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We solve the problem of how the exchange interaction affects the ground state of an acceptor in a 
semimagnetic semiconductor with a complex valence band (the hole spin is J = 3/2). We show 
that the strong spin-orbit interaction of the bound hole implies that, in contrast to the 
Hamiltonian for a free particle, the Hamiltonian describing the exchange interaction between the 
hole and the magnetic ions in the lattice has a non-Heisenberg form; this is also true for an electron 
localized on a donor at the edge of a simple conduction band. The non-Heisenberg correction 
ensures that the maximum energy of the bound magnetic polaron corresponds to an 
inhomogeneous distribution of magnetization of the ions, while the ground state energy level of 
the acceptor is split into unequally-spaced sublevels. The cases of an acceptor center with a "zero- 
radius" potential and with a Coulomb potential are analyzed in detail. In solving this problem, we 
use the continuum approximation for the spatial distribution of magnetic ions. For both model 
potentials, it is found that the ground state of the polaron has axial symmetry, while the total 
momentum of the hole in these cases attains its maximum value, I (F) / = 3/2. We evaluate the 
polaron energy for the ground and first excited states as a function of y = m,/m, ,the ratio of the 
light to the heavy hole masses. Characterization ofthe splitting of the acceptor level according to 
projection of the total angular momentum Fcannot be maintained if the discreteness in the 
positions of the magnetic ions is taken into account, or if a specific model of the impurity center is 
postulated. 

1. INTRODUCTION 

Recently, there have been a number of theoretical and 
experimental papers devoted to investigating magnetopo- 
laron effects in semimagnetic semiconductors.'-8 In these 
crystals, the strong exchange interaction between electrons, 
holes and magnetic ions in the lattice leads to considerable 
mutual alignment of their spins. Polarization of the magnet- 
ic ions causes splitting of the spin states of an electron and 
hole, while a charge carrier in a definite spin state in turn 
maintains the magnetic ions around it in a polarized state. 
(Analogous effects in magnetic semiconductors were stud- 
ied 

The magnetopolaron effect appears, e.g., in the strong 
temperature-dependent shift of the luminescence line of ex- 
citons bound to acceptors'-3, and in the gigantic Stokes shift 
observed in Raman scattering.' 

In this article we investigate the problem of how the 
magnetopolaron effect influences acceptor states in semi- 
magnetic semiconductors with cubic symmetry at zero tem- 
perature. In the crystals we will discuss-the A *B ' com- 
pounds-the energy spectrum of holes has a point of 
fourfold degeneracy for p = 0 ( p  is the hole quasimomen- 
tum). Therefore, for energies small compared to the magni- 
tude of the spin-orbit interaction, the hole can be treated as a 
particle with effective spin J = 3/2 (Ref. 1 1 ). 

In earlier attempts to construct a theory of the magne- 
topolaron effect, researchers used simplified models in 
which the complex structure of the valence band was ig- 
nored. In fact, it was assumed that the spin of a charge car- 
rier is J = 1/2. This simplification leaves unexplained many 
qualitative peculiarities of the magnetic polaron which 
forms from a bound hole. Actually, the spins of the magnetic 
ions are always oriented along the effective exchange field, 

which is directed parallel or antiparallel to the carrier spin J. 
In the case of an electron, the direction of this field does not 
change in space because the projection of the spin on the 
quantization axis is conserved. For the bound hole, only the 
total angular momentum F = J + L is conserved (here L is 
the hole orbital angular momentum). Therefore, the direc- 
tion of spin for the hole depends on the coordinates, and 
generally speaking does not coincide with the direction of 
the quantization axis. The exchange field of the hole varies in 
space both in magnitude and direction; because of these var- 
iations the orientations of the spins of the magnetic ions also 

The ground state of a hole bound to an acceptor 
is split into four inequivalent sublevels; to each sublevel 
there corresponds a definite projection of the total orbital 
momentum of the hole and an axisymmetric exchange field. 
The state with the largest projection oftotal angular momen- 
tum on the axis of symmetry of the magnetic polaron 
( 1 (F) I = 3/2) has the lowest energy. 

The calculations were carried out for two model accep- 
tor potentials: the "zero-radius" potential and the Coulomb 
potential. Using these potentials, we have studied how the 
energy splitting of the acceptor sublevels depend on the pa- 
rameters of the complex valence band. 

2. HAMlLTONlAN AND EXCHANGE INTERACTION ENERGY 

The exchange interaction Hamiltonian for a hole with a 
magnetic ion has the form 

wherej(r ,  ) = S ( r  - r, ) is the density operator of the hole 
at the nth magnetic ion, r, and I, are the radius vector and 
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the spin of this ion, 3 is the spin operator of the hole and f l  is 
the exchange interaction constant. 

Usually the ground state of an acceptor in a cubic semi- 
conductor is fourfold degenerate and has a total angular mo- 
mentum F = 3/2 (Ref. 14). The wave function of such a 
state contains a spin part XU and an orbital part Y,, . Because 
the spin of the hole is J = 3/2, the angular momentum of the 
orbital motion for a state with F = 3/2 can take on only two 
values, 1 = 2 and 1 = 0. The hole wave functions have the 
form 

Here M, m and a are projections of F, I, and J onto the 
quantization axis Z, and R, ( r )  are the radial parts of the 
wave functions. The coefficients in Eq. (2)  are the Wigner 
3j-symbols. A truncated Hamiltonian for the exchange in- 
teraction can be constructed out of the functions (2)  in the 
form 

The coefficients a,, b,, a,,, b,, can be expressed in 
terms of the functions 

e.g., as follows. Direct the Z-axis along r,. Then the wave 
function at the point r, will be in its simplest form: 

Let us calculate the four matrix elements of the operator v,, 
using the functions (4)  and the explicit expression ( 1 ) . By 
comparing with ( 3 )  we obtain 

1 1 1 1 
( 1 r n  1 T) = T( an + bnrnz+ainrnz + - 4 binr:) I n ;  

From (5 )  we obtain the desired expression 

The Hamiltonian (3) has a much more complex structure 
than the corresponding Hamiltonian for a center with states 
close to the edge of a simple band, for which the exchange 
Hamiltoni,ap contains only the first term in (3) 
(3-' 8, (FI, )). (In other words, the Bloch functions of a 
donor center contain only s-waxes.) The additional terms 
containing the scalar product ( F  r, ) describe, among other 
things, the transfer of angular momentum from the hole to 
the crystal lattice. The presence of terms cubic in F among 
these additional terms leads to unequal spacing of the hole 
sublevels in the field of the magn~tic ions. 

With regard to the ion spins I,, the changes in the Ham- 
iltonian are not so noticeable. As in the simpler cases, the 
interaction of an ion with the spin of a localized hole is de- 
scribed by the scalar product of I, with an effective scalar 
field 

which now depends on F in a complicated way. It can be 
shown from (3 )  that the Hermitian matrix components of 
this field have an additional intrinsic symmetry 

BM, M, (r,) = (-1) M+"'B-Arp, --&I (r,,), ( 8 )  

where 

which considerably reduces the number of independent ma- 
trix elements of the exchange field B. The explicit form of 
these matrix elements is given in Appendix I. 

Despite the complex form of the matrix (3),  we can find 
its eigenvalues for any configuration of magnetic ion spins. 
The corresponding secular equation is found to be biquadra- 
tic, and has the form of a pair of eigenvalues with equal abso- 
lute values but opposite signs: 

Here 
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However, in view of the immense number of possible spin 
configurations, such a calculation by itself cannot give infor- 
mation about the observed characteristics of the center at 
nonzero teniperatures. In the next section, we will discuss 
how to analyze the simplest situation, in which we bypass the 
thermodynamic averaging over the various spin configura- 
tions of magnetic ions, and find the configuration corre- 
sponding to the most tightly bound hole level. 

3. GROUND STATE OF A HOLE ON AN ACCEPTOR AT T=O K 

3.1. In order to find the state with the largest magneto- 
polaron energy directly, i.e., by using Eq. (3) ,  we would 
have to optimize this equation fof an infinite number of argu- 
ments (the angles of the vectors I, ). It is more convenient to 
proceed in another way. 

First, given an arbitrary hole wave function 

let us find the spin configuration of magnetic ions which 
corresponds to the maximum value of the magnetopolaron 
energy 

MM' 

To do this, we must align the spin of each ion I, parallel 
to the local field acting on it: 

MM' 

(Here and henceforth we will denote a quantum-mechanical 
average over the wave function V! by the angular brackets). 
Then 

is a function of four complex arguments in all, which satisfy 
the normalization condition 2, Ic, I 2  = 1. I )  

In analogy with the problem of an impurity center with 
states near a simple conduction band edge, it is natural to 
assume that the largest value of the correlation energy 
( ~ ( c ) )  corresponds to large average values of angular mo- 
mentum which are close to the maximum possible value the 
hole can have, i.e., I (F) I = 3/2. As we will show below, it is 
just this situation which obtains in the case of a center de- 
scribed by a "zero-radius" potential or by a Coulomb poten- 
tial. However, in the general case such an assumption can 
turn out to be erroneous. 

In Eq. ( 15), we assume that the ion spin is parallel to 
(B(r, )). In doing this, we approximated the magnetic ion 

spin as a classical vector. Let us also make use of a second 
important simplification: we replace the summation over 
magnetic ions in the Hamiltonian by a volume integration. 
Both approximations are useful when Nah3% 1, where N is 
the concentration of magnetic ions and a, is the acceptor 
radius. 

Actually, the exchange interaction energy is additive in 
the number of magnetic ions Nu, within the polaron; there- 
fore, the relative error in determining this energy is of order 
S, -- (Nu, 3, -'I2. The additivity of the polaron energy in 
fact implies that the spin of the hole interacts with the total 
spin of the magnetic ions, i.e., Nu, 31. The quantum-mechan- 
ical indeterminacy of the length of this spin is of order 
(Nah3) 'I2, while the relative error in replacing the spins of 
the magnetic ions by a classical vector is S,, =: (Nah3) -'I2. 

A numerical estimate of the error in this approximation will 
be given below for specific materials. 

Let us investigate the interaction energy of the hole d~ 
with the ions located in a thin spherical layer of radius r. 
From the explicit form of the Hamiltonian ( 3 )  we can obtain 
the following expression for the vector (B( r  ) ) : 

<B (r) >={ (5+4q-q2) <F>+6(q2-2q) ((F)e)e 

where r] = R2(r)/R,(r) ; e = r/r is a unit vector along r, 
while the components of the vector k are expressed through 
the components of the octupole moment tensor of the hole 
(see Ref. 15, p. 305): 

using the equation 

Here, Y,  ' is the spherical harmonic of order I, whose argu- 
ments are the angles of the radius vector r. 

The general expression for the magnitude of this field is 
rather cumbersome: 

I(B>I=- BR2(r) [d, ( tF>tF) )  
40n 

and its integral over solid angle 

d r = ~ r ' d r j  dRI (B) 11 

is difficult to obtain analytically. The coefficients di in Eq. 
(19) are 

d,='(25+42q2-32q3+9q4), d2=60 (7q2+8q3+4q4), 

d3=12,'Z (-1Oq+9$-6q3+2q4), 

d,=1275 (35q+12$+27q3-49'1, (21) 

d,=241/~(17q2-2q3-q4), d6=36017(2q2+2q3+q4), 
- 

d,=-601/42/li (11q2+4q3+2q4), d8=-18001/7/11 (2q3+$). 
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The rounded brackets denote the scalar product of two 
equal-rank spherical tensors (see Ref. 15, p. 3 3 6 ) :  

while the curly brackets define a scalar formed by contract- 
ing the direct product of two tensors with the corresponding 
spherical functions: 

Keeping in mind the approximate character of ( 2 0 ) ,  it is 
expedient for purposes of estimation to make use of a simple 
analytic expression which approximates ( 2 0 )  to within a few 
percent: 

Toderive this equation we make use of the fact that for states 
described by a few arbitrary superpositions of the functions 
Y,, the following equation holds (see Appendix 11) : 

As an example, in Fig. 1 we present the dependence of the 
energy d ~  on the structure of the hole wave function for three 
values of 7 ;  the hole wave function is cast in the form 

cos a+\F-, sin a. ( 2 6 )  

The dotted curves correspond to a calculation using Eq. 
( 2 4 ) ,  while the continuous curves are results of a numerical 
calculation using the exact relations ( 1 9 ) - ( 2 3 ) .  It is clear 
that the results for the exact and the approximate calcula- 
tions are in rather good agreement. Using Eq. ( 2 6 ) ,  we find 
that whereas for 7 = 1 the maximum correlation energy is 
attained for a = 0  (i.e., when 1 (F) I = 3 / 2 ) ,  for 7 = 2  the 
largest interaction energy with the magnetic ions corre- 
sponds to a spinless state ( a  = n-/4 and I (F) = 0 ) .  We can 
show that the average spin of a hole in such a state, averaged 
over a sphere, equals zero ( 8  dR(J) = 0 ) ;  however, from 

FIG. 1. Dependence of the magnetopolaron energy of a thin spherical 
shell of magnetic impurities on the form of the hole wave function at an 
acceptor: Y = Y,,z cos a + Y sin a. Dashed curves: calculated using 
the approximation in Eq. ( 2 4 ) ,  continuous curves: based on the exact 
relations ( 1 9 ) - ( 2 3 ) .  Curve 1-17 = R2/R,,  = 1 ;  2-17 = 2; 3- 
7: ~ ( r - w ) .  

what was said earlier, the same spherical average of the abso- 
lute value of the spin is a maximum ( 8  df2J (J) I). 

As 7 +  a, ( r +  cc ), Eq. ( 2 4 )  gives a very weak depend- 
ence of d ~  on ( ( F ) ,  (F) ). Under these conditions, small cor- 
rections to ( 2 4 )  can markedly affect the character of the 
behavior of d e .  In point of fact, the results of numerical cal- 
culations make clear that the maximum correlation energy 
in this case is attained for a=:n-18, so that O #  I (F) I # 3 / 2 .  

The coefficient g ( 7 )  in front of ( (F),(F) ) in Eq. ( 2 4 )  
changes sign twice in the region of positive 7, so that it is 
negative in the region 

and is positive outside it. If for some reason or  other values of 
7 from the region ( 2 4 )  play a fundamental role in the forma- 
tion of the magnetic polaron, then the spin of the ground 
state of a bound hole will be zero. 

3.2. The radial functions R , ( r )  and R , ( r ) ,  and conse- 
quently the function ~ ( r ) ,  are determined by the form of the 
impurity center potential. For a Coulomb center, no analytic 
expressions for these functions are known, so we found them 
n ~ m e r i c a l l y . ' ~ . ~ '  In  what follows we will investigate the 
simpler situation of a "zero-radius" center, for which 

where (Eq. G)  is a normalization factor , x l  = ( 2 m ,  
c , , / f i2)  ' I 2  and xh = (2mh&, / f i2 )  are the characteristic 
wave vectors for particles with the light and heavy hole 
masses bound to the center with energy E,, p = rxh  is the 
radius measured in Bohr radii of the heavy hole, and 
y = m , / m , .  If y = 1, then R , r O  and 

the spin of the hole does not interact with its orbital motion 
and there are no qualitative differences between magnetic 
polarons in the valence and conduction bands. In particular, 
the maximum magnetopolaronic energy is achieved for 

( (J) I = 1 (F) I = 3 / 2 .  
If y#  1, however, then the form of the ground state is 

not known apriori. In Fig. 2  we show the dependence of the 

FIG. 2 .  Dependence of the ratio of the radial wave functions 7 = RZ/R, ,  
on the distance out to the acceptor center in the "zero-radius" model 
potential ( p = r x , , ) ,  curve 1-y = 0; 2-y = 0.1; 3-7 = 0.5. 
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FIG. 3. Dependence of the energy of a magnetic polaron localized at an 
acceptor center on the light hole-heavy hole ratio. The energy is measured 
in units of E* = 1/3 P N I  in such a way that its value is numerically equal 
to the "effective spin" of the hole in a given state. The continuous curves 
are calculated using the exact relations ( 19)-(23), the dashed curves are 
the approximate relation (24) .  Curve 1-magnetopolaron energy for a 
hole state described by the functions q,  = Y,I,( ( ( F )  1 = 3/2); curve 2- 
by the functions Y, = IV, , , ( l  ( F )  1 = 1/2; curve 3-by the functions Y, 
= (Y,lZ + Y-,12)/2112 and Y, = (3112Y-l lz  + Y 3 / , ) / 2 ( I ( F )  =O). It 

is clear that for any value y the maximum magnetopolaron energy corre- 
sponds to the maximum possible value of the total angular momentum of 
the hole ( F )  I = 3/2. Curve 4 illustrates the ratio 4 = E ~ ~ ~ / ~ E ~ ~ ~  as a func- 
tion of y. The quantity & differs from 1 because of the unequal spacing of 
the polaron sublevels. 

ratio R,/R, = 7 on the spacingp for certain values of y. It is 
clear that there is a region of values o f p  in which condition 
(27) is fulfilled. For those magnetic ions whose distance 
from the impurity center falls within this interval, the ex- 
change interaction energy is a maximum for I (F) I = 0. 
However, it is clear from Fig. 3 that averaging over all the 
magnetic ions leads immediately to the conclusion that the 
maximum magnetopolaron energy is achieved for 

1 (F) / = 3/2. 
In Fig. 4 we show the spatial distribution of the polar- 

ization of magnetic ions for y = 0 in the neighborhood of a 
given center. The tangents to the curves shown in this figure 
coincide at each point with the direction of (B) and I. It  is 
clear that, in contrast to the magnetic polaron for a simple 
band, the maximum energy for the acceptor case corre- 
sponds to an inhomogeneous distribution of impurity mag- 
netization. 

Using the form I ( r )  of the distribution we have found 
for a hole in its ground state ( Y  = Y,,,), it is not difficult to 
determine both the energy of the ground state ( M  = 3/2) 

and the three excited sublevels ( M  = * 1/2, f 3/2):  

Thus, the energy of the ground state is 

These energies are needed, e.g., for interpreting experiments 
involving Raman scattering of light. The results of such ex- 
periments are shown in Fig. 3. Curve 4 of this figure shows 
the dependence of the parameter f = E ~ , ~ / ~ E , , ~  on y. The 
extent to which f differs from 1 is a measure of how unequal- 
ly spaced the energies of the four polaron sublevels are, since 
E, = E -,, and the sublevels are equidistant for 

= 3&,,> This latter condition is fulfilled only for y = 1. 
For almost all yf 1 ,  we have f < 1, and only in the small 
region 0 < y 5 0.04 do we have (> 1; it reaches 1.18 for y = 0. - 

I t  is important to emphasize that the maximum magne- 
topolaron splitting is attained for y = 1 ,  for which R,  = 0 
and I (J) / = 3/2 for all values of r. 

3.3. Analogous results are obtained for a Coulomb cen- 
ter with y = 0, and of course for y = 1 .  As in the case of a 
center described by the "zero radius" potential, the hole 
ground state here corresponds to an axisymmetric distribu- 
tion of polarization of magnetic ions; the average value of the 
angular momentum of a hole in this state is a maximum; 
I (F) I = 3/2. The unequal spacing of the excited sublevels is 
also preserved. The value of the parameter ( for y = 0 is 0.93 
for a Coulomb center. 

The value of the sublevel energies of the magnetic po- 
laron were found using the truncated Hamiltonian ( 3 ) ,  con- 
structed from the wave functions (2 ) .  This, however, does 
not imply that we are limited to perturbation theory. The 
radial wave functions R,,(r) and R,(r)  can contain vari- 
ational parameters. Thus, e.g., for the most nontrivial case 
y = 0, two single-parameter wave functions can be chosen 
for the Coulomb center in the form 

where a is a variational parameter. Such functions constitute 
a good description of the acceptor ground state in a semicon- 
ductor with a complex valence band ( y  = 0 )  when 

Here x is the dielectric permittivity, e is the electron charge, 
and ii is Planck's constant. The factor 1.5 appears because of 

FIG. 4. Spatial distribution of the polarization of magnetic ions in the the difference between the hole wave function and a hydro- 
neighborhood of an acceptor center with a "zero-radius" potential genic function. I t  is found that the sublevel energies &, ofthe 
( y = m , / m ,  = 0) .  The tangents to the curves at each point coincide with at T = 0 K do not depend on the value of the vari- 
the directions of (B) and I at that point. The calculation was carried out 
for / ( F )  1 = 3/2. The axes are numbered in units of the heavy-hole Bohr atiOnal parameter a. This about because the magnetic 
radius. ions at zero temperature are aligned along whatever direc- 
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tion the exchange field ends up pointing, while the increase 
in volume of the wave function is compensated by the de- 
crease in hole density at each magnetic ion. Thus, the single- 
parameter variational procedure does not lead to a change in 
the acceptor radius. This assertion is correct for any y. For 
y = 1 the particle spin is a conserved quantity; therefore the 
exchange interaction does not change the wave function of 
the hole. For y # 1 the answer could perhaps be made more 
precise by using a two-parameter variational procedure. A 
further error comes from replacing (1)  in Eq. (3 )  with the 
invariant functions (2) .  However, this error is not large and 
is of order 6 + ( ~ ~ , ~ ~ ~ ~  -E~,~)~/E:. Here, E~,~,,,,, 

= ~ ~ ~ ~ ( y  = 1 ), where E, is the energy of the bound acceptor. 
Because the results for the two basic impurity center 

models are so similar, we can assume that within the contin- 
uum approximation for the magnetic ion distribution the 
ground state always corresponds to the maximum value of 
angular momentum / (F) I = 3/2. 

3.4. Let us discuss the applicability of the models we 
have developed here to specific semiconductors. In the crys- 
tal Cd, , Mn,Te the ratio of the light to heavy hole masses 
y ~ 0 . 1 ,  PN,=: 880 meV. The FCC sublattice has a period of 
a, = 6.46 A, in which there are 4 atoms per unit cell, i.e., the 
concentration of ions in this sublattice is N, = 4/a,3. The 
concentration of magnetic Mn ions equals N = N+, x = 10, 
and m,/m,,--0.4 (m, is the free-electron mass); a, = 0.53 
A is the electron Bohr radius. Thus, the heavy-hole radius in 
Cd, - ,Mn,Te is a, = l.5aBxm,/rn, =:20 A. The quantity 
of magnetic ions in the neighborhood of the center for 
x = 0.05 is E = (471/3) Na, 3 ~ 2 4 .  The applicability of the 
continuum approximation is limited by fluctuations in the 
number of ions, which leads to a relative error 6, ,-- (Ti)-'/' 
~ 0 . 2 .  The spin of the magnetic Mn ion is I = 5/2. The error 
related to the replacement of the magnetic ion spids by clas- 
sical vectors (see above) is S,, z ( TiI) - ' I 2  0.13. For y = 1, 
we have 1 (J) 1 = 3/2 and the magnetopolaron shift is maxi- 
mal: 

For y = 0.1 we have E , , ~  37 meV. The acceptor binding ener- 
gy E,,-- 53 meV.' The relative error associated with replacing 
( 1) by the truncated Hamiltonian (3)  (see above) comes to 
a,,--0.11. 

The calculations were carried out assuming an antifer- 
romagnetic interaction between magnetic ions. This approx- 
imation is satisfactory until the exchange interaction energy 
of an acceptor with one Mn ion E ,  = Egi2/ii is large com- 
pared to the antiferromagnetic exchange energy of two 
neighboring magnetic ions E,-, . For E ,  5 E,_, , however, the 
hole does not interact with paired spins. According to the 
data in Ref. 19, for x = 0.05 the effective fraction of magnet- 
ic ionsx' amounts to only 60% of the original concentration. 
For Cd,,,, Mn,,,, Te, without taking into account the anti- 
ferromagnetic interaction, we have &, - 1.5 meV and &,_, ,-- 1 
meV. The relative error in this approximation is 

Thus, the principal inaccuracy in this model ( - 20%) 
is connected with the continuum approximation. 

In the crystal Hg, , Mn, Te all the parameters are close 
to the corresponding parameters for Cd, , Mn, Te and only 

the dielectric constant is different, i.e., x = 15. Correspond- 
ingly, the radius of the hole bound state is 1.5 times larger: a, 
-- 30 A while Ti = 84. The continuum approximation is good 
to an accuracy of 6, ~ 0 . 1 1 ,  while the classical vector ap- 
proximation for the Mn spins is good to 0.07. The increase in 
the size of the wave function implies that it is necessary to 
include the antiferromagnetic interaction of the Mn ions for 
small fractions x. For x = 0.05 we have E, ~ 0 . 4 4  meV < E,_, 

=: 1 meV, xl/x,--0.6. Therefore the value of the polaron shift 
must be less by a factor of 0.6, i.e., the real magnetopolaron 
shift equals E,/, z 22 meV. The polaron energy calculated in 
this manner has a relative error, due to the antiferromagnet- 
ic interactions of the Mn ions, of order 

The effective average number of magnetic ions in the po- 
laron is E' = Tixl/x,--50. The continuum approximation er- 
ror S, ~ 0 . 1 4 .  Thus, even for the crystal Hg,,, Mn,,, Te the 
principal error ( - 14%) is a consequence of the continuum 
approximation. 

The authors are grateful to V. I. Perel' for useful discus- 
sions of the results obtained here. 

APPENDIX l 

An explicit form for the independent matrix elements of the 
exchange field 6, (r,) (9) in spherical coordinates 

To simplify the notation, we will omit the subscript n 
from the coordinates r, , B E  and p, of a point, and also from 
the coefficients a,, b, and a,, which depend on r, . We also 
introduce the following notation: (B, ),,. = (B, ),,. 
+ i(B, ),,. . Thus, we obtain 

(B,)  ,,=A1 {a+5/2brL-12a,r2 cos' 8+8nlr2 cos4 0 
+ (ML-"I,) [3br2 cos' 0-br.'+BalrL cos- O-10nlrL cos' O ] ) ,  

( B + )  Mar=3e'' cos 0 sin 8 [ lrr2+c .r'(cos2 8-3) 

(B-),,=3e-' cos 0 sin o[br2+a , i ( cos2  0-3)  

(Bz)-S1. .(,1=-ie-3,(FalF3 sin3 0 cos 0 ,  

( B + )  -% d12=3ie-2q sin2 0(-br2+alr' sin' O )  , 
(B-)-% al,=3ie-4'~a~,r2 sin4 0 ,  

(B,)-,,, r,=-9ie-"arr2 sin" cos 3 ,  

(B , )  - I i ,  11,=i[2a+br2(6 sin"+ I )  -9u,r2 sin4 01, 

(B-)- l t r  nt2=3ie-21s sin2 0(br2-3alr2 sin2 0 ) ,  

(B,)l,2 l,,2=il'e- ' cos 0 sin 0 (2bP-3alr"1+cosV)) ,  

(B,) 9,=i1'3[a+~2br2-3air2(I+~o~2 0)s in2  O j ,  

( B - )  ,,, B=i13e-2,~ sin2 O(br2-3a l r2 ( l+c~s2  0 )  ), 

113 
( B + )  -,;I: = - 2 e-" sin 20 (-2br2+3a,r2 sin2 0 )  , 
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APPENDIX II 

Let us prove that the relation between the square of the 
absolute value of the octupole moment and the average an- 
gular momentum of a hole on an acceptor has the form 

where 

(T;)=Z cMcMf*( (-1) %-M 
-M q M' (A21 

MM' 

is the octupole moment of the hole in a state with wave func- 
tion 

y =z cAfy&f .  (A3) 
iu 

Using the definition of the scalar product of two tensors of 
the same rank [see Eq. (22) 1,  and also the condition of or- 
thogonality of the 3j symbols (Ref. 15, p. 3 13), we obtain 

We can show that 

Therefore it follows from Eq. (A4) that 

Equation (A6)  is equivalent to (A  1 ), because the first rank 
tensor defined by (A2) is proportional to the angular mo- 
mentum ( T  ' )  = (~)/m, which completes the proof. 

I '  We can decrease the number of variables still more if we take into ac- 
count the fact that the energy ( ~ ( c ) )  is invariant under arbitrary rota- 
tions of the system of coordinates and premultiplication of all the coeffi- 
cients by an overall phase factor. Thus, e.g., without loss of generality 
we can assume that the average angular momentum of the hole (F) is 
directed along the Z axis ( ( F , )  = (F,) = 0).  
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