms corresponding to Eq. (3.12) 
are 

4. DAMPING OF SPIN WAVES AND DECELERATION OF KINK- 
TYPE SOLITONS 

If we know the dissipation function, we can readily cal- 
culate the damping of spin waves. We can do this by finding 
the expression for the amplitudes mi and 1, corresponding to 
a spin wave of frequency wi ( k )  with a wave vector k and 
then use 

An antiferromagnet with the easy-plane magnetic an- 
isotropy is characterized by natural oscillation frequen- 
cies18,20 

where 

The above formulas are derived ignoring the anisotropy in 
the basal plane, i.e., assuming that K, = K, = 0. The direc- 
tions of the vectors 1, and m, [m,, = X, (H, + H, )/2] is 
determined by an external magnetic field which is directed 
along the twofold axis (y axis). Namely, the vector 1, is 
parallel to the x axis, whereas the vector m, directed along 
the y axis. Activation of the frequency of spin waves w, is 
then governed by the external magnetic field H,. Inclusion 
of the basal-plane anisotropy gives rise to activation of the 
frequency w, also in the absence of an external magnetic 
field. If K, < 0, then 1,llx and m,lly and for wi we have 

where H, = 101K,l I and H, = 3K41 :/2. Inclusion of the 
magnetic anisotropy energy in the basal plane alters also the 
frequency w,, The change reduces to a slight [of orderH,  

renormalization of the activation frequency w, ( 0 )  
and we shall ignore it. 

UsingEqs. (3.2), (3.3), (3.4), (3.7),and (4.1) wefind 
that the damping TI ( k )  of spin waves of frequency w ,, con- 
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sidered in the uniaxial crystal approximation 
( K ,  = K, = A , ,  = 0 )  is described by the following expres- 
sions: 

r l ( k )  = r i e ( k ) + r i r ( k ) ,  

r,, ( k )  = (k2/2xL) ( k l e [ l +  (2gH0loi)~I +hze ( s k I ~ l ) ~ } ,  

Ti, ( k )  = (21x1) {hil (gHo/oj) 2+hiz (gH~ ' /o i ) '  (ak)' 
+2hd(g2H,H~/~i" ( ~ k ) ~ ) ,  (4 .3)  

where 

hiP=h,,' (k,k, /k2),  k2'=hziel0a~,/4, HE'=lo (a/a2)  12. 

I t  is clear from these relations that ifH, = 0 ,  the damping of' 
spin waves of frequency w , = sk tends to zero proportional- 
ly to k2:  

ri(k)=i12(hle+ h2") k2/x,. (4 .4)  

Therefore, the ratio T I  / w ,  is described by 

r l /o l=i /2(hie+h~e)  klsx,. (4 .5 )  

We can see that in the long-wavelength limit ( k  - 0 )  we have 
T1<w,. 

If we allow for the anisotropy in the basal plane ( K ,  
# O )  and the relaxation constant A,,, then for H,, = 0  the 
expression T I  includes additional terms 

~ ~ i ~ = ~ ~ 3 / 2 ~ L + ~ 2 1 ~ 6 / 1 0 ~ ~ 1 3 / 2 X I ,  (4 .6 )  

which are independent of the wave vector. The requirement 
r , <w , leads to the condition 

his~glo(H,/HE)'". (4 .7 )  

We can find the damping T 2 ( k )  of spin waves of fre- 
quency w, as follows: 

r 2 ( k ) = r Z e ( k ) + r 2 , ( k ) ,  

rz,= [ x l / 8 ( 2 g l 0 ) ~ ]  ( A l e  [ 0 z 2 +  ( 2 g H ~ ) ~ ]  +hek2 (2gHE)'}, (4 .8 )  

r2 ,=  (Y,1/810Z) ( ~ ~ ~ H E ~ S - ~ I ~ H D " ~ ~ ~ H D H B } -  

It is clear from Eqs. (4 .3)  and (4.8) that f o r k  = 0  the 
damping T I  of nonactivated spin waves vanishes and the 
damping T 2  of spin waves with an activation frequency 
differs from zero. The results of Eqs. (4 .3 )  and (4 .8)  repre- 
senting the dependence of the damping factors T I  ( k )  - k 2  
and T , ( k )  -- T , ( 0 )  on the wave vector at low values of k  for 
an antiferromagnet with the easy-plane magnetic anisotro- 
py, are in full agreement with the calculations of these coeffi- 
cients by the Green's function method, when the initial 
Hamiltonian of an easy-plane antiferromagnet is the Hamil- 
tonian with the corresponding magnetic anisotropy energy 
(see Ref. 21 ). The results T ,  ( 0 )  = 0  and r 2 ( 0 )  # 0  are in 
agreement with the Adler theorem for systems with a contin- 
uous parameter ground-state degeneracy parameter (angle 
p,, governing the position of the vector l,, in the basal 
plane). 

This result ( T , ( O )  = 0 ,  T,(O) # O )  for an easy-plane 
antiferromagnet means that the relaxation of the longitudi- 
nal and transverse components of the vector m depends on 
the symmetry. We recall that for l,,l(x and m,lly the normal 
coordinates for oscillations of frequency w ,  ( k )  are repre- 

sented by a superposition of the components m, and I,, 
whereas the normal coordinates for the frequency w,  ( k )  are 
represented by a superposition of the components m, and I,. 
Consequently, we have 

Hence, we can see that the relaxation time of the longitudi- 
nal component m, ( k )  is T ,  ( k )  = 1 / T ,  ( k ) ,  whereas the re- 
laxation time of the transverse component my ( k )  is 
r , ( k )  = l / r ,  ( k ) .  Assuming that k  = 0 and bearing in mind 
that w ,  ( 0 )  = r ,  ( 0 )  = 0, we can demonstrate that the ho- 
mogeneous part of rn, does not vary with time [law of con- 
servation ,dz = m, ( 0 )  V ]  and the homogeneous part of rn, 
relaxes at a rate characterized by the time constant 
T , ( O )  = l / r 2 ( 0 ) .  Therefore, the results of a calculation21 of 
the damping times of spin waves considered in a microscopic 
theory can be interpreted as proof of the different nature of 
the relaxation of the components m,  and my.  

A calculation of the damping I?, ( k )  due to the ex- 
change interaction of spin waves with one another, carried 
out using the Green's function method and the Heisenberg 
Hamiltonian for an antiferromagnet with the b.c.c, lattice at 
temperatures T g  O,, g i v e ~ ~ l - , ~  

where h, = O, ( a k ) ;  O,  = 4 ( 6 ~ , ) " ~ ~ ;  a  is a lattice con- 
stant; s, is the spin of an atom; J is the integral of the ex- 
change between the sublattices; Tis  the temperature in ener- 
gy units; fiis the Planck constant. Comparing Eqs. (4.5) and 
(4 .8) ,  we can see that the phenomenological approach 
makes it possible to allow for the dependence of the damping 
on the wave vector with logarithmic accuracy. Truncating 
from below the frequency w ,  by the frequency of the dipole 
oscillation w, = X, gM,, we obtain 

We can similarly relate the phenomenological relaxation 
constants A,, , A,, , and A, to the constants describing the 
interactions of atomic spins with one another. In the long- 
wavelength limit ( k  = 0 )  it follows from Ref. 21 that the 
damping T ,  ( 0 )  corresponding to A < T<O is described by 

Here, d is the Dzyaloshinskii constant in the Hamiltonian, 
p = gfi and 

Comparing the expression for T, ( 0 )  with Eq. (4 .8) ,  we can 
see that the constants A, ,  , A , ,  , and A, are determined by the 
magnetic anisotropy constant K and the DzyaloshinskiY con- 
stant D: 
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I t  should be noted that if R, and R, are described by the 
formulas 

which corresponds to the Landau-Lifshitz relaxation terms 
for each of the sublattices, we find that the ratio r , / w ,  for 
Ho = 0 and k-0 is characterized by a divergence of the l/k 
type. Naturally, this divergence has no physical meaning 
and it simply indicates that the crystal symmetry must be 
included in writing down the relaxation terms. 

We now consider deceleration of a kink-type soliton in a 
uniaxial antiferromagnet with the magnetic anisotropy of 
the easy-axis type (K, < 0) .  For simplicity, we ignore the 
Dzyaloshinskii interaction ( D  = 0) .  The soliton solution of 
the equations of motion [Eq. (3.4) ] obtained ignoring dissi- 
pation (R, = R, = 0 )  is24 

1=10 (0, sin 0, cos 0 ) ,  m= (m,, 0, O), 

0 x-vt 
tg-=exp[--], 2 X(V) x(v)=xO(i-$)"', 

where v is the soliton velocity, x is the coordinate of the 
center of gravity, and t is the time. This solution corresponds 
to the hypothesis l , )m,.  In the expression for the effective 
fields H, and H I ,  corresponding to a soliton described by 
Eq. (4.13) there are integrals of motions C ,  and C, .  Using 
Eqs. (3.5) and (4.13 ), we can readily calculate the energy 
density w in an antiferromagnet [Eq. (3.3) ] as a function of 
C ,  and C,, The minimum of w corresponds to the values 

These values of C ,  and C, correspond to the following ex- 
pressions for H,, and H I  : 

v \ '  -1 

H,x-O. H,,=-H, sin 0 coSa ( 1 - ;) , 

2 19 1 v' -'/I 

8, - -sin OM. (2) ' $( 1 - --) , H~,=H~,-O. 
XI Xl. 

The above formulas are derived using the expressions in Eq. 
(4.13). It follows from them that if v(s, the effective field 
H, is much higher than the field H, . Therefore, in calculat- 

ing the density of the dissipation function of a soliton it is 
sufficient to consider only terms with the field H,: 

Integrating this expression with respect to the coordinate x, 
we find that 

where 

The coefficient y represents the friction coefficient of a soli- 
ton, F ,  = - yu, 8, is the energy of a soliton at rest, and 
8,,/s2=rn* is the effective mass of a soliton. 

We recall that the energy of a soliton described by the 
expressions in Eq. (4.13) is 

The motion of a soliton in a medium with friction gives rise 
to an exponential reduction of its velocity. The relaxation 
time T of the soliton velocity is readily found to be 
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